메뉴 건너뛰기




Volumn 35, Issue 9, 2013, Pages 2206-2222

Modeling natural images using gated MRFs

Author keywords

Boltzmann machine; deep learning; denoising; density estimation; energy based model; facial expression recognition; factored 3 way model; Gated MRF; generative model; natural images; object recognition; unsupervised learning

Indexed keywords

BOLTZMANN MACHINES; DE-NOISING; DEEP LEARNING; DENSITY ESTIMATION; ENERGY-BASED MODELS; FACIAL EXPRESSION RECOGNITION; GATED MRF; GENERATIVE MODEL; NATURAL IMAGES;

EID: 84880859933     PISSN: 01628828     EISSN: None     Source Type: Journal    
DOI: 10.1109/TPAMI.2013.29     Document Type: Article
Times cited : (54)

References (71)
  • 1
    • 84882847280 scopus 로고    scopus 로고
    • Statistical modeling of photographic images
    • Academic Press
    • E. Simoncelli, "Statistical Modeling of Photographic Images," Handbook of Image and Video Processing, pp. 431-441, Academic Press, 2005.
    • (2005) Handbook of Image and Video Processing , pp. 431-441
    • Simoncelli, E.1
  • 3
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints
    • D. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints," Int'l J. Computer Vision, vol. 60, pp. 91-110, 2004.
    • (2004) Int'l J. Computer Vision , vol.60 , pp. 91-110
    • Lowe, D.1
  • 8
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • DOI 10.1126/science.1127647
    • G. Hinton and R.R. Salakhutdinov, "Reducing the Dimensionality of Data with Neural Networks," Science, vol. 313, no. 5786, pp. 504-507, 2006. (Pubitemid 44148451)
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 14
    • 58149234993 scopus 로고    scopus 로고
    • Emergence of complex cell properties by learning to generalize in natural scenes
    • Y. Karklin and M. Lewicki, "Emergence of Complex Cell Properties by Learning to Generalize in Natural Scenes," Nature, vol. 457, pp. 83-86, 2009.
    • (2009) Nature , vol.457 , pp. 83-86
    • Karklin, Y.1    Lewicki, M.2
  • 17
    • 71149119164 scopus 로고    scopus 로고
    • Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
    • H. Lee, R. Grosse, R. Ranganath, and A.Y. Ng, "Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations," Proc. Int'l Conf. Machine Learning, 2009.
    • (2009) Proc. Int'l Conf. Machine Learning
    • Lee, H.1    Grosse, R.2    Ranganath, R.3    Ng, A.Y.4
  • 19
  • 20
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • DOI 10.1162/neco.2006.18.7.1527
    • G. Hinton, S. Osindero, and Y.-W. Teh, "A Fast Learning Algorithm for Deep Belief Nets," Neural Computation, vol. 18, pp. 1527-1554, 2006. (Pubitemid 44024729)
    • (2006) Neural Computation , vol.18 , Issue.7 , pp. 1527-1554
    • Hinton, G.E.1    Osindero, S.2    Teh, Y.-W.3
  • 23
    • 84856743552 scopus 로고    scopus 로고
    • How does the brain solve visual object recognition?"
    • J. DiCarlo, D. Zoccolan, and N.C. Rust, "How Does the Brain Solve Visual Object Recognition?" Neuron, vol. 73, no. 3, pp. 415-34, 2012.
    • (2012) Neuron , vol.73 , Issue.3 , pp. 415-434
    • Dicarlo, J.1    Zoccolan, D.2    Rust, N.C.3
  • 26
    • 0005478041 scopus 로고
    • Maximum likelihood estimation and factor analysis
    • G. Young, "Maximum Likelihood Estimation and Factor Analysis," Psychometrika, vol. 6, no. 1, pp. 49-53, 1940.
    • (1940) Psychometrika , vol.6 , Issue.1 , pp. 49-53
    • Young, G.1
  • 28
    • 0030779611 scopus 로고    scopus 로고
    • Sparse coding with an overcomplete basis set: A strategy employed by V1?
    • DOI 10.1016/S0042-6989(97)00169-7, PII S0042698997001697
    • B.A. Olshausen and D.J. Field, "Sparse Coding with an Overcomplete Basis Set: A Strategy Employed by v1?" Vision Research, vol. 37, pp. 3311-3325, 1997. (Pubitemid 27493805)
    • (1997) Vision Research , vol.37 , Issue.23 , pp. 3311-3325
    • Olshausen, B.A.1    Field, D.J.2
  • 33
    • 77953520240 scopus 로고    scopus 로고
    • Learning to represent spatial transformations with factored higher-order boltzmann machines
    • R. Memisevic and G. Hinton, "Learning to Represent Spatial Transformations with Factored Higher-Order Boltzmann Machines," Neural Computation, vol. 22, pp. 1473-1492, 2009.
    • (2009) Neural Computation , vol.22 , pp. 1473-1492
    • Memisevic, R.1    Hinton, G.2
  • 38
    • 0036581055 scopus 로고    scopus 로고
    • Products of gaussians and probabilistic minor component analysis
