메뉴 건너뛰기




Volumn 6, Issue 1, 2016, Pages

Adaptation to low pH and lignocellulosic inhibitors resulting in ethanolic fermentation and growth of Saccharomyces cerevisiae

Author keywords

Adaptation; Ethanol yield; Lignocellulosic inhibitors; Low pH; Phenotypic robustness; Saccharomyces cerevisiae

Indexed keywords

ALCOHOL; ENZYME INHIBITOR; LIGNOCELLULOSE;

EID: 84984629805     PISSN: None     EISSN: 21910855     Source Type: Journal    
DOI: 10.1186/s13568-016-0234-8     Document Type: Article
Times cited : (60)

References (66)
  • 1
    • 41349119880 scopus 로고    scopus 로고
    • Stochastic switching as a survival strategy in fluctuating environments
    • COI: 1:CAS:528:DC%2BD1cXjslCgtb8%3D, PID: 18362885
    • Acar M, Mettetal JT, van Oudenaarden A. Stochastic switching as a survival strategy in fluctuating environments. Nat Genet. 2008;40(4):471–5. doi:10.1038/ng.110.
    • (2008) Nat Genet , vol.40 , Issue.4 , pp. 471-475
    • Acar, M.1    Mettetal, J.T.2    van Oudenaarden, A.3
  • 2
    • 0026675742 scopus 로고
    • DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting
    • COI: 1:CAS:528:DyaK3sXitVKis7c%3D, PID: 1408828
    • Akopyanz N, Bukanov NO, Westblom TU, Kresovich S, Berg DE. DNA diversity among clinical isolates of Helicobacter pylori detected by PCR-based RAPD fingerprinting. Nucl Acids Res. 1992;20(19):5137–42. doi:10.1093/nar/20.19.5137.
    • (1992) Nucl Acids Res , vol.20 , Issue.19 , pp. 5137-5142
    • Akopyanz, N.1    Bukanov, N.O.2    Westblom, T.U.3    Kresovich, S.4    Berg, D.E.5
  • 3
    • 83655183350 scopus 로고    scopus 로고
    • Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations
    • COI: 1:CAS:528:DC%2BC38XjslOls7k%3D, PID: 22185398
    • Albers E, Johansson E, Franzén CJ, Larsson C. Selective suppression of bacterial contaminants by process conditions during lignocellulose based yeast fermentations. Biotechnol Biofuels. 2011;4:59. doi:10.1186/1754-6834-4-59.
    • (2011) Biotechnol Biofuels , vol.4 , pp. 59
    • Albers, E.1    Johansson, E.2    Franzén, C.J.3    Larsson, C.4
  • 4
    • 84896419256 scopus 로고    scopus 로고
    • Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass
    • COI: 1:CAS:528:DC%2BC3sXhtVyku7vO, PID: 23613173
    • Almario MPP, Reyes LH, Kao KC. Evolutionary engineering of Saccharomyces cerevisiae for enhanced tolerance to hydrolysates of lignocellulosic biomass. Biotechnol Bioeng. 2013;110(10):2616–23. doi:10.1002/bit.24938.
    • (2013) Biotechnol Bioeng , vol.110 , Issue.10 , pp. 2616-2623
    • Almario, M.P.P.1    Reyes, L.H.2    Kao, K.C.3
  • 5
    • 33947286326 scopus 로고    scopus 로고
    • Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BD2sXkvFCjtbo%3D
    • Almeida JR, Modig T, Petersson A, Hähn-Hägerdal B, Lidén G, Gorwa-Grauslund MF. Increased tolerance and conversion of inhibitors in lignocellulosic hydrolysates by Saccharomyces cerevisiae. J Chem Technol Biotechnol. 2007;82(4):340–9. doi:10.1002/jctb.1676.
    • (2007) J Chem Technol Biotechnol , vol.82 , Issue.4 , pp. 340-349
    • Almeida, J.R.1    Modig, T.2    Petersson, A.3    Hähn-Hägerdal, B.4    Lidén, G.5    Gorwa-Grauslund, M.F.6
  • 6
    • 64849089980 scopus 로고    scopus 로고
    • Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate
    • COI: 1:CAS:528:DC%2BD1MXltVWqtrw%3D, PID: 19329297
    • Almeida JRM, Karhumaa K, Bengtsson O, Gorwa-Grauslund M-F. Screening of Saccharomyces cerevisiae strains with respect to anaerobic growth in non-detoxified lignocellulose hydrolysate. Bioresour Technol. 2009a;100(14):3674–7. doi:10.1016/j.biortech.2009.02.057.
