-
1
-
-
0343618697
-
Fermentation of lignocellulosic hydrolysates. II: Inhibitors and mechanisms of inhibition
-
1:CAS:528:DC%2BD3cXjt1Ggs7s%3D
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol. 2000;74:25-33.
-
(2000)
Bioresour Technol
, vol.74
, pp. 25-33
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
2
-
-
84868482873
-
Pretreatment: The key to efficient utilization of lignocellulosic materials
-
1:CAS:528:DC%2BC38Xhs1OlurvL
-
Galbe M, Zacchi G. Pretreatment: the key to efficient utilization of lignocellulosic materials. Biomass Bioenergy. 2012;46:70-8.
-
(2012)
Biomass Bioenergy
, vol.46
, pp. 70-78
-
-
Galbe, M.1
Zacchi, G.2
-
3
-
-
0343183325
-
Fermentation of lignocellulosic hydrolysates. I: Inhibition and detoxification
-
1:CAS:528:DC%2BD3cXjt1Kgtbk%3D
-
Palmqvist E, Hahn-Hägerdal B. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification. Bioresour Technol. 2000;74(1):17-24.
-
(2000)
Bioresour Technol
, vol.74
, Issue.1
, pp. 17-24
-
-
Palmqvist, E.1
Hahn-Hägerdal, B.2
-
4
-
-
68149124672
-
Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates
-
1:CAS:528:DC%2BD1MXotlyitbw%3D
-
Pienkos PT, Zhang M. Role of pretreatment and conditioning processes on toxicity of lignocellulosic biomass hydrolysates. Cellulose. 2009;16(4):743-62.
-
(2009)
Cellulose
, vol.16
, Issue.4
, pp. 743-762
-
-
Pienkos, P.T.1
Zhang, M.2
-
5
-
-
0028500159
-
Cost analysis of ethanol production from willow using recombinant Escherichia coli
-
von Sivers M, Zacchi G, Olsson L, Hahn-Hügerdal B. Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Prog. 1994;10(5):555-60.
-
(1994)
Biotechnol Prog
, vol.10
, Issue.5
, pp. 555-560
-
-
Von Sivers, M.1
Zacchi, G.2
Olsson, L.3
Hahn-Hügerdal, B.4
-
6
-
-
0035289692
-
Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase
-
1:CAS:528:DC%2BD3MXhslSjs7Y%3D
-
Larsson S, Cassland P, Jönsson LJ. Development of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase. Appl Environ Microbiol. 2001;67(3):1163-70.
-
(2001)
Appl Environ Microbiol
, vol.67
, Issue.3
, pp. 1163-1170
-
-
Larsson, S.1
Cassland, P.2
Jönsson, L.J.3
-
7
-
-
33745667335
-
Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD28XmtFCgur0%3D
-
Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2006;71(3):339-49.
-
(2006)
Appl Microbiol Biotechnol
, vol.71
, Issue.3
, pp. 339-349
-
-
Gorsich, S.W.1
Dien, B.S.2
Nichols, N.N.3
Slininger, P.J.4
Liu, Z.L.5
Skory, C.D.6
-
8
-
-
33744474816
-
A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance
-
1:CAS:528:DC%2BD28XltVyqurs%3D
-
Petersson A, Almeida JR, Modig T, Karhumaa K, Hahn-Hägerdal B, Gorwa-Grauslund MF, Lidén G. A 5-hydroxymethyl furfural reducing enzyme encoded by the Saccharomyces cerevisiae ADH6 gene conveys HMF tolerance. Yeast. 2006;23(6):455-64.
-
(2006)
Yeast
, vol.23
, Issue.6
, pp. 455-464
-
-
Petersson, A.1
Almeida, J.R.2
Modig, T.3
Karhumaa, K.4
Hahn-Hägerdal, B.5
Gorwa-Grauslund, M.F.6
Lidén, G.7
-
9
-
-
0035232377
-
Evolutionary engineering of industrially important microbial phenotypes
-
J. Nielsen (eds) Springer Berlin
-
Sauer U. Evolutionary engineering of industrially important microbial phenotypes. In: Nielsen J, editor. Metabolic engineering. Berlin: Springer; 2001. p 129-69.
