메뉴 건너뛰기




Volumn , Issue , 2003, Pages 587-592

Learning to classify texts using positive and unlabeled data

Author keywords

[No Author keywords available]

Indexed keywords

KEY FEATURE; NEGATIVE DOCUMENTS; ROCCHIO; TEXT CLASSIFICATION; TRAINING DOCUMENTS; UNLABELED DATA; UNLABELED DOCUMENTS;

EID: 84880798303     PISSN: 10450823     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (500)

References (21)
  • 2
    • 0002993682 scopus 로고    scopus 로고
    • Combining labeled & unlabeled data with co-training
    • A. Blum & T. Mitchell. Combining labeled & unlabeled data with co-training. COLT-98.
    • COLT-98
    • Blum, A.1    Mitchell, T.2
  • 3
    • 9444244214 scopus 로고    scopus 로고
    • Exploiting relations among concepts to acquire weakly labeled training data
    • J. Bockhorst & M. Craven. Exploiting relations among concepts to acquire weakly labeled training data. ICML-2002, 2002.
    • (2002) ICML-2002
    • Bockhorst, J.1    Craven, M.2
  • 4
    • 84944949595 scopus 로고
    • The effect of adding relevance information in a relevance feedback environment
    • C. Buckley, G. Salton, and J. Allan. The effect of adding relevance information in a relevance feedback environment. S1GIR-94, 1994.
    • (1994) S1GIR-94
    • Buckley, C.1    Salton, G.2    Allan, J.3
  • 6
    • 84961317343 scopus 로고    scopus 로고
    • PAC learning from positive statistical queries
    • F. Denis. PAC learning from positive statistical queries. ALT-98, pages 112-126. 1998.
    • (1998) ALT-98 , pp. 112-126
    • Denis, F.1
  • 7
    • 84880793807 scopus 로고    scopus 로고
    • Enhancing supervised learning with unlabeled data
    • S. Goldman & Y. Zhou. Enhancing supervised learning with unlabeled data. ICML-2000.
    • ICML-2000
    • Goldman, S.1    Zhou, Y.2
  • 8
    • 0002714543 scopus 로고    scopus 로고
    • Making large-Scale SVM Learning Practical
    • B. Schftlkopf and C. Burges and A. Smola (ed.), MIT-Press
    • T. Joachims. Making large-Scale SVM Learning Practical. Advances in Kernel Methods - Support Vector Learning, B. Schftlkopf and C. Burges and A. Smola (ed.), MIT-Press, 1999
    • (1999) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 9
    • 0032202014 scopus 로고    scopus 로고
    • Efficient noise-tolerant learning from statistical queries
    • M. Kearns. Efficient noise-tolerant learning from statistical queries. J. of the ACM,45:983-1006, 1998.
    • (1998) J. of the ACM , vol.45 , pp. 983-1006
    • Kearns, M.1
  • 11
    • 85013879626 scopus 로고
    • A sequential algorithm for training text classifiers
    • D. Lewis & W. Gale. A sequential algorithm for training text classifiers. SIGIR-94, 1994.
    • (1994) SIGIR-94
    • Lewis, D.1    Gale, W.2
  • 12
    • 0742311711 scopus 로고    scopus 로고
    • Partially supervised classification of text documents
    • B. Liu, W. Lee, P. Yu, & X. Li. Partially supervised classification of text documents. ICML-2002.
    • ICML-2002
    • Liu, B.1    Lee, W.2    Yu, P.3    Li, X.4
  • 13
    • 3242788638 scopus 로고    scopus 로고
    • Active + semi-supervised learning = robust multi-view learning
    • I. Muslea, S. Minton & C. Knoblock. Active + semi-supervised learning = robust multi-view learning. ICML-2002, 2002.
    • (2002) ICML-2002
    • Muslea, I.1    Minton, S.2    Knoblock, C.3
  • 14
    • 1942514815 scopus 로고    scopus 로고
    • Learning from the positive data
    • to appear
    • S. Muggleton. Learning from the positive data. Machine Learning, 2001, to appear.
    • (2001) Machine Learning
    • Muggleton, S.1
  • 20
    • 84880818418 scopus 로고    scopus 로고
    • A re-examination of text categorization methods
    • Y. Yang & X. Liu. A re-examination of text categorization methods. S1G1R-99, 1999.
    • (1999) S1G1R-99
    • Yang, Y.1    Liu, X.2
  • 21
    • 0011399035 scopus 로고    scopus 로고
    • PEBL: Positive example based learning for Web page classification using SVM
    • H. Yu, J. Han, & K. Chang. PEBL: Positive example based learning for Web page classification using SVM. KDD-02, 2002.
    • (2002) KDD-02
    • Yu, H.1    Han, J.2    Chang, K.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.