    • (2009) Bioresour Technol , vol.100 , Issue.14 , pp. 3674-3677
    • Almeida, J.R.M.1    Karhumaa, K.2    Bengtsson, O.3    Gorwa-Grauslund, M.-F.4
  • 7
    • 85042587851 scopus 로고    scopus 로고
    • Metabolic effects of furaldehydes and impacts on biotechnological processes
    • COI: 1:CAS:528:DC%2BD1MXisVWktbw%3D, PID: 19184597
    • Almeida JRR, Bertilsson M, Gorwa-Grauslund MF, Gorsich S, Lidén G. Metabolic effects of furaldehydes and impacts on biotechnological processes. Appl Microbiol Biotechnol. 2009b;82(4):625–38. doi:10.1007/s00253-009-1875-1.
    • (2009) Appl Microbiol Biotechnol , vol.82 , Issue.4 , pp. 625-638
    • Almeida, J.R.R.1    Bertilsson, M.2    Gorwa-Grauslund, M.F.3    Gorsich, S.4    Lidén, G.5
  • 8
    • 79952181277 scopus 로고    scopus 로고
    • Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXisFyqs7k%3D, PID: 21305697
    • Almeida JRM, Runquist D, Sànchez Nogué V, Lidén G, Gorwa-Grauslund MF. Stress-related challenges in pentose fermentation to ethanol by the yeast Saccharomyces cerevisiae. Biotechnol J. 2011;6(3):286–99. doi:10.1002/biot.201000301.
    • (2011) Biotechnol J , vol.6 , Issue.3 , pp. 286-299
    • Almeida, J.R.M.1    Runquist, D.2    Sànchez Nogué, V.3    Lidén, G.4    Gorwa-Grauslund, M.F.5
  • 9
    • 71249132746 scopus 로고    scopus 로고
    • Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors
    • COI: 1:CAS:528:DC%2BD1MXhsFGgtLjF
    • Alriksson B, Horváth IS, Jönsson LJ. Overexpression of Saccharomyces cerevisiae transcription factor and multidrug resistance genes conveys enhanced resistance to lignocellulose-derived fermentation inhibitors. Process Biochem. 2010;45(2):264–71. doi:10.1016/j.procbio.2009.09.016.
    • (2010) Process Biochem , vol.45 , Issue.2 , pp. 264-271
    • Alriksson, B.1    Horváth, I.S.2    Jönsson, L.J.3
  • 10
    • 32344445246 scopus 로고    scopus 로고
    • DNA typing methods for differentiation of yeasts related to dry-cured meat products
    • COI: 1:CAS:528:DC%2BD28XhtlCmsbg%3D, PID: 16257467
    • Andrade M, Rodriguez M, Sánchez B, Aranda E, Córdoba J. DNA typing methods for differentiation of yeasts related to dry-cured meat products. Int J Food Microbiol. 2006;107(1):48–58. doi:10.1016/j.ijfoodmicro.2005.08.011.
    • (2006) Int J Food Microbiol , vol.107 , Issue.1 , pp. 48-58
    • Andrade, M.1    Rodriguez, M.2    Sánchez, B.3    Aranda, E.4    Córdoba, J.5
  • 11
    • 33744474816 scopus 로고    scopus 로고
    • A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
    • Anneli P, João RMA, Tobias M, Kaisa K, Bärbel HH, Marie FGG, Gunnar L. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23(6):455–64. doi:10.1002/yea.1370.
    • (2006) Yeast , vol.23 , Issue.6 , pp. 455-464
    • Anneli, P.1    João, R.M.A.2    Tobias, M.3    Kaisa, K.4    Bärbel, H.H.5    Marie, F.G.G.6    Gunnar, L.7
  • 12
    • 33747174575 scopus 로고    scopus 로고
    • Microbial cell individuality and the underlying sources of heterogeneity
    • COI: 1:CAS:528:DC%2BD28XmvFamtbs%3D
    • Avery SV. Microbial cell individuality and the underlying sources of heterogeneity. Nat Rev Micro. 2006;4(8):577–87. doi:10.1038/nrmicro1460.
    • (2006) Nat Rev Micro , vol.4 , Issue.8 , pp. 577-587
    • Avery, S.V.1
  • 14
    • 14944350031 scopus 로고    scopus 로고
    • Adaptation of microorganisms to cold temperatures, weak acid preservatives, low ph, and osmotic stress: a review
    • COI: 1:CAS:528:DC%2BD2cXjvFGiur4%3D
    • Beales N. Adaptation of microorganisms to cold temperatures, weak acid preservatives, low ph, and osmotic stress: a review. Compr Rev Food Sci F. 2004;3(1):1–20. doi:10.1111/j.1541-4337.2004.tb00057.x.
    • (2004) Compr Rev Food Sci F , vol.3 , Issue.1 , pp. 1-20
    • Beales, N.1
  • 15
    • 80052615877 scopus 로고    scopus 로고
    • Microbial contamination of fuel ethanol fermentations
    • COI: 1:CAS:528:DC%2BC3MXhtlGrt7%2FP, PID: 21770989
    • Beckner M, Ivey M, Phister T. Microbial contamination of fuel ethanol fermentations. Lett Appl Microbiol. 2011;53(4):387–94. doi:10.1111/j.1472-765X.2011.03124.x.
