-
1
-
-
84887620404
-
What is the total number of protein molecules per cell volume? A call to rethink some published values
-
Milo R. 2013. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35: 1050–5.
-
(2013)
BioEssays
, vol.35
, pp. 1050-1055
-
-
Milo, R.1
-
2
-
-
0001105482
-
Is alpha-keratin a coiled coil
-
Crick FH. 1952. Is alpha-keratin a coiled coil? Nature 170: 882–3.
-
(1952)
Nature
, vol.170
, pp. 882-883
-
-
Crick, F.H.1
-
3
-
-
0019890491
-
Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution
-
Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature 289: 366–73.
-
(1981)
Nature
, vol.289
, pp. 366-373
-
-
Wilson, I.A.1
Skehel, J.J.2
Wiley, D.C.3
-
4
-
-
0000747247
-
The Fourier transform of a coiled-coil
-
Crick FH. 1953. The Fourier transform of a coiled-coil. Acta Crystallogr 6: 685–9.
-
(1953)
Acta Crystallogr
, vol.6
, pp. 685-689
-
-
Crick, F.H.1
-
5
-
-
0000920828
-
The packing of α-helices: simple coiled-coils
-
Crick FH. 1953. The packing of α-helices: simple coiled-coils. Acta Crystallogr 6: 689–97.
-
(1953)
Acta Crystallogr
, vol.6
, pp. 689-697
-
-
Crick, F.H.1
-
6
-
-
79251600167
-
Probing designability via a generalized model of helical bundle geometry
-
Grigoryan G, Degrado WF. 2011. Probing designability via a generalized model of helical bundle geometry. J Mol Biol 405: 1079–100.
-
(2011)
J Mol Biol
, vol.405
, pp. 1079-1100
-
-
Grigoryan, G.1
Degrado, W.F.2
-
7
-
-
84911394089
-
CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies
-
Wood CW, Bruning M, Ibarra AA, Bartlett GJ et al. 2014. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30: 3029–35.
-
(2014)
Bioinformatics
, vol.30
, pp. 3029-3035
-
-
Wood, C.W.1
Bruning, M.2
Ibarra, A.A.3
Bartlett, G.J.4
-
8
-
-
17444424974
-
The structure of alpha-helical coiled coils
-
Lupas AN, Gruber M. 2005. The structure of alpha-helical coiled coils. Adv Protein Chem 70: 37–78.
-
(2005)
Adv Protein Chem
, vol.70
, pp. 37-78
-
-
Lupas, A.N.1
Gruber, M.2
-
9
-
-
0034808117
-
Comparing function and structure between entire proteomes
-
Liu J, Rost B. 2001. Comparing function and structure between entire proteomes. Protein Sci 10: 1970–9.
-
(2001)
Protein Sci
, vol.10
, pp. 1970-1979
-
-
Liu, J.1
Rost, B.2
-
10
-
-
29244468267
-
Coiled-coil protein composition of 22 proteomes—differences and common themes in subcellular infrastructure and traffic control
-
Rose A, Schraegle SJ, Stahlberg EA, Meier I. 2005. Coiled-coil protein composition of 22 proteomes—differences and common themes in subcellular infrastructure and traffic control. BMC Evol Biol 5: 66.
-
(2005)
BMC Evol Biol
, vol.5
, pp. 66
-
-
Rose, A.1
Schraegle, S.J.2
Stahlberg, E.A.3
Meier, I.4
-
11
-
-
77957750326
-
The evolution and structure prediction of coiled coils across all genomes
-
Rackham OJ, Madera M, Armstrong CT, Vincent TL et al. 2010. The evolution and structure prediction of coiled coils across all genomes. J Mol Biol 403: 480–93.
-
(2010)
J Mol Biol
, vol.403
, pp. 480-493
-
-
Rackham, O.J.1
Madera, M.2
Armstrong, C.T.3
Vincent, T.L.4
-
14
-
-
17444433002
-
The design of coiled-coil structures and assemblies
-
Woolfson DN. 2005. The design of coiled-coil structures and assemblies. Adv Protein Chem 70: 79–112.
-
(2005)
Adv Protein Chem
, vol.70
, pp. 79-112
-
-
Woolfson, D.N.1
-
15
-
-
84908244550
-
Computational design of water-soluble alpha-helical barrels
-
Thomson AR, Wood CW, Burton AJ, Bartlett GJ et al. 2014. Computational design of water-soluble alpha-helical barrels. Science 346: 485–8.
-
(2014)
Science
, vol.346
, pp. 485-488
-
-
Thomson, A.R.1
Wood, C.W.2
Burton, A.J.3
Bartlett, G.J.4
-
17
-
-
84879093742
-
Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments
-
Gradisar H, Bozic S, Doles T, Vengust D et al. 2013. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 9: 362–6.
-
(2013)
Nat Chem Biol
, vol.9
, pp. 362-366
-
-
Gradisar, H.1
Bozic, S.2
Doles, T.3
Vengust, D.4
-
18
-
-
84908235298
-
High thermodynamic stability of parametrically designed helical bundles
-
Huang PS, Oberdorfer G, Xu C, Pei XY et al. 2014. High thermodynamic stability of parametrically designed helical bundles. Science 346: 481–5.