-
(2001)
Metabolic Engineering
, pp. 129-169
-
-
Sauer, U.1
-
10
-
-
84857056878
-
Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties
-
Çakar ZP, Turanll-Ylldlz B, Alklm C, Yllmaz Ü. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 2012;12(2):171-82.
-
(2012)
FEMS Yeast Res
, vol.12
, Issue.2
, pp. 171-182
-
-
Çakar, Z.P.1
Turanll-Ylldlz, B.2
Alklm, C.3
Yllmaz, Ü.4
-
11
-
-
17344378580
-
Yeast adaptation on softwood prehydrolysate
-
Keller FA, Bates D, Ruiz R, Nguyen Q. Yeast adaptation on softwood prehydrolysate. Appl Biochem Biotechnol. 1998;70-72(1):137-48.
-
(1998)
Appl Biochem Biotechnol
, vol.70-72
, Issue.1
, pp. 137-148
-
-
Keller, F.A.1
Bates, D.2
Ruiz, R.3
Nguyen, Q.4
-
12
-
-
47649125318
-
Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation
-
1:CAS:528:DC%2BD1cXpsVOku7s%3D
-
Lopez-Maury L, Marguerat S, Bahler J. Tuning gene expression to changing environments: from rapid responses to evolutionary adaptation. Nat Rev Genet. 2008;9(8):583-93.
-
(2008)
Nat Rev Genet
, vol.9
, Issue.8
, pp. 583-593
-
-
Lopez-Maury, L.1
Marguerat, S.2
Bahler, J.3
-
13
-
-
0346882674
-
Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation
-
1:CAS:528:DC%2BD2cXhtVGktA%3D%3D
-
Rossignol T, Dulau L, Julien A, Blondin B. Genome-wide monitoring of wine yeast gene expression during alcoholic fermentation. Yeast. 2003;20(16):1369-85.
-
(2003)
Yeast
, vol.20
, Issue.16
, pp. 1369-1385
-
-
Rossignol, T.1
Dulau, L.2
Julien, A.3
Blondin, B.4
-
14
-
-
79955012346
-
Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3MXlt1Cmurk%3D
-
Park S-E, Koo HM, Park YK, Park SM, Park JC, Lee O-K, Park Y-C, Seo J-H. Expression of aldehyde dehydrogenase 6 reduces inhibitory effect of furan derivatives on cell growth and ethanol production in Saccharomyces cerevisiae. Bioresour Technol. 2011;102(10):6033-8.
-
(2011)
Bioresour Technol
, vol.102
, Issue.10
, pp. 6033-6038
-
-
Park, S.-E.1
Koo, H.M.2
Park, Y.K.3
Park, S.M.4
Park, J.C.5
Lee, O.-K.6
Park, Y.-C.7
Seo, J.-H.8
-
15
-
-
77952876202
-
Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BC3cXltVymu7g%3D
-
Li B-Z, Yuan Y-J. Transcriptome shifts in response to furfural and acetic acid in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2010;86(6):1915-24.
-
(2010)
Appl Microbiol Biotechnol
, vol.86
, Issue.6
, pp. 1915-1924
-
-
Li, B.-Z.1
Yuan, Y.-J.2
-
16
-
-
27944495636
-
Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce
-
1:CAS:528:DC%2BD2MXht1Ghsr%2FF
-
Alkasrawi M, Rudolf A, Lidén G, Zacchi G. Influence of strain and cultivation procedure on the performance of simultaneous saccharification and fermentation of steam pretreated spruce. Enzym Microb Technol. 2006;38(1):279-86.