    • (2011) Lett Appl Microbiol , vol.53 , Issue.4 , pp. 387-394
    • Beckner, M.1    Ivey, M.2    Phister, T.3
  • 16
    • 64749096480 scopus 로고    scopus 로고
    • Modeling bacterial contamination of fuel ethanol fermentation
    • COI: 1:CAS:528:DC%2BD1MXlt1Kksbc%3D, PID: 19148876
    • Bischoff KM, Liu S, Leathers TD, Worthington RE, Rich JO. Modeling bacterial contamination of fuel ethanol fermentation. Biotechnol Bioeng. 2009;103(1):117–22. doi:10.1002/bit.22244.
    • (2009) Biotechnol Bioeng , vol.103 , Issue.1 , pp. 117-122
    • Bischoff, K.M.1    Liu, S.2    Leathers, T.D.3    Worthington, R.E.4    Rich, J.O.5
  • 17
    • 84984611633 scopus 로고    scopus 로고
    • Modifying yeast tolerance to inhibitory conditions of ethanol production processes
    • PID: 26618154
    • Caspeta L, Castillo T, Nielsen J. Modifying yeast tolerance to inhibitory conditions of ethanol production processes. Front Bioeng Biotechnol. 2015;3:184. doi:10.3389/fbioe.2015.00184.
    • (2015) Front Bioeng Biotechnol , vol.3 , pp. 184
    • Caspeta, L.1    Castillo, T.2    Nielsen, J.3
  • 19
    • 77953603455 scopus 로고    scopus 로고
    • Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations
    • PID: 20002866
    • De Melo HF, Bonini BM, Thevelein J, Simões DA, Morais MA. Physiological and molecular analysis of the stress response of Saccharomyces cerevisiae imposed by strong inorganic acid with implication to industrial fermentations. J Appl Microbiol. 2010;109(1):116–27. doi:10.1111/j.1365-2672.2009.04633.x.
    • (2010) J Appl Microbiol , vol.109 , Issue.1 , pp. 116-127
    • De Melo, H.F.1    Bonini, B.M.2    Thevelein, J.3    Simões, D.A.4    Morais, M.A.5
  • 20
    • 84918492265 scopus 로고    scopus 로고
    • Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications
    • COI: 1:CAS:528:DC%2BC2cXitVCisrjM, PID: 25263709
    • Della-Bianca BE, de Hulster E, Pronk JT, van Maris AJA, Gombert AK. Physiology of the fuel ethanol strain Saccharomyces cerevisiae PE-2 at low pH indicates a context-dependent performance relevant for industrial applications. FEMS Yeast Res. 2014;14(8):1196–205. doi:10.1111/1567-1364.12217.
    • (2014) FEMS Yeast Res , vol.14 , Issue.8 , pp. 1196-1205
    • Della-Bianca, B.E.1    de Hulster, E.2    Pronk, J.T.3    van Maris, A.J.A.4    Gombert, A.K.5
  • 21
    • 84891956059 scopus 로고    scopus 로고
    • Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations
    • COI: 1:CAS:528:DC%2BC3sXhs1GrsLrO, PID: 24408611
    • Delvigne F, Goffin P. Microbial heterogeneity affects bioprocess robustness: dynamic single-cell analysis contributes to understanding of microbial populations. Biotechnol J. 2014;9(1):61–72. doi:10.1002/biot.201300119.
    • (2014) Biotechnol J , vol.9 , Issue.1 , pp. 61-72
    • Delvigne, F.1    Goffin, P.2
  • 22
    • 84918573843 scopus 로고    scopus 로고
    • Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity
    • COI: 1:CAS:528:DC%2BC2cXhslyks73N, PID: 25457387
    • Delvigne F, Zune Q, Lara AR, Al-Soud W, Sørensen SJ. Metabolic variability in bioprocessing: implications of microbial phenotypic heterogeneity. Trends Biotechnol. 2014;32(12):608–16. doi:10.1016/j.tibtech.2014.10.002.
    • (2014) Trends Biotechnol , vol.32 , Issue.12 , pp. 608-616
    • Delvigne, F.1    Zune, Q.2    Lara, A.R.3    Al-Soud, W.4    Sørensen, S.J.5
  • 23
    • 80053976356 scopus 로고    scopus 로고
    • Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXhtlWit7jI, PID: 21978393
    • Ding MZ, Wang X, Yang Y, Yuan YJ. Metabolomic study of interactive effects of phenol, furfural, and acetic acid on Saccharomyces cerevisiae. OMICS. 2011;15(10):647–53. doi:10.1089/omi.2011.0003.
