-
1
-
-
84973926501
-
Learning to see by moving
-
7, 8
-
Agrawal, Pulkit, Carreira, Joao, and Malik, Jitendra. Learning to see by moving. ICCV, 2015. 7, 8
-
(2015)
ICCV
-
-
Agrawal, P.1
Carreira, J.2
Malik, J.3
-
3
-
-
84872575253
-
Learning feature representations with k-means
-
Springer, 5
-
Coates, Adam and Ng, Andrew Y. Learning feature representations with k-means. In Neural Networks: Tricks of the Trade, pp. 561–580. Springer, 2012. 5
-
(2012)
Neural Networks: Tricks of the Trade
, pp. 561-580
-
-
Coates, A.1
Ng, A.Y.2
-
4
-
-
84973916088
-
Unsupervised visual representation learning by context prediction
-
6, 8, 11
-
Doersch, Carl, Gupta, Abhinav, and Efros, Alexei A. Unsupervised visual representation learning by context prediction. ICCV, 2015. 6, 8, 11
-
(2015)
ICCV
-
-
Doersch, C.1
Gupta, A.2
Efros, A.A.3
-
5
-
-
84921069139
-
The Pascal Visual Object Classes challenge: A retrospective
-
5, 6
-
Everingham, Mark, Eslami, SM Ali, Van Gool, Luc, Williams, Christopher KI, Winn, John, and Zisserman, Andrew. The Pascal Visual Object Classes challenge: A retrospective. IJCV, 111(1): 98–136, 2014. 5, 6
-
(2014)
IJCV
, vol.111
, Issue.1
, pp. 98-136
-
-
Everingham, M.1
Eslami, S.M.A.2
Van Gool, L.3
Williams, C.K.I.4
Winn, J.5
Zisserman, A.6
-
7
-
-
84862277874
-
Understanding the difficulty of training deep feedforward neural networks
-
2, 7, 8, 9
-
Glorot, Xavier and Bengio, Yoshua. Understanding the difficulty of training deep feedforward neural networks. In AISTATS, pp. 249–256, 2010. 2, 7, 8, 9
-
(2010)
AISTATS
, pp. 249-256
-
-
Glorot, X.1
Bengio, Y.2
-
8
-
-
84973911419
-
Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification
-
2, 7, 8, 12
-
He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, and Sun, Jian. Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification. In ICCV, 2015. 2, 7, 8, 12
-
(2015)
ICCV
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
9
-
-
84969584486
-
Batch normalization: Accelerating deep network training by reducing internal covariate shift
-
2, 7
-
Ioffe, Sergey and Szegedy, Christian. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In ICML, 2015. 2, 7
-
(2015)
ICML
-
-
Ioffe, S.1
Szegedy, C.2
-
10
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
5, 6, 7, 9, 12
-
Jia, Yangqing, Shelhamer, Evan, Donahue, Jeff, Karayev, Sergey, Long, Jonathan, Girshick, Ross B., Guadarrama, Sergio, and Darrell, Trevor. Caffe: Convolutional architecture for fast feature embedding. In ACM Multimedia, MM, 2014. 5, 6, 7, 9, 12
-
(2014)
ACM Multimedia, MM
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
11
-
-
85083951076
-
ADaM: A method for stochastic optimization
-
7
-
Kingma, Diederik and Ba, Jimmy. Adam: A method for stochastic optimization. ICLR, 2015. 7
-
(2015)
ICLR
-
-
Kingma, D.1
Ba, J.2
-
12
-
-
84876231242
-
ImageNet classification with deep convolutional neural networks
-
2, 6, 8
-
Krizhevsky, Alex, Sutskever, Ilya, and Hinton, Geoffrey E. ImageNet classification with deep convolutional neural networks. In NIPS, 2012. 2, 6, 8
-
(2012)
NIPS
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
13
-
-
0001857994
-
Efficient backprop
-
Springer, 2, 3
-
LeCun, Y., Bottou, L., Orr, G., and Muller, K. Efficient backprop. In Neural Networks: Tricks of the trade. Springer, 1998. 2, 3
-
(1998)
Neural Networks: Tricks of the Trade
-
-
LeCun, Y.1
Bottou, L.2
Orr, G.3
Muller, K.4
-
14
-
-
84947041871
-
ImageNet large scale visual recognition challenge
-
1
-
Russakovsky, Olga, Deng, Jia, Su, Hao, Krause, Jonathan, Satheesh, Sanjeev, Ma, Sean, Huang, Zhiheng, Karpathy, Andrej, Khosla, Aditya, Bernstein, Michael, Berg, Alexander C., and Fei-Fei, Li. ImageNet large scale visual recognition challenge. IJCV, 2015. 1
-
(2015)
IJCV
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy8
Andrej9
Khosla, A.10
Bernstein, M.11
Berg, A.C.12
Fei-Fei, L.13
|