-
(2006)
Enzym Microb Technol
, vol.38
, Issue.1
, pp. 279-286
-
-
Alkasrawi, M.1
Rudolf, A.2
Lidén, G.3
Zacchi, G.4
-
17
-
-
84881260879
-
Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH
-
Sànchez i Nogué V, Narayanan V, Gorwa-Grauslund M. Short-term adaptation improves the fermentation performance of Saccharomyces cerevisiae in the presence of acetic acid at low pH. Appl Microbiol Biotechnol. 2013;97(16):7517-25.
-
(2013)
Appl Microbiol Biotechnol.
, vol.97
, Issue.16
, pp. 7517-7525
-
-
Sànchez Nogué, V.1
Narayanan, V.2
Gorwa-Grauslund, M.3
-
18
-
-
27644595701
-
Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminate the ethanol-induced lag phase in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD28XhvFGgsrk%3D
-
Vriesekoop F, Pamment NB. Acetaldehyde addition and pre-adaptation to the stressor together virtually eliminate the ethanol-induced lag phase in Saccharomyces cerevisiae. Lett Appl Microbiol. 2005;41(5):424-7.
-
(2005)
Lett Appl Microbiol
, vol.41
, Issue.5
, pp. 424-427
-
-
Vriesekoop, F.1
Pamment, N.B.2
-
19
-
-
0141788811
-
Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. Cerevisiae
-
1:CAS:528:DC%2BD3sXnsVantb8%3D
-
Helle S, Cameron D, Lam J, White B, Duff S. Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae. Enzym Microb Technol. 2003;33(6):786-92.
-
(2003)
Enzym Microb Technol.
, vol.33
, Issue.6
, pp. 786-792
-
-
Helle, S.1
Cameron, D.2
Lam, J.3
White, B.4
Duff, S.5
-
20
-
-
33846667838
-
Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors
-
Martín C, Marcet M, Almazán O, Jönsson LJ. Adaptation of a recombinant xylose-utilizing Saccharomyces cerevisiae strain to a sugarcane bagasse hydrolysate with high content of fermentation inhibitors. Bioresour Technol. 2007;98(9):1767-73.
-
(2007)
Bioresour Technol
, vol.98
, Issue.9
, pp. 1767-1773
-
-
Martín, C.1
Marcet, M.2
Almazán, O.3
Jönsson, L.J.4
-
21
-
-
0035046617
-
Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium
-
1:CAS:528:DC%2BD3MXivFKrsbw%3D
-
Narendranath NV, Thomas KC, Ingledew WM. Effects of acetic acid and lactic acid on the growth of Saccharomyces cerevisiae in a minimal medium. J Ind Microbiol Biotechnol. 2001;26(3):171-7.
-
(2001)
J Ind Microbiol Biotechnol
, vol.26
, Issue.3
, pp. 171-177
-
-
Narendranath, N.V.1
Thomas, K.C.2
Ingledew, W.M.3
-
22
-
-
0013936130
-
The Crabtree effect: A regulatory system in yeast
-
De Deken RH. The Crabtree effect: a regulatory system in yeast. J Gen Microbiol. 1966;44(2):149-56.
-
(1966)
J Gen Microbiol
, vol.44
, Issue.2
, pp. 149-156
-
-
De Deken, R.H.1
-
23
-
-
0037623828
-
Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats
-
Sárvári Horváth I, Franzén CJ, Taherzadeh MJ, Niklasson C, Lidén G. Effects of furfural on the respiratory metabolism of Saccharomyces cerevisiae in glucose-limited chemostats. Appl Environ Microbiol. 2003;69(7):4076-86.
-
(2003)
Appl Environ Microbiol
, vol.69
, Issue.7
, pp. 4076-4086
-
-
Sárvári Horváth, I.1
Franzén, C.J.2
Taherzadeh, M.J.3
Niklasson, C.4
Lidén, G.5
-
24
-
-
0033585830
-
Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture
-
1:CAS:528:DyaK1MXns1CisA%3D%3D
-
Palmqvist E, Almeida JS, Hahn-Hägerdal B. Influence of furfural on anaerobic glycolytic kinetics of Saccharomyces cerevisiae in batch culture. Biotechnol Bioeng. 1999;62(4):447-54.
