메뉴 건너뛰기




Volumn , Issue , 2015, Pages 13-18

Deep classifiers from image tags in the wild

Author keywords

Deep Learning; Image Retrieval; Image Tag Suggestion; Large scale Robust Classification; Tags in the Wild

Indexed keywords

IMAGE RETRIEVAL;

EID: 84958611219     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/2814815.2814821     Document Type: Conference Paper
Times cited : (60)

References (31)
  • 1
    • 37849004888 scopus 로고    scopus 로고
    • Why we tag: Motivations for annotation in mobile and online media
    • M. Ames and M. Naaman. Why we tag: Motivations for annotation in mobile and online media. In Proc. CHI, 2007.
    • (2007) Proc. CHI
    • Ames, M.1    Naaman, M.2
  • 4
    • 74049158146 scopus 로고    scopus 로고
    • NUS-WIDE: A real-world web image database from National University of Singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. NUS-WIDE: a real-world web image database from National University of Singapore. In Proc. CIVR, 2009.
    • (2009) Proc. CIVR
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 5
    • 0038401728 scopus 로고    scopus 로고
    • Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary
    • P. Duygulu, K. Barnard, N. D. Freitas, and D. a. Forsyth. Object Recognition as Machine Translation: Learning a Lexicon for a Fixed Image Vocabulary. In Proc. ECCV, 2002.
    • (2002) Proc. ECCV
    • Duygulu, P.1    Barnard, K.2    Freitas, N.D.3    Forsyth, D.A.4
  • 7
    • 84959243872 scopus 로고    scopus 로고
    • Improving image-sentence embeddings using large weakly annotated photo collections
    • Y. Gong, L. Wang, M. Hodosh, J. Hockenmaier, and S. Lazebnik. Improving image-sentence embeddings using large weakly annotated photo collections. In Proc. ECCV, 2014.
    • (2014) Proc. ECCV
    • Gong, Y.1    Wang, L.2    Hodosh, M.3    Hockenmaier, J.4    Lazebnik, S.5
  • 8
    • 77953202699 scopus 로고    scopus 로고
    • Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation
    • M. Guillaumin, T. Mensink, J. Verbeek, and C. Schmid. Tagprop: Discriminative metric learning in nearest neighbor models for image auto-annotation. In Proc. ICCV, 2009.
    • (2009) Proc. ICCV
    • Guillaumin, M.1    Mensink, T.2    Verbeek, J.3    Schmid, C.4
  • 12
    • 84876231242 scopus 로고    scopus 로고
    • ImageNet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. ImageNet Classification with Deep Convolutional Neural Networks. In NIPS, 2012.
    • (2012) NIPS
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 13
    • 85083602472 scopus 로고    scopus 로고
    • Classifying tag relevance with relevant positive and negative examples
    • X. Li and C. G. M. Snoek. Classifying tag relevance with relevant positive and negative examples. In Proc. MM, 2013.
    • (2013) Proc. MM
    • Li, X.1    Snoek, C.G.M.2
  • 16
    • 84976702763 scopus 로고
    • A lexical database for english
    • ACM
    • G. A. Miller. Wordnet: A lexical database for english. Commun. ACM, 38(11), 1995.
    • (1995) Commun , vol.38 , pp. 11
    • Miller. Wordnet, G.A.1
  • 17
    • 85015456272 scopus 로고    scopus 로고
    • A sparse kernel relevance model for automatic image annotation
    • S. Moran and V. Lavrenko. A sparse kernel relevance model for automatic image annotation. Int J Multimed. Info Retr, 3(4), 2014.
    • (2014) Int J Multimed. Info Retr , vol.3 , pp. 4
    • Moran, S.1    Lavrenko, V.2
  • 20
    • 67649275535 scopus 로고    scopus 로고
    • What drives content tagging: The case of photos on flickr
    • O. Nov, M. Naaman, and C. Ye. What drives content tagging: The case of photos on flickr. In Proc. CHI, 2008.
    • (2008) Proc. CHI
    • Nov, O.1    Naaman, M.2    Ye, C.3
  • 21
    • 84898828265 scopus 로고    scopus 로고
    • From large scale image categorization to entry-level categories
    • V. Ordonez, J. Deng, Y. Choi, A. C. Berg, and T. L. Berg. From large scale image categorization to entry-level categories. In Proc. ICCV, 2013.
    • (2013) Proc. ICCV
    • Ordonez, V.1    Deng, J.2    Choi, Y.3    Berg, A.C.4    Berg, T.L.5
  • 22
    • 84900870389 scopus 로고    scopus 로고
    • The sun attribute database: Beyond categories for deeper scene understanding
    • G. Patterson, C. Xu, H. Su, and J. Hays. The sun attribute database: Beyond categories for deeper scene understanding. IJCV, 108:59-81, 2014.
    • (2014) IJCV , vol.108 , pp. 59-81
    • Patterson, G.1    Xu, C.2    Su, H.3    Hays, J.4
  • 26
    • 85083605123 scopus 로고    scopus 로고
    • Unsupervised learning of visual sense models for polysemous words
    • K. Saenko and T. Darrell. Unsupervised learning of visual sense models for polysemous words. In Proc. NIPS, 2008.
    • (2008) Proc. NIPS
    • Saenko, K.1    Darrell, T.2
  • 29
    • 10844249670 scopus 로고    scopus 로고
    • Labeling images with a computer game
    • L. von Ahn and L. Dabbish. Labeling images with a computer game. In Proc. CHI, 2004.
    • (2004) Proc. CHI
    • Von Ahn, L.1    Dabbish, L.2
  • 31


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.