    • C. Williams and F. Agakov, "Products of Gaussians and Probabilistic Minor Component Analysis," Neural Computation, vol. 14, pp. 1169-1182, 2002.
    • (2002) Neural Computation , vol.14 , pp. 1169-1182
    • Williams, C.1    Agakov, F.2
  • 39
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • S. Geman and D. Geman, "Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 6, no. 6, pp. 721-741, Nov. 1984. (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 40
    • 0030194054 scopus 로고    scopus 로고
    • On the unification of line processes, outlier rejection, and robust statistics with applications in early vision
    • M. Black and A. Rangarajan, "On the Unification of Line Processes, Outlier Rejection, and Robust Statistics with Applications in Early Vision," Int'l J. Computer Vision, vol. 19, no. 1, pp. 57-92, 1996.
    • (1996) Int'l J. Computer Vision , vol.19 , Issue.1 , pp. 57-92
    • Black, M.1    Rangarajan, A.2
  • 46
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • Nov.
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-Based Learning Applied to Document Recognition," Proc. IEEE, vol. 86, no. 11, pp. 2278-2324, Nov. 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • Lecun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 47
    • 84860632467 scopus 로고    scopus 로고
    • Emergence of complex-like cells in a temporal product network with local receptive fields
    • K. Gregor and Y. LeCun, "Emergence of Complex-Like Cells in a Temporal Product Network with Local Receptive Fields," arXiv:1006.0448, 2010.
    • (2010) ArXiv , vol.1006 , Issue.448
    • Gregor, K.1    Lecun, Y.2
  • 53
    • 56449086223 scopus 로고    scopus 로고
    • Training restricted boltzmann machines using approximations to the likelihood gradient
    • T. Tieleman, "Training Restricted Boltzmann Machines Using Approximations to the Likelihood Gradient," Proc. Int'l Conf. Machine Learning, 2008.
    • (2008) Proc. Int'l Conf. Machine Learning
    • Tieleman, T.1
  • 56
    • 0242636409 scopus 로고    scopus 로고
    • Image denoising using scale mixtures of gaussians in the wavelet domain
    • Nov.
    • J. Portilla, V. Strela, M. Wainwright, and E. Simoncelli, "Image Denoising Using Scale Mixtures of Gaussians in the Wavelet Domain," IEEE Trans. Image Processing, vol. 12, no. 11, pp. 1338-1351, Nov. 2003.
    • (2003) IEEE Trans. Image Processing , vol.12 , Issue.11 , pp. 1338-1351
    • Portilla, J.1    Strela, V.2    Wainwright, M.3    Simoncelli, E.4
  • 61
    • 54749092170 scopus 로고    scopus 로고
    • 80 Million tiny images: A large data set for non-parametric object and scene recognition
    • Nov.
    • A. Torralba, R. Fergus, and W. Freeman, "80 Million Tiny Images: A Large Data Set for Non-Parametric Object and Scene Recognition," IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 1, pp. 1958-1970, Nov. 2008.
    • (2008) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.30 , Issue.1 , pp. 1958-1970
    • Torralba, A.1    Fergus, R.2    Freeman, W.3
  • 62
    • 0035328421 scopus 로고    scopus 로고
    • Modeling the shape of the scene: A holistic representation of the spatial envelope
    • DOI 10.1023/A:1011139631724
    • A. Oliva and A. Torralba, "Modeling the Shape of the Scene: A Holistic Representation of the Spatial Envelope," Int'l J. Computer Vision, vol. 42, pp. 145-175, 2001. (Pubitemid 32680801)
    • (2001) International Journal of Computer Vision , vol.42 , Issue.3 , pp. 145-175
    • Oliva, A.1    Torralba, A.2
  • 67
    • 10144252471 scopus 로고    scopus 로고
    • A generative framework for real-time object detection and classification
    • B. Fasel, I. Fortenberry, and J. Movellan, "A Generative Framework for Real-Time Object Detection and Classification," Computer Vision and Image Understanding, vol. 98, pp. 182-210, 2005.
    • (2005) Computer Vision and Image Understanding , vol.98 , pp. 182-210
    • Fasel, B.1    Fortenberry, I.2    Movellan, J.3
  • 69
    • 0037111647 scopus 로고    scopus 로고
    • Empath: A neural network that categorizes facial expressions
    • DOI 10.1162/089892902760807177
    • M. Dailey, G. Cottrell, R. Adolphs, and C. Padgett, "Empath: A Neural Network that Categorizes Facial Expressions," J. Cognitive Neuroscience, vol. 14, pp. 1158-1173, 2002. (Pubitemid 35305822)
    • (2002) Journal of Cognitive Neuroscience , vol.14 , Issue.8 , pp. 1158-1173
    • Dailey, M.N.1    Cottrell, G.W.2    Padgett, C.3    Adolphs, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.