-
(1999)
Biotechnol Bioeng
, vol.62
, Issue.4
, pp. 447-454
-
-
Palmqvist, E.1
Almeida, J.S.2
Hahn-Hägerdal, B.3
-
25
-
-
0001387624
-
Methylene blue staining: Use at your own risk
-
O'Connor-Cox E, Mochaba FM, Lodolo EJ, Majara M, Axcell B. Methylene blue staining: use at your own risk. Master Brew Assoc Am Tech Q. 1997;34:306-12.
-
(1997)
Master Brew Assoc Am Tech Q
, vol.34
, pp. 306-312
-
-
O'Connor-Cox, E.1
Mochaba, F.M.2
Lodolo, E.J.3
Majara, M.4
Axcell, B.5
-
26
-
-
0033938545
-
Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD3cXkvVyhu78%3D
-
Taherzadeh MJ, Gustafsson L, Niklasson C, Lidén G. Physiological effects of 5-hydroxymethylfurfural on Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2000;53(6):701-8.
-
(2000)
Appl Microbiol Biotechnol
, vol.53
, Issue.6
, pp. 701-708
-
-
Taherzadeh, M.J.1
Gustafsson, L.2
Niklasson, C.3
Lidén, G.4
-
27
-
-
0036182468
-
Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: Relevance in aldehyde reduction
-
1:CAS:528:DC%2BD38XhvFKmtLk%3D
-
Larroy C, Fernandez M, González E, Parés X, Biosca J. Characterization of the Saccharomyces cerevisiae YMR318C (ADH6) gene product as a broad specificity NADPH-dependent alcohol dehydrogenase: relevance in aldehyde reduction. Biochem J. 2002;361:163-72.
-
(2002)
Biochem J
, vol.361
, pp. 163-172
-
-
Larroy, C.1
Fernandez, M.2
González, E.3
Parés, X.4
Biosca, J.5
-
28
-
-
0027395082
-
Xylose fermentation by Saccharomyces cerevisiae
-
Kötter P, Ciriacy M. Xylose fermentation by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1993;38(6):776-83.
-
(1993)
Appl Microbiol Biotechnol
, vol.38
, Issue.6
, pp. 776-783
-
-
Kötter, P.1
Ciriacy, M.2
-
29
-
-
0021040193
-
The role of redox balances in the anaerobic fermentation of xylose by yeasts
-
1:CAS:528:DyaL2cXms1Glug%3D%3D
-
Bruinenberg PM, de Bot PH, van Dijken JP, Scheffers WA. The role of redox balances in the anaerobic fermentation of xylose by yeasts. Eur J Appl Microbiol Biotechnol. 1983;18(5):287-92.
-
(1983)
Eur J Appl Microbiol Biotechnol
, vol.18
, Issue.5
, pp. 287-292
-
-
Bruinenberg, P.M.1
De Bot, P.H.2
Van Dijken, J.P.3
Scheffers, W.A.4
-
30
-
-
43349084131
-
NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD1cXkvFagtL4%3D
-
Almeida JM, Röder A, Modig T, Laadan B, Lidén G, Gorwa-Grauslund M-F. NADH- vs NADPH-coupled reduction of 5-hydroxymethyl furfural (HMF) and its implications on product distribution in Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 2008;78(6):939-45.
-
(2008)
Appl Microbiol Biotechnol
, vol.78
, Issue.6
, pp. 939-945
-
-
Almeida, J.M.1
Röder, A.2
Modig, T.3
Laadan, B.4
Lidén, G.5
Gorwa-Grauslund, M.-F.6
-
31
-
-
0345329541
-
The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains
-
1:CAS:528:DC%2BD3sXpsFCltL4%3D
-
Jeppsson M, Johansson B, Jensen PR, Hahn-Hägerdal B, Gorwa-Grauslund MF. The level of glucose-6-phosphate dehydrogenase activity strongly influences xylose fermentation and inhibitor sensitivity in recombinant Saccharomyces cerevisiae strains. Yeast. 2003;20(15):1263-72.