    • (2011) OMICS , vol.15 , Issue.10 , pp. 647-653
    • Ding, M.Z.1    Wang, X.2    Yang, Y.3    Yuan, Y.J.4
  • 24
    • 64849104184 scopus 로고    scopus 로고
    • Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain
    • Dominik H, Uwe S. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microb Biotechnol. 2008;1(6):497–506. doi:10.1111/j.1751-7915.2008.00050.x.
    • (2008) Microb Biotechnol , vol.1 , Issue.6 , pp. 497-506
    • Dominik, H.1    Uwe, S.2
  • 25
    • 84946062939 scopus 로고    scopus 로고
    • The cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor in acetic acid tolerance
    • PID: 26341199
    • Fernández-Niño M, Marquina M, Swinnen S, Rodríguez-Porrata B, Nevoigt E, Ariño J. The cytosolic pH of individual Saccharomyces cerevisiae cells is a key factor in acetic acid tolerance. Appl Environ Microbiol. 2015;81(22):7813–21. doi:10.1128/AEM.02313-15.
    • (2015) Appl Environ Microbiol , vol.81 , Issue.22 , pp. 7813-7821
    • Fernández-Niño, M.1    Marquina, M.2    Swinnen, S.3    Rodríguez-Porrata, B.4    Nevoigt, E.5    Ariño, J.6
  • 26
    • 34547840270 scopus 로고    scopus 로고
    • Yeast responses to stresses associated with industrial brewery handling
    • COI: 1:CAS:528:DC%2BD2sXhtVSmsLnI, PID: 17645521
    • Gibson BR, Lawrence SJ, Leclaire JPR, Powell CD, Smart KA. Yeast responses to stresses associated with industrial brewery handling. FEMS Microbiol Rev. 2007;31(5):535–69. doi:10.1111/j.1574-6976.2007.00076.x.
    • (2007) FEMS Microbiol Rev , vol.31 , Issue.5 , pp. 535-569
    • Gibson, B.R.1    Lawrence, S.J.2    Leclaire, J.P.R.3    Powell, C.D.4    Smart, K.A.5
  • 27
    • 33646438534 scopus 로고    scopus 로고
    • Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash
    • COI: 1:CAS:528:DC%2BD28XjvFSmsr0%3D, PID: 16491359
    • Graves T, Narendranath NV, Dawson K, Power R. Effect of pH and lactic or acetic acid on ethanol productivity by Saccharomyces cerevisiae in corn mash. J Ind Microbiol Biotechnol. 2006;33(6):469–74. doi:10.1007/s10295-006-0091-6.
    • (2006) J Ind Microbiol Biotechnol , vol.33 , Issue.6 , pp. 469-474
    • Graves, T.1    Narendranath, N.V.2    Dawson, K.3    Power, R.4
  • 29
    • 84893677575 scopus 로고    scopus 로고
    • Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues
    • Hanqi G, Jian Z, Jie B. Inhibitor analysis and adaptive evolution of Saccharomyces cerevisiae for simultaneous saccharification and ethanol fermentation from industrial waste corncob residues. Bioresour Technol. 2014;157:6–13. doi:10.1016/j.biortech.2014.01.060.
    • (2014) Bioresour Technol , vol.157 , pp. 6-13
    • Hanqi, G.1    Jian, Z.2    Jie, B.3
  • 30
    • 3042661951 scopus 로고    scopus 로고
    • Rapid isolation of yeast genomic DNA: bust n’Grab
    • PID: 15102338
    • Harju S, Fedosyuk H, Peterson KR. Rapid isolation of yeast genomic DNA: bust n’Grab. BMC Biotechnol. 2004;4(1):8. doi:10.1186/1472-6750-4-8.
    • (2004) BMC Biotechnol , vol.4 , Issue.1 , pp. 8
    • Harju, S.1    Fedosyuk, H.2    Peterson, K.R.3
  • 31
    • 84946074473 scopus 로고    scopus 로고
    • Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase
    • COI: 1:CAS:528:DC%2BC28XktFyhurs%3D, PID: 26386051
    • Henningsen BM, Hon S, Covalla SF, Sonu C, Argyros AD, Barrett TF, Wiswall E, Froehlich AC, Zelle RM. Increasing anaerobic acetate consumption and ethanol yields in Saccharomyces cerevisiae with NADPH-specific alcohol dehydrogenase. Appl Environ Microbiol. 2015;81(23):8108–17. doi:10.1128/AEM.01689-15.
