메뉴 건너뛰기




Volumn 07-12-June-2015, Issue , 2015, Pages 3593-3602

Watch and learn: Semi-supervised learning of object detectors from videos

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; OBJECT RECOGNITION; PATTERN RECOGNITION; SEMANTICS; SUPERVISED LEARNING;

EID: 84959201998     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2015.7298982     Document Type: Conference Paper
Times cited : (127)

References (55)
  • 2
    • 24644446560 scopus 로고    scopus 로고
    • Ensemble tracking
    • S. Avidan. Ensemble tracking. In CVPR, 2005
    • (2005) CVPR
    • Avidan, S.1
  • 3
    • 80054897941 scopus 로고    scopus 로고
    • Multiple object tracking using k-shortest paths optimization
    • J. Berclaz, F. Fleuret, E. Turetken, and P. Fua. Multiple object tracking using k-shortest paths optimization. TPAMI, 2011
    • (2011) TPAMI
    • Berclaz, J.1    Fleuret, F.2    Turetken, E.3    Fua, P.4
  • 4
    • 51849168866 scopus 로고    scopus 로고
    • Representing shape with a spatial pyramid kernel
    • A. Bosch, A. Zisserman, and X. Munoz. Representing shape with a spatial pyramid kernel. In CVPR, 2007
    • (2007) CVPR
    • Bosch, A.1    Zisserman, A.2    Munoz, X.3
  • 7
    • 84898803720 scopus 로고    scopus 로고
    • Neil: Extracting visual knowledge from web data
    • X. Chen, A. Shrivastava, and A. Gupta. NEIL: Extracting Visual Knowledge from Web Data. In ICCV, 2013
    • (2013) ICCV
    • Chen, X.1    Shrivastava, A.2    Gupta, A.3
  • 8
    • 84887366030 scopus 로고    scopus 로고
    • Adding unlabeled samples to categories by learned attributes
    • J. Choi, M. Rastegari, A. Farhadi, and L. Davis. Adding unlabeled samples to categories by learned attributes. In CVPR, 2013
    • (2013) CVPR
    • Choi, J.1    Rastegari, M.2    Farhadi, A.3    Davis, L.4
  • 9
    • 84898771670 scopus 로고    scopus 로고
    • Ensemble projection for semisupervised image classification
    • D. Dai and L. Van Gool. Ensemble projection for semisupervised image classification. In ICCV, 2013
    • (2013) ICCV
    • Dai, D.1    Van Gool, L.2
  • 10
    • 84866636076 scopus 로고    scopus 로고
    • Learning to localize detected objects
    • Q. Dai and D. Hoiem. Learning to localize detected objects. In CVPR, 2012
    • (2012) CVPR
    • Dai, Q.1    Hoiem, D.2
  • 12
    • 84911368326 scopus 로고    scopus 로고
    • Learning everything about anything: Webly-supervised visual concept learning
    • S. Divvala, A. Farhadi, and C. Guestrin. Learning everything about anything: Webly-supervised visual concept learning. In CVPR, 2014
    • (2014) CVPR
    • Divvala, S.1    Farhadi, A.2    Guestrin, C.3
  • 15
    • 77955655063 scopus 로고    scopus 로고
    • Semi-supervised learning in gigantic image collections
    • R. Fergus, Y. Weiss, and A. Torralba. Semi-supervised learning in gigantic image collections. In NIPS, 2009
    • (2009) NIPS
    • Fergus, R.1    Weiss, Y.2    Torralba, A.3
  • 16
    • 84911424892 scopus 로고    scopus 로고
    • Object-based multiple foreground video co-segmentation
    • H. Fu, D. Xu, B. Zhang, and S. Lin. Object-based multiple foreground video co-segmentation. In CVPR, 2014
    • (2014) CVPR
    • Fu, H.1    Xu, D.2    Zhang, B.3    Lin, S.4
  • 18
    • 84866704163 scopus 로고    scopus 로고
    • Are we ready for autonomous driving? the kitti vision benchmark suite