-
(2003)
Yeast
, vol.20
, Issue.15
, pp. 1263-1272
-
-
Jeppsson, M.1
Johansson, B.2
Jensen, P.R.3
Hahn-Hägerdal, B.4
Gorwa-Grauslund, M.F.5
-
32
-
-
0036208491
-
Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose
-
1:CAS:528:DC%2BD38XivFGltrc%3D
-
Jeppsson M, Johansson B, Hahn-Hägerdal B, Gorwa-Grauslund MF. Reduced oxidative pentose phosphate pathway flux in recombinant xylose-utilizing Saccharomyces cerevisiae strains improves the ethanol yield from xylose. Appl Environ Microbiol. 2002;68(4):1604-9.
-
(2002)
Appl Environ Microbiol
, vol.68
, Issue.4
, pp. 1604-1609
-
-
Jeppsson, M.1
Johansson, B.2
Hahn-Hägerdal, B.3
Gorwa-Grauslund, M.F.4
-
33
-
-
0030784854
-
The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+ -activated acetaldehyde dehydrogenase
-
1:CAS:528:DyaK2sXnsVWnt7w%3D
-
Meaden PG, Dickinson FM, Mifsud A, Tessier W, Westwater J, Bussey H, Midgley M. The ALD6 gene of Saccharomyces cerevisiae encodes a cytosolic, Mg2+ -activated acetaldehyde dehydrogenase. Yeast. 1997;13(14):1319-27.
-
(1997)
Yeast
, vol.13
, Issue.14
, pp. 1319-1327
-
-
Meaden, P.G.1
Dickinson, F.M.2
Mifsud, A.3
Tessier, W.4
Westwater, J.5
Bussey, H.6
Midgley, M.7
-
34
-
-
84890284546
-
Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase
-
Ask M, Bettiga M, Duraiswamy VR, Olsson L. Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase. Biotechnol Biofuels. 2013;6(1):181.
-
(2013)
Biotechnol Biofuels
, vol.6
, Issue.1
, pp. 181
-
-
Ask, M.1
Bettiga, M.2
Duraiswamy, V.R.3
Olsson, L.4
-
35
-
-
0029073048
-
The plasma membrane of Saccharomyces cerevisiae: Structure, function, and biogenesis
-
Van der Rest M, Kamminga AH, Nakano A, Anraku Y, Poolman B, Konings WN. The plasma membrane of Saccharomyces cerevisiae: structure, function, and biogenesis. Microbiol Rev. 1995;59(2):304-22.
-
(1995)
Microbiol Rev
, vol.59
, Issue.2
, pp. 304-322
-
-
Van Der Rest, M.1
Kamminga, A.H.2
Nakano, A.3
Anraku, Y.4
Poolman, B.5
Konings, W.N.6
-
36
-
-
42349100173
-
The chemical genomic portrait of yeast: Uncovering a phenotype for all genes
-
1:CAS:528:DC%2BD1cXks1GhsLw%3D
-
Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, Onge RPS, Tyers M, Koller D. The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science. 2008;320(5874):362-5.
-
(2008)
Science
, vol.320
, Issue.5874
, pp. 362-365
-
-
Hillenmeyer, M.E.1
Fung, E.2
Wildenhain, J.3
Pierce, S.E.4
Hoon, S.5
Lee, W.6
Proctor, M.7
Onge, R.P.S.8
Tyers, M.9
Koller, D.10
-
37
-
-
0019187844
-
Reserve carbohydrate metabolism in Saccharomyces cerevisiae: Responses to nutrient limitation
-
1:CAS:528:DyaL3cXmtVSktL8%3D
-
Lillie SH, Pringle JR. Reserve carbohydrate metabolism in Saccharomyces cerevisiae: responses to nutrient limitation. J Bacteriol. 1980;143(3):1384-94.
