메뉴 건너뛰기




Volumn 2015 International Conference on Computer Vision, ICCV 2015, Issue , 2015, Pages 4086-4093

Unsupervised learning of spatiotemporally coherent metrics

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHMS; CONVOLUTION;

EID: 84973902378     PISSN: 15505499     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCV.2015.465     Document Type: Conference Paper
Times cited : (148)

References (22)
  • 4
    • 84919951531 scopus 로고    scopus 로고
    • Signal recovery from pooling representations
    • J. Bruna, A. Szlam, and Y. LeCun. Signal recovery from pooling representations. In ICML, 2014.
    • (2014) ICML
    • Bruna, J.1    Szlam, A.2    LeCun, Y.3
  • 5
    • 84861163812 scopus 로고    scopus 로고
    • Learning intermediatelevel representations of form and motion from natural movies
    • C. F. Cadieu and B. A. Olshausen. Learning intermediatelevel representations of form and motion from natural movies. Neural Computation, 2012.
    • (2012) Neural Computation
    • Cadieu, C.F.1    Olshausen, B.A.2
  • 7
    • 85083950234 scopus 로고    scopus 로고
    • Saturating auto-encoders
    • R. Goroshin and Y. LeCun. Saturating auto-encoders. In ICLR, 2013.
    • (2013) ICLR
    • Goroshin, R.1    LeCun, Y.2
  • 8
    • 77956515664 scopus 로고    scopus 로고
    • Learning fast approximations of sparse coding
    • K. Gregor and Y. LeCun. Learning fast approximations of sparse coding. In ICML'2010, 2010.
    • (2010) ICML'2010
    • Gregor, K.1    LeCun, Y.2
  • 9
    • 33845594569 scopus 로고    scopus 로고
    • Dimensionality reduction by learning an invariant mapping
    • R. Hadsell, S. Chopra, and Y. LeCun. Dimensionality reduction by learning an invariant mapping. In CVPR, 2006.
    • (2006) CVPR
    • Hadsell, R.1    Chopra, S.2    LeCun, Y.3
  • 11
    • 17544384568 scopus 로고    scopus 로고
    • Bubbles: A unifying framework for low-level statistical properties of natural image sequences
    • A. Hyvärinen, J. Hurri, and J. Väyrynen. Bubbles: A unifying framework for low-level statistical properties of natural image sequences. JOSA A, 20(7):1237-1252, 2003.
    • (2003) JOSA A , vol.20 , Issue.7 , pp. 1237-1252
    • Hyvärinen, A.1    Hurri, J.2    Väyrynen, J.3
  • 12
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, and Y. LeCun. Learning invariant features through topographic filter maps. In CVPR, 2009.
    • (2009) CVPR
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    LeCun, Y.4
  • 13
  • 15
    • 84878919540 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, volume 1, page 4, 2012.
    • (2012) NIPS , vol.1 , pp. 4
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 16
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proc. IEEE, 86(11):2278-2324, 1998.
    • (1998) Proc. IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 71149084945 scopus 로고    scopus 로고
    • Deep learning from temporal coherence in video
    • H. Mobahi, R. Collobert, and J. Weston. Deep learning from temporal coherence in video. In ICML, 2009.
    • (2009) ICML
    • Mobahi, H.1    Collobert, R.2    Weston, J.3
  • 19
    • 80053460450 scopus 로고    scopus 로고
    • Contractive auto-encoders: Explicit invariance during feature extraction
    • S. Rifai, P. Vincent, X. Muller, X. Galrot, and Y. Bengio. Contractive auto-encoders: Explicit invariance during feature extraction. In ICML, 2011.
    • (2011) ICML
    • Rifai, S.1    Vincent, P.2    Muller, X.3    Galrot, X.4    Bengio, Y.5
  • 20
    • 56449114208 scopus 로고    scopus 로고
    • Extracting and composing robust features with denoising autoencoders
    • University of Montreal
    • P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol. Extracting and composing robust features with denoising autoencoders. Technical report, University of Montreal, 2008.
    • (2008) Technical Report
    • Vincent, P.1    Larochelle, H.2    Bengio, Y.3    Manzagol, P.-A.4
  • 21
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • L. Wiskott and T. J. Sejnowski. Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 2002.
    • (2002) Neural Computation
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.