    • A. Geiger, P. Lenz, and R. Urtasun. Are we ready for autonomous driving? the kitti vision benchmark suite. In CVPR, 2012
    • (2012) CVPR
    • Geiger, A.1    Lenz, P.2    Urtasun, R.3
  • 19
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 20
    • 70350531007 scopus 로고    scopus 로고
    • Semi-supervised on-line boosting for robust tracking
    • H. Grabner, C. Leistner, and H. Bischof. Semi-supervised on-line boosting for robust tracking. In ECCV, 2008
    • (2008) ECCV
    • Grabner, H.1    Leistner, C.2    Bischof, H.3
  • 21
    • 84898835433 scopus 로고    scopus 로고
    • Video cosegmentation for meaningful action extraction
    • J. Guo, Z. Li, L.-F. Cheong, and S. Z. Zhou1. Video cosegmentation for meaningful action extraction. In CVPR, 2013
    • (2013) CVPR
    • Guo, J.1    Li, Z.2    Cheong, L.-F.3    Zhou, S.Z.4
  • 22
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • S. Hare, A. Saffari, and P. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.3
  • 23
    • 84887395819 scopus 로고    scopus 로고
    • Discriminative decorrelation for clustering and classification
    • B. Hariharan, J. Malik, and D. Ramanan. Discriminative decorrelation for clustering and classification. In ECCV, 2012
    • (2012) ECCV
    • Hariharan, B.1    Malik, J.2    Ramanan, D.3
  • 24
    • 85162513516 scopus 로고    scopus 로고
    • Object bank: A high-level image representation for scene classification & semantic feature sparsification
    • L. jia Li, H. Su, E. P. Xing, and L. Fei-fei. Object bank: A high-level image representation for scene classification & semantic feature sparsification. In NIPS, 2010
    • (2010) NIPS
    • Jia Li, L.1    Su, H.2    Xing, E.P.3    Fei-Fei, L.4
  • 27
    • 68949141755 scopus 로고    scopus 로고
    • A least-squares approach to direct importance estimation
    • T. Kanamori, S. Hido, and M. Sugiyama. A least-squares approach to direct importance estimation. JMLR, 2009
    • (2009) JMLR
    • Kanamori, T.1    Hido, S.2    Sugiyama, M.3
  • 30
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, 2012
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 31
    • 84959200095 scopus 로고    scopus 로고
    • Interactively guiding semi-supervised clustering via attribute-based explanations
    • S. Lad and D. Parikh. Interactively guiding semi-supervised clustering via attribute-based explanations. In ECCV, 2014
    • (2014) ECCV
    • Lad, S.1    Parikh, D.2
  • 32
    • 84866723224 scopus 로고    scopus 로고
    • Discovering important people and objects for egocentric video summarization
    • Y. J. Lee, J. Ghosh, and K. Grauman. Discovering important people and objects for egocentric video summarization. In CVPR, 2012
    • (2012) CVPR
    • Lee, Y.J.1    Ghosh, J.2    Grauman, K.3
  • 35
    • 78049527922 scopus 로고    scopus 로고
    • A hierarchical visual model for video object summarization
    • D. Liu, G. Hua, and T. Chen. A hierarchical visual model for video object summarization. PAMI, 2010
    • (2010) PAMI
    • Liu, D.1    Hua, G.2    Chen, T.3
  • 36
    • 84863411575 scopus 로고    scopus 로고
    • Ensemble of exemplar-svms for object detection and beyond
    • T. Malisiewicz, A. Gupta, and A. A. Efros. Ensemble of exemplar-svms for object detection and beyond. In ICCV, 2011
    • (2011) ICCV
    • Malisiewicz, T.1    Gupta, A.2    Efros, A.A.3
  • 40
    • 84898798671 scopus 로고    scopus 로고
    • Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms
    • Y. Pang and H. Ling. Finding the best from the second bests-inhibiting subjective bias in evaluation of visual tracking algorithms. In ICCV, 2013
    • (2013) ICCV
    • Pang, Y.1    Ling, H.2
  • 41
    • 80052904076 scopus 로고    scopus 로고
    • Globallyoptimal greedy algorithms for tracking a variable number of objects
    • H. Pirsiavash, D. Ramanan, and C. C. Fowlkes. Globallyoptimal greedy algorithms for tracking a variable number of objects. In CVPR, 2011
    • (2011) CVPR
    • Pirsiavash, H.1    Ramanan, D.2    Fowlkes, C.C.3
  • 43
    • 35348895580 scopus 로고    scopus 로고
    • Semisupervised self-training of object detection models
    • C. Rosenberg, M. Hebert, and H. Schneiderman. Semisupervised self-training of object detection models. In WACV, 2005
    • (2005) WACV
    • Rosenberg, C.1    Hebert, M.2    Schneiderman, H.3
  • 46
    • 84887386223 scopus 로고    scopus 로고
    • Constrained semi-supervised learning using attributes and comparative attributes
    • A. Shrivastava, S. Singh, and A. Gupta. Constrained semi-supervised learning using attributes and comparative attributes. In ECCV, 2012
    • (2012) ECCV
    • Shrivastava, A.1    Singh, S.2    Gupta, A.3
  • 47
    • 59649108206 scopus 로고    scopus 로고
    • A co-regularized approach to semi-supervised learning with multiple views
    • V. Sindhwani and P. Niyogi. A co-regularized approach to semi-supervised learning with multiple views. In ICML Workshop, 2005
    • (2005) ICML Workshop
    • Sindhwani, V.1    Niyogi, P.2
  • 48
    • 84887368146 scopus 로고    scopus 로고
    • Self-paced learning for long-term tracking
    • J. S. Supancic III and D. Ramanan. Self-paced learning for long-term tracking. In CVPR, 2013
    • (2013) CVPR
    • Supancic, J.S.1    Ramanan, D.2
  • 49
    • 84887363653 scopus 로고    scopus 로고
    • Discriminative segment annotation in weakly labeled video
    • K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei. Discriminative segment annotation in weakly labeled video. In CVPR, 2013
    • (2013) CVPR
    • Tang, K.1    Sukthankar, R.2    Yagnik, J.3    Fei-Fei, L.4
  • 50
    • 84864465181 scopus 로고    scopus 로고
    • Tracking-based semi-supervised learning
    • A. Teichman and S. Thrun. Tracking-based semi-supervised learning. In RSS, 2011
    • (2011) RSS
    • Teichman, A.1    Thrun, S.2
  • 53
    • 84959210948 scopus 로고    scopus 로고
    • Video object discovery and co-segmentation with extremely weak supervision
    • L. Wang, G. Hua, R. Sukthankar, J. Xue, and N. Zheng. Video object discovery and co-segmentation with extremely weak supervision. In ECCV, 2014
    • (2014) ECCV
    • Wang, L.1    Hua, G.2    Sukthankar, R.3    Xue, J.4    Zheng, N.5
  • 54
    • 84959250182 scopus 로고    scopus 로고
    • Model recommendation: Generating object detectors from few samples
    • Y.-X. Wang and M. Hebert. Model recommendation: Generating object detectors from few samples. In CVPR, 2015
    • (2015) CVPR
    • Wang, Y.-X.1    Hebert, M.2
  • 55
    • 77953190737 scopus 로고    scopus 로고
    • Labelme video: Building a video database with human annotations
    • J. Yuen, B. C. Russell, C. Liu, and A. Torralba. Labelme video: Building a video database with human annotations. In ICCV, 2009.
    • (2009) ICCV
    • Yuen, J.1    Russell, B.C.2    Liu, C.3    Torralba, A.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.