-
(1980)
J Bacteriol
, vol.143
, Issue.3
, pp. 1384-1394
-
-
Lillie, S.H.1
Pringle, J.R.2
-
38
-
-
0024997351
-
Trehalose in yeast, stress protectant rather than reserve carbohydrate
-
1:CAS:528:DyaK3MXpslyhtQ%3D%3D
-
Wiemken A. Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie Van Leeuwenhoek. 1990;58(3):209-17.
-
(1990)
Antonie van Leeuwenhoek
, vol.58
, Issue.3
, pp. 209-217
-
-
Wiemken, A.1
-
39
-
-
0033771067
-
Physiological roles of trehalose in bacteria and yeasts: A comparative analysis
-
Argüelles JC. Physiological roles of trehalose in bacteria and yeasts: a comparative analysis. Arch Microbiol. 2000;174(4):217-24.
-
(2000)
Arch Microbiol
, vol.174
, Issue.4
, pp. 217-224
-
-
Argüelles, J.C.1
-
40
-
-
58149477054
-
Effect of trehalose on protein structure
-
1:CAS:528:DC%2BD1MXmslCiuro%3D
-
Jain NK, Roy I. Effect of trehalose on protein structure. Protein Sci. 2009;18(1):24-36.
-
(2009)
Protein Sci
, vol.18
, Issue.1
, pp. 24-36
-
-
Jain, N.K.1
Roy, I.2
-
41
-
-
0039939001
-
The effect of yeast trehalose content at pitching on fermentation performance during brewing fermentations
-
1:CAS:528:DyaK1cXhs1ymtL8%3D
-
Guldfeldt LU, Arnfborg N. The effect of yeast trehalose content at pitching on fermentation performance during brewing fermentations. J Inst Brew. 1998;104(1):37-9.
-
(1998)
J Inst Brew
, vol.104
, Issue.1
, pp. 37-39
-
-
Guldfeldt, L.U.1
Arnfborg, N.2
-
43
-
-
84872135386
-
Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales
-
Koppram R, Nielsen F, Albers E, Lambert A, Wännström S, Welin L, Zacchi G, Olsson L. Simultaneous saccharification and co-fermentation for bioethanol production using corncobs at lab, PDU and demo scales. Biotechnol Biofuels. 2013; 6(2).
-
(2013)
Biotechnol Biofuels
, vol.6
, Issue.2
-
-
Koppram R, N.1
-
44
-
-
84875106231
-
Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. Cerevisiae TMB3400
-
1:CAS:528:DC%2BC3sXhs1Cntbs%3D
-
Erdei B, Frankó B, Galbe M, Zacchi G. Glucose and xylose co-fermentation of pretreated wheat straw using mutants of S. cerevisiae TMB3400. J Biotechnol. 2013;164(1):50-8.
-
(2013)
J Biotechnol
, vol.164
, Issue.1
, pp. 50-58
-
-
Erdei, B.1
Frankó, B.2
Galbe, M.3
Zacchi, G.4
-
45
-
-
84888239853
-
SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production
-
Erdei B, Hancz D, Galbe M, Zacchi G. SSF of steam-pretreated wheat straw with the addition of saccharified or fermented wheat meal in integrated bioethanol production. Biotechnol Biofuels. 2013;6:169.
-
(2013)
Biotechnol Biofuels
, vol.6
, pp. 169
-
-
Erdei, B.1
Hancz, D.2
Galbe, M.3
Zacchi, G.4
-
46
-
-
0037140422
-
Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae
-
1:CAS:528:DC%2BD38XisVKnsrY%3D
-
Wahlbom CF, Hahn-Hägerdal B. Furfural, 5-hydroxymethyl furfural, and acetoin act as external electron acceptors during anaerobic fermentation of xylose in recombinant Saccharomyces cerevisiae. Biotechnol Bioeng. 2002;78(2):172-8.