    • (2015) Appl Environ Microbiol , vol.81 , Issue.23 , pp. 8108-8117
    • Henningsen, B.M.1    Hon, S.2    Covalla, S.F.3    Sonu, C.4    Argyros, A.D.5    Barrett, T.F.6    Wiswall, E.7    Froehlich, A.C.8    Zelle, R.M.9
  • 32
    • 84908297964 scopus 로고    scopus 로고
    • Isolation and characterization of a resident tolerant Saccharomyces cerevisiae strain from a spent sulfite liquor fermentation plant
    • i Nogué V, Bettiga M, Gorwa-Grauslund MF. Isolation and characterization of a resident tolerant Saccharomyces cerevisiae strain from a spent sulfite liquor fermentation plant. AMB Express. 2012;2(1):68. doi:10.1186/2191-0855-2-68.
    • (2012) AMB Express , vol.2 , Issue.1 , pp. 68
    • i Nogué, V.1    Bettiga, M.2    Gorwa-Grauslund, M.F.3
  • 33
    • 84890938720 scopus 로고    scopus 로고
    • Effect of high solids loading on bacterial contamination in lignocellulosic ethanol production
    • Ishola MM, Babapour AB, Gavitar MN, Brandberg T, Taherzadeh MJ. Effect of high solids loading on bacterial contamination in lignocellulosic ethanol production. Bioresources. 2013;8(3):4429–39. doi:10.15376/biores.8.3.4429-4439.
    • (2013) Bioresources , vol.8 , Issue.3 , pp. 4429-4439
    • Ishola, M.M.1    Babapour, A.B.2    Gavitar, M.N.3    Brandberg, T.4    Taherzadeh, M.J.5
  • 34
    • 84872814927 scopus 로고    scopus 로고
    • Bioconversion of lignocellulose: inhibitors and detoxification
    • PID: 23356676
    • Jönsson LJ, Alriksson B, Nilvebrant N-O. Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol Biofuels. 2013;6(1):16. doi:10.1186/1754-6834-6-16.
    • (2013) Biotechnol Biofuels , vol.6 , Issue.1 , pp. 16
    • Jönsson, L.J.1    Alriksson, B.2    Nilvebrant, N.-O.3
  • 35
    • 52949148945 scopus 로고    scopus 로고
    • Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH
    • PID: 18478439
    • Kádár Z, Maltha SF, Szengyel Z, Réczey K, De Laat W. Ethanol fermentation of various pretreated and hydrolyzed substrates at low initial pH. Appl Biochem Biotechnol. 2007;137(1–12):847–58. doi:10.1007/s12010-007-9102-y.
    • (2007) Appl Biochem Biotechnol , vol.137 , Issue.1-12 , pp. 847-858
    • Kádár, Z.1    Maltha, S.F.2    Szengyel, Z.3    Réczey, K.4    De Laat, W.5
  • 36
    • 0035151514 scopus 로고    scopus 로고
    • Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall
    • COI: 1:CAS:528:DC%2BD3MXhtVCqsLg%3D, PID: 11136466
    • Kapteyn J, Ter Riet B, Vink E, Blad S, De Nobel H, Van Den Ende H, Klis F. Low external pH induces HOG1-dependent changes in the organization of the Saccharomyces cerevisiae cell wall. Mol Microbiol. 2001;39(2):469–80. doi:10.1046/j.1365-2958.2001.02242.x.
    • (2001) Mol Microbiol , vol.39 , Issue.2 , pp. 469-480
    • Kapteyn, J.1    Ter Riet, B.2    Vink, E.3    Blad, S.4    De Nobel, H.5    Van Den Ende, H.6    Klis, F.7
  • 37
    • 33747337558 scopus 로고    scopus 로고
    • Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p
    • COI: 1:CAS:528:DC%2BD28XhtVCjt7nJ, PID: 16911514
    • Kawahata M, Masaki K, Fujii T, Iefuji H. Yeast genes involved in response to lactic acid and acetic acid: acidic conditions caused by the organic acids in Saccharomyces cerevisiae cultures induce expression of intracellular metal metabolism genes regulated by Aft1p. FEMS Yeast Res. 2006;6(6):924–36. doi:10.1111/j.1567-1364.2006.00089.x.
    • (2006) FEMS Yeast Res , vol.6 , Issue.6 , pp. 924-936
    • Kawahata, M.1    Masaki, K.2    Fujii, T.3    Iefuji, H.4
  • 38
    • 12544249147 scopus 로고    scopus 로고
    • Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass
    • COI: 1:CAS:528:DC%2BD2cXpsFKrtr0%3D, PID: 15300416
    • Klinke HB, Thomsen AB, Ahring BK. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl Microbiol Biotechnol. 2004;66(1):10–26. doi:10.1007/s00253-004-1642-2.
    • (2004) Appl Microbiol Biotechnol , vol.66 , Issue.1 , pp. 10-26
    • Klinke, H.B.1    Thomsen, A.B.2    Ahring, B.K.3
  • 39
    • 84868611282 scopus 로고    scopus 로고
    • Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator
    • Koichi T, Yukari I, Jun O, Jun S. Enhancement of acetic acid tolerance in Saccharomyces cerevisiae by overexpression of the HAA1 gene, encoding a transcriptional activator. Appl Environ Microbiol. 2012;78(22):8161–3. doi:10.1128/AEM.02356-12.
