-
1
-
-
0000492326
-
Learning from noisy examples
-
Dana Angluin and Philip Laird. 1988. Learning from Noisy Examples. Machine Learning, 2(4):343-370.
-
(1988)
Machine Learning
, vol.2
, Issue.4
, pp. 343-370
-
-
Angluin, D.1
Laird, P.2
-
2
-
-
71749114162
-
From annotator agreement to noise models
-
accepted for publication
-
Beata Beigman Klebanov and Eyal Beigman. 2009. From Annotator Agreement to Noise Models. Computational Linguistics, accepted for publication.
-
(2009)
Computational Linguistics
-
-
Klebanov, B.B.1
Beigman, E.2
-
3
-
-
71749117674
-
Analyzing disagreements
-
Manchester, UK
-
Beata Beigman Klebanov, Eyal Beigman, and Daniel Diermeier. 2008. Analyzing Disagreements. In COLING 2008 Workshop on Human Judgments in Computational Linguistics, pages 2-7, Manchester, UK.
-
(2008)
COLING 2008 Workshop on Human Judgments in Computational Linguistics
, pp. 2-7
-
-
Klebanov, B.B.1
Beigman, E.2
Diermeier, D.3
-
4
-
-
0030387103
-
A polynomial-time algorithm for learning noisy linear threshold functions
-
Burlington, Vermont, USA
-
Avrim Blum, Alan Frieze, Ravi Kannan, and Santosh Vempala. 1996. A Polynomial-Time Algorithm for Learning Noisy Linear Threshold Functions. In Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science, pages 330-338, Burlington, Vermont, USA.
-
(1996)
Proceedings of the 37th Annual IEEE Symposium on Foundations of Computer Science
, pp. 330-338
-
-
Blum, A.1
Frieze, A.2
Kannan, R.3
Vempala, S.4
-
5
-
-
24044479403
-
Filtering-ranking perceptron learning for partial parsing
-
Xavier Carreras, Llúis Màrquez, and Jorge Castro. 2005. Filtering-Ranking Perceptron Learning for Partial Parsing. Machine Learning, 60(1):41-71.
-
(2005)
Machine Learning
, vol.60
, Issue.1
, pp. 41-71
-
-
Carreras, X.1
Màrquez, L.2
Castro, J.3
-
7
-
-
85115605144
-
Learning to classify email into "speech acts"
-
Barcelona, Spain
-
William Cohen, Vitor Carvalho, and Tom Mitchell. 2004. Learning to Classify Email into "Speech Acts". In Proceedings of the Empirical Methods in Natural Language Processing Conference, pages 309-316, Barcelona, Spain.
-
(2004)
Proceedings of the Empirical Methods in Natural Language Processing Conference
, pp. 309-316
-
-
Cohen, W.1
Carvalho, V.2
Mitchell, T.3
-
9
-
-
33646057547
-
New ranking algorithms for parsing and tagging: Kernels over discrete structures, and the voted perceptron
-
Philadelphia, USA
-
Michael Collins and Nigel Duffy. 2002. New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete Structures, and the Voted Perceptron. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pages 263-370, Philadelphia, USA.
-
(2002)
Proceedings of the 40th Annual Meeting on Association for Computational Linguistics
, pp. 263-370
-
-
Collins, M.1
Duffy, N.2
-
11
-
-
85127836544
-
Discriminative training methods for hidden Markov hodels: Theory and experiments with perceptron algorithms
-
Philadelphia, USA
-
Michael Collins. 2002a. Discriminative Training Methods for Hidden Markov Hodels: Theory and Experiments with Perceptron Algorithms. In Proceedings of the Empirical Methods in Natural Language Processing Conference, pages 1-8, Philadelphia, USA.
-
(2002)
Proceedings of the Empirical Methods in Natural Language Processing Conference
, pp. 1-8
-
-
Collins, M.1
-
13
-
-
34547698378
-
New results for learning noisy parities and halfspaces
-
Los Alamitos, CA, USA
-
Vitaly Feldman, Parikshit Gopalan, Subhash Khot, and Ashok Ponnuswami. 2006. New Results for Learning Noisy Parities and Halfspaces. In Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, pages 563-574, Los Alamitos, CA, USA.
-
(2006)
Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science
, pp. 563-574
-
-
Feldman, V.1
Gopalan, P.2
Khot, S.3
Ponnuswami, A.4
-
15
-
-
0033281425
-
Large margin classification using the perceptron algorithm
-
Yoav Freund and Robert Schapire. 1999. Large Margin Classification Using the Perceptron Algorithm. Machine Learning, 37(3):277-296.
-
(1999)
Machine Learning
, vol.37
, Issue.3
, pp. 277-296
-
-
Freund, Y.1
Schapire, R.2
-
17
-
-
0002192516
-
Decision theoretic generalizations of the PAC model for neural net and other learning applications
-
David Haussler. 1992. Decision Theoretic Generalizations of the PAC Model for Neural Net and other Learning Applications. Information and Computation, 100(1):78-150.
-
(1992)
Information and Computation
, vol.100
, Issue.1
, pp. 78-150
-
-
Haussler, D.1
-
20
-
-
0001553979
-
Toward efficient agnostic learning
-
Michael Kearns, Robert Schapire, and Linda Sellie. 1994. Toward Efficient Agnostic Learning. Machine Learning, 17(2):115-141.
-
(1994)
Machine Learning
, vol.17
, Issue.2
, pp. 115-141
-
-
Kearns, M.1
Schapire, R.2
Sellie, L.3
-
24
-
-
0346986305
-
Shallow parsing using noisy and non-stationary training material
-
Miles Osborne. 2002. Shallow Parsing Using Noisy and Non-Stationary Training Material. Journal of Machine Learning Research, 2:695-719.
-
(2002)
Journal of Machine Learning Research
, vol.2
, pp. 695-719
-
-
Osborne, M.1
-
26
-
-
50849119091
-
Reliability measurement without limit
-
Dennis Reidsma and Jean Carletta. 2008. Reliability measurement without limit. Computational Linguistics, 34(3):319-326.
-
(2008)
Computational Linguistics
, vol.34
, Issue.3
, pp. 319-326
-
-
Reidsma, D.1
Carletta, J.2
-
30
-
-
80053360508
-
Cheap and fast - But is it good? Evaluating non-expert annotations for natural language tasks
-
Honolulu, Hawaii
-
Rion Snow, Brendan O'Connor, Daniel Jurafsky, and Andrew Ng. 2008. Cheap and Fast - But is it Good? Evaluating Non-Expert Annotations for Natural Language Tasks. In Proceedings of the Empirical Methods in Natural Language Processing Conference, pages 254-263, Honolulu, Hawaii.
-
(2008)
Proceedings of the Empirical Methods in Natural Language Processing Conference
, pp. 254-263
-
-
Snow, R.1
O'connor, B.2
Jurafsky, D.3
Ng, A.4
-
32
-
-
34247540250
-
Games with a purpose
-
Luis von Ahn. 2006. Games with a purpose. Computer, 39(6):92-94.
-
(2006)
Computer
, vol.39
, Issue.6
, pp. 92-94
-
-
Von Ahn, L.1
|