-
(2002)
Biotechnol Bioeng
, vol.78
, Issue.2
, pp. 172-178
-
-
Wahlbom, C.F.1
Hahn-Hägerdal, B.2
-
47
-
-
0029785297
-
The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae
-
1:CAS:528:DyaK28Xmt1WisLw%3D
-
Taherzadeh MJ, Lidén G, Gustafsson L, Niklasson C. The effects of pantothenate deficiency and acetate addition on anaerobic batch fermentation of glucose by Saccharomyces cerevisiae. Appl Microbiol Biotechnol. 1996;46(2):176-82.
-
(1996)
Appl Microbiol Biotechnol
, vol.46
, Issue.2
, pp. 176-182
-
-
Taherzadeh, M.J.1
Lidén, G.2
Gustafsson, L.3
Niklasson, C.4
-
48
-
-
0036311161
-
Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: Effects on fermentative capacity and content of trehalose and glycogen
-
Jørgensen H, Olsson L, Rønnow B, Palmqvist E. Fed-batch cultivation of baker's yeast followed by nitrogen or carbon starvation: effects on fermentative capacity and content of trehalose and glycogen. Appl Microbiol Biotechnol. 2002;59(2-3):310-7.
-
(2002)
Appl Microbiol Biotechnol
, vol.59
, Issue.2-3
, pp. 310-317
-
-
Jørgensen, H.1
Olsson, L.2
Rønnow, B.3
Palmqvist, E.4
-
49
-
-
0026710123
-
Effect of benzoic acid on metabolic fluxes in yeasts: A continuous-culture study on the regulation of respiration and alcoholic fermentation
-
1:CAS:528:DyaK38Xlt1Oqurk%3D
-
Verduyn C, Postma E, Scheffers WA, Van Dijken JP. Effect of benzoic acid on metabolic fluxes in yeasts: a continuous-culture study on the regulation of respiration and alcoholic fermentation. Yeast. 1992;8(7):501-17.
-
(1992)
Yeast
, vol.8
, Issue.7
, pp. 501-517
-
-
Verduyn, C.1
Postma, E.2
Scheffers, W.A.3
Van Dijken, J.P.4
-
50
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
1:CAS:528:DyaE28XksVehtrY%3D
-
Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;72(1-2):248-54.
-
(1976)
Anal Biochem
, vol.72
, Issue.1-2
, pp. 248-254
-
-
Bradford, M.M.1
-
51
-
-
55549108124
-
-
National Renewable Energy Laboratory Golden
-
Sluiter A, Hames B, Hyman D, Payne C, Ruiz R, Scarlata C, Sluiter J, Templeton D, Wolfe J. Determination of total solids in biomass and total dissolved solids in liquid process samples. Golden: National Renewable Energy Laboratory; 2008.
-
(2008)
Determination of Total Solids in Biomass and Total Dissolved Solids in Liquid Process Samples
-
-
Sluiter, A.1
Hames, B.2
Hyman, D.3
Payne, C.4
Ruiz, R.5
Scarlata, C.6
Sluiter, J.7
Templeton, D.8
Wolfe, J.9
-
53
-
-
33749001258
-
-
National Renewable Energy Laboratory Golden
-
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of sugars, byproducts, and degradation products in liquid fraction process samples. Golden: National Renewable Energy Laboratory; 2006.
-
(2006)
Determination of Sugars, Byproducts, and Degradation Products in Liquid Fraction Process Samples
-
-
Sluiter, A.1
Hames, B.2
Ruiz, R.3
Scarlata, C.4
Sluiter, J.5
Templeton, D.6
Crocker, D.7
-
54
-
-
33749014726
-
-
National Renewable Energy Laboratory Golden
-
Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Golden: National Renewable Energy Laboratory; 2008.
-
(2008)
Determination of Structural Carbohydrates and Lignin in Biomass
-
-
Sluiter, A.1
Hames, B.2
Ruiz, R.3
Scarlata, C.4
Sluiter, J.5
Templeton, D.6
Crocker, D.7
|