    • (2012) Appl Environ Microbiol , vol.78 , Issue.22 , pp. 8161-8163
    • Koichi, T.1    Yukari, I.2    Jun, O.3    Jun, S.4
  • 40
    • 79960843079 scopus 로고    scopus 로고
    • Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2
    • Lei J, Yu S, Lili X, Bingyin P, Yazhong X, Xiaoming B. Enhanced resistance of Saccharomyces cerevisiae to vanillin by expression of lacA from Trametes sp. AH28-2. Bioresour Technol. 2011;102(17):8105–9. doi:10.1016/j.biortech.2011.06.057.
    • (2011) Bioresour Technol , vol.102 , Issue.17 , pp. 8105-8109
    • Lei, J.1    Yu, S.2    Lili, X.3    Bingyin, P.4    Yazhong, X.5    Xiaoming, B.6
  • 41
    • 84861544417 scopus 로고    scopus 로고
    • Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant
    • COI: 1:CAS:528:DC%2BC38XnvFWntbY%3D, PID: 22589700
    • Levy SF, Ziv N, Siegal ML. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant. PLoS Biol. 2012;10(5):e1001325. doi:10.1371/journal.pbio.1001325.
    • (2012) PLoS Biol , vol.10 , Issue.5
    • Levy, S.F.1    Ziv, N.2    Siegal, M.L.3
  • 42
    • 85027937315 scopus 로고    scopus 로고
    • Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects
    • COI: 1:CAS:528:DC%2BC38Xntlahsrs%3D
    • Limayem A, Ricke SC. Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Prog Energy Combust Sci. 2012;38(4):449–67. doi:10.1016/j.pecs.2012.03.002.
    • (2012) Prog Energy Combust Sci , vol.38 , Issue.4 , pp. 449-467
    • Limayem, A.1    Ricke, S.C.2
  • 43
    • 79954648688 scopus 로고    scopus 로고
    • Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates
    • COI: 1:CAS:528:DC%2BC3MXks1Wnt7k%3D, PID: 21380517
    • Liu ZL. Molecular mechanisms of yeast tolerance and in situ detoxification of lignocellulose hydrolysates. Appl Microbiol Biotechnol. 2011;90(3):809–25. doi:10.1007/s00253-011-3167-9.
    • (2011) Appl Microbiol Biotechnol , vol.90 , Issue.3 , pp. 809-825
    • Liu, Z.L.1
  • 45
    • 43349092848 scopus 로고    scopus 로고
    • Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate
    • COI: 1:CAS:528:DC%2BD1cXmtlams74%3D, PID: 18438882
    • Modig T, Almeida JR, Gorwa-Grauslund MF, Lidén G. Variability of the response of Saccharomyces cerevisiae strains to lignocellulose hydrolysate. Biotechnol Bioeng. 2008;100(3):423–9. doi:10.1002/bit.21789.
    • (2008) Biotechnol Bioeng , vol.100 , Issue.3 , pp. 423-429
    • Modig, T.1    Almeida, J.R.2    Gorwa-Grauslund, M.F.3    Lidén, G.4
  • 46
    • 79952317630 scopus 로고    scopus 로고
    • Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations
    • COI: 1:CAS:528:DC%2BC3MXjsFygt7k%3D
    • Muthaiyan A, Limayem A, Ricke SC. Antimicrobial strategies for limiting bacterial contaminants in fuel bioethanol fermentations. Prog Energy Combust Sci. 2011;37(3):351–70. doi:10.1016/j.pecs.2010.06.005.
    • (2011) Prog Energy Combust Sci , vol.37 , Issue.3 , pp. 351-370
    • Muthaiyan, A.1    Limayem, A.2    Ricke, S.C.3
  • 47
    • 84954075853 scopus 로고    scopus 로고
    • Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation
    • PID: 26697108
    • Nielsen F, Tomás-Pejó E, Olsson L, Wallberg O. Short-term adaptation during propagation improves the performance of xylose-fermenting Saccharomyces cerevisiae in simultaneous saccharification and co-fermentation. Biotechnol Biofuels. 2015;8:219. doi:10.1186/s13068-015-0399-4.
    • (2015) Biotechnol Biofuels , vol.8 , pp. 219
    • Nielsen, F.1    Tomás-Pejó, E.2    Olsson, L.3    Wallberg, O.4
  • 48
    • 0033526123 scopus 로고    scopus 로고
    • Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts
    • COI: 1:CAS:528:DyaK1MXhslaitb4%3D, PID: 10099580
    • Palmqvist E, Grage H, Meinander NQ, Hahn-Hagerdal B. Main and interaction effects of acetic acid, furfural, and p-hydroxybenzoic acid on growth and ethanol productivity of yeasts. Biotechnol Bioeng. 1999;63(1):46–55. doi:10.1002/(SICI)1097-0290(19990405)63:1<46:AID-BIT5>3.0.CO;2-J.
    • (1999) Biotechnol Bioeng , vol.63 , Issue.1 , pp. 46-55
    • Palmqvist, E.1    Grage, H.2    Meinander, N.Q.3    Hahn-Hagerdal, B.4
  • 49
    • 0343618697 scopus 로고    scopus 로고
    • Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition
    • COI: 1:CAS:528:DC%2BD3cXjt1Ggs7s%3D
    • Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74(1):25–33. doi:10.1016/S0960-8524(99)00161-3.
    • (2000) Bioresour Technol , vol.74 , Issue.1 , pp. 25-33
    • Palmqvist, E.1    Hahn-Hägerdal, B.2
  • 50
    • 84937968927 scopus 로고    scopus 로고
    • Editorial overview: energy biotechnology
    • Papoutsakis ET, Pronk JT. Editorial overview: energy biotechnology. Curr Opin Biotechnol. 2015;33:8–11. doi:10.1016/j.copbio.2015.04.001.
    • (2015) Curr Opin Biotechnol , vol.33 , pp. 8-11
    • Papoutsakis, E.T.1    Pronk, J.T.2
  • 51
    • 79951843066 scopus 로고    scopus 로고
    • Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review
    • COI: 1:CAS:528:DC%2BC3MXitVOisLg%3D, PID: 20513164
    • Parawira W, Tekere M. Biotechnological strategies to overcome inhibitors in lignocellulose hydrolysates for ethanol production: review. Crit Rev Biotechnol. 2011;31(1):20–31. doi:10.3109/07388551003757816.
    • (2011) Crit Rev Biotechnol , vol.31 , Issue.1 , pp. 20-31
    • Parawira, W.1    Tekere, M.2
  • 52
    • 84897953198 scopus 로고    scopus 로고
    • Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors
    • PID: 24672514
    • Piotrowski JS, Zhang Y, Sato T, Ong I, Keating D, Bates D, Landick R. Death by a thousand cuts: the challenges and diverse landscape of lignocellulosic hydrolysate inhibitors. Front Microbiol. 2014;5:90. doi:10.3389/fmicb.2014.00090.
    • (2014) Front Microbiol , vol.5 , pp. 90
    • Piotrowski, J.S.1    Zhang, Y.2    Sato, T.3    Ong, I.4    Keating, D.5    Bates, D.6    Landick, R.7
  • 53
    • 84881260879 scopus 로고    scopus 로고
    • Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH
    • PID: 23872959
    • Sànchez i Nogué V, Narayanan V, Gorwa-Grauslund M,. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH. Appl Microbiol Biotechnol. 2013;97(16):7517–25. doi:10.1007/s00253-013-5093-5.
    • (2013) Appl Microbiol Biotechnol , vol.97 , Issue.16 , pp. 7517-7525
    • Sànchez i Nogué, V.1    Narayanan, V.2    Gorwa-Grauslund, M.3
  • 55
    • 84987350034 scopus 로고
    • Differentiation of brewery yeast strains by DNA fingerprinting
    • COI: 1:CAS:528:DyaK2MXls1Kgu7k%3D
    • Schofield MA, Rowe SM, Hammond JR, Molzahn SW, Quain DE. Differentiation of brewery yeast strains by DNA fingerprinting. J Inst Brewing. 1995;101(2):75–8. doi:10.1002/j.2050-0416.1995.tb00850.x.
    • (1995) J Inst Brewing , vol.101 , Issue.2 , pp. 75-78
    • Schofield, M.A.1    Rowe, S.M.2    Hammond, J.R.3    Molzahn, S.W.4    Quain, D.E.5
  • 57
    • 10944256640 scopus 로고    scopus 로고
    • Bacterial contaminants of fuel ethanol production
    • COI: 1:CAS:528:DC%2BD2cXpsFahsbc%3D, PID: 15338420
    • Skinner KA, Leathers TD. Bacterial contaminants of fuel ethanol production. J Ind Microbiol Biotechnol. 2004;31(9):401–8. doi:10.1007/s10295-004-0159-0.
    • (2004) J Ind Microbiol Biotechnol , vol.31 , Issue.9 , pp. 401-408
    • Skinner, K.A.1    Leathers, T.D.2
  • 59
    • 84892491936 scopus 로고    scopus 로고
    • An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses
    • Takuya I, Daisuke W, Yoko Y, Koichi T, Jun O, Hiroshi T, Hitoshi S, Jun S. An organic acid-tolerant HAA1-overexpression mutant of an industrial bioethanol strain of Saccharomyces cerevisiae and its application to the production of bioethanol from sugarcane molasses. AMB Express. 2013;3(1):74. doi:10.1186/2191-0855-3-74.
    • (2013) AMB Express , vol.3 , Issue.1 , pp. 74
    • Takuya, I.1    Daisuke, W.2    Yoko, Y.3    Koichi, T.4    Jun, O.5    Hiroshi, T.6    Hitoshi, S.7    Jun, S.8
  • 60
    • 84903743495 scopus 로고    scopus 로고
    • Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate
    • COI: 1:CAS:528:DC%2BC2cXht1Kqsb3M
    • Todhanakasem T, Sangsutthiseree A, Areerat K, Young GM, Thanonkeo P. Biofilm production by Zymomonas mobilis enhances ethanol production and tolerance to toxic inhibitors from rice bran hydrolysate. New Biotechnol. 2014;31(5):451–9. doi:10.1016/j.nbt.2014.06.002.
    • (2014) New Biotechnol , vol.31 , Issue.5 , pp. 451-459
    • Todhanakasem, T.1    Sangsutthiseree, A.2    Areerat, K.3    Young, G.M.4    Thanonkeo, P.5
  • 61
    • 84945492016 scopus 로고    scopus 로고
    • Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates
    • PID: 25989314
    • Tomás-Pejó E, Olsson L. Influence of the propagation strategy for obtaining robust Saccharomyces cerevisiae cells that efficiently co-ferment xylose and glucose in lignocellulosic hydrolysates. Microb Biotechnol. 2015;8(6):999–1005. doi:10.1111/1751-7915.12280.
    • (2015) Microb Biotechnol , vol.8 , Issue.6 , pp. 999-1005
    • Tomás-Pejó, E.1    Olsson, L.2
  • 62
    • 84905586406 scopus 로고    scopus 로고
    • Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae
    • Trinh Thi My N, Sakihito K, Shingo I. Importance of glucose-6-phosphate dehydrogenase (G6PDH) for vanillin tolerance in Saccharomyces cerevisiae. J Biosci Bioeng. 2014;118(3):263–9. doi:10.1016/j.jbiosc.2014.02.025.
    • (2014) J Biosci Bioeng , vol.118 , Issue.3 , pp. 263-269
    • Trinh Thi My, N.1    Sakihito, K.2    Shingo, I.3
  • 63
    • 0026710123 scopus 로고
    • Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation
    • COI: 1:CAS:528:DyaK38Xlt1Oqurk%3D, PID: 1523884
    • Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501–17. doi:10.1002/yea.320080703.
    • (1992) Yeast , vol.8 , Issue.7 , pp. 501-517
    • Verduyn, C.1    Postma, E.2    Scheffers, W.A.3    Van Dijken, J.P.4
  • 64
    • 33644839600 scopus 로고    scopus 로고
    • Flocculation, adhesion and biofilm formation in yeasts
    • COI: 1:CAS:528:DC%2BD28Xjsleht70%3D, PID: 16556216
    • Verstrepen KJ, Klis FM. Flocculation, adhesion and biofilm formation in yeasts. Mol Microbiol. 2006;60(1):5–15. doi:10.1111/j.1365-2958.2006.05072.x.
    • (2006) Mol Microbiol , vol.60 , Issue.1 , pp. 5-15
    • Verstrepen, K.J.1    Klis, F.M.2
  • 65
    • 84932194801 scopus 로고    scopus 로고
    • Reduction of invasive bacteria in ethanol fermentations using bacteriophages
    • COI: 1:CAS:528:DC%2BC2MXpvFamsro%3D, PID: 25788328
    • Worley-Morse TO, Deshusses MA, Gunsch CK. Reduction of invasive bacteria in ethanol fermentations using bacteriophages. Biotechnol Bioeng. 2015;112(8):1544–53. doi:10.1002/bit.25586.
    • (2015) Biotechnol Bioeng , vol.112 , Issue.8 , pp. 1544-1553
    • Worley-Morse, T.O.1    Deshusses, M.A.2    Gunsch, C.K.3
  • 66
    • 79954422577 scopus 로고    scopus 로고
    • Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae
    • COI: 1:CAS:528:DC%2BC3MXls1Oku7k%3D, PID: 21251209
    • Wright J, Bellissimi E, de Hulster E, Wagner A, Pronk JT, van Maris AJ. Batch and continuous culture-based selection strategies for acetic acid tolerance in xylose-fermenting Saccharomyces cerevisiae. FEMS Yeast Res. 2011;11(3):299–306. doi:10.1111/j.1567-1364.2011.00719.x.
    • (2011) FEMS Yeast Res , vol.11 , Issue.3 , pp. 299-306
    • Wright, J.1    Bellissimi, E.2    de Hulster, E.3    Wagner, A.4    Pronk, J.T.5    van Maris, A.J.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.