-
(2014)
Science
, vol.346
, pp. 481-485
-
-
Huang, P.S.1
Oberdorfer, G.2
Xu, C.3
Pei, X.Y.4
-
19
-
-
84934964499
-
De novo protein design: how do we expand into the universe of possible protein structures
-
Woolfson DN, Bartlett GJ, Burton AJ, Heal JW et al. 2015. De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 33: 16–26.
-
(2015)
Curr Opin Struct Biol
, vol.33
, pp. 16-26
-
-
Woolfson, D.N.1
Bartlett, G.J.2
Burton, A.J.3
Heal, J.W.4
-
20
-
-
33747788700
-
Comparative analysis of coiled-coil prediction methods
-
Gruber M, Soding J, Lupas AN. 2006. Comparative analysis of coiled-coil prediction methods. J Struct Biol 155: 140–5.
-
(2006)
J Struct Biol
, vol.155
, pp. 140-145
-
-
Gruber, M.1
Soding, J.2
Lupas, A.N.3
-
21
-
-
58149119313
-
A periodic table of coiled-coil protein structures
-
Moutevelis E, Woolfson DN. 2009. A periodic table of coiled-coil protein structures. J Mol Biol 385: 726–32.
-
(2009)
J Mol Biol
, vol.385
, pp. 726-732
-
-
Moutevelis, E.1
Woolfson, D.N.2
-
23
-
-
33846665911
-
A catalytic coiled coil: structural insights into the activation of the Rab GTPase Sec4p by Sec2p
-
Dong G, Medkova M, Novick P, Reinisch KM. 2007. A catalytic coiled coil: structural insights into the activation of the Rab GTPase Sec4p by Sec2p. Mol Cell 25: 455–62.
-
(2007)
Mol Cell
, vol.25
, pp. 455-462
-
-
Dong, G.1
Medkova, M.2
Novick, P.3
Reinisch, K.M.4
-
25
-
-
0026439779
-
Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima
-
Engel AM, Cejka Z, Lupas A, Lottspeich F et al. 1992. Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. EMBO J 11: 4369–78.
-
(1992)
EMBO J
, vol.11
, pp. 4369-4378
-
-
Engel, A.M.1
Cejka, Z.2
Lupas, A.3
Lottspeich, F.4
-
26
-
-
0028987628
-
Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima
-
Lupas A, Muller S, Goldie K, Engel AM et al. 1995. Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima. J Mol Biol 248: 180–9.
-
(1995)
J Mol Biol
, vol.248
, pp. 180-189
-
-
Lupas, A.1
Muller, S.2
Goldie, K.3
Engel, A.M.4
-
27
-
-
0027382276
-
A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated
-
Kilmartin JV, Dyos SL, Kershaw D, Finch JT. 1993. A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated. J Cell Biol 123: 1175–84.
-
(1993)
J Cell Biol
, vol.123
, pp. 1175-1184
-
-
Kilmartin, J.V.1
Dyos, S.L.2
Kershaw, D.3
Finch, J.T.4
-
28
-
-
0027244942
-
Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350kDa
-
Linstedt AD, Hauri HP. 1993. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350kDa. Mol Biol Cell 4: 679–93.
-
(1993)
Mol Biol Cell
, vol.4
, pp. 679-693
-
-
Linstedt, A.D.1
Hauri, H.P.2
-
29
-
-
0034616420
-
Binding relationships of membrane tethering components. The giantin N terminus and the GM130N terminus compete for binding to the p115C terminus
-
Linstedt AD, Jesch SA, Mehta A, Lee TH et al. 2000. Binding relationships of membrane tethering components. The giantin N terminus and the GM130N terminus compete for binding to the p115C terminus. J Biol Chem 275: 10196–201.
-
(2000)
J Biol Chem
, vol.275
, pp. 10196-10201
-
-
Linstedt, A.D.1
Jesch, S.A.2
Mehta, A.3
Lee, T.H.4
-
30
-
-
0034723203
-
The amino-terminal domain of the golgi protein giantin interacts directly with the vesicle-tethering protein p115
-
Lesa GM, Seemann J, Shorter J, Vandekerckhove J et al. 2000. The amino-terminal domain of the golgi protein giantin interacts directly with the vesicle-tethering protein p115. J Biol Chem 275: 2831–6.
-
(2000)
J Biol Chem
, vol.275
, pp. 2831-2836
-
-
Lesa, G.M.1
Seemann, J.2
Shorter, J.3
Vandekerckhove, J.4
-
31
-
-
0032498855
-
A role for giantin in docking COPI vesicles to Golgi membranes
-
Sonnichsen B, Lowe M, Levine T, Jamsa E et al. 1998. A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140: 1013–21.
-
(1998)
J Cell Biol
, vol.140
, pp. 1013-1021
-
-
Sonnichsen, B.1
Lowe, M.2
Levine, T.3
Jamsa, E.4
-
32
-
-
33646033471
-
Sequence divergence of coiled coils-structural rods, myosin filament packing, and the extraordinary conservation of cohesins
-
White GE, Erickson HP. 2006. Sequence divergence of coiled coils-structural rods, myosin filament packing, and the extraordinary conservation of cohesins. J Struct Biol 154: 111–21.
-
(2006)
J Struct Biol
, vol.154
, pp. 111-121
-
-
White, G.E.1
Erickson, H.P.2
-
33
-
-
85043368012
-
The Golgin family of coiled-coil tethering proteins
-
Witkos TM, Lowe M. 2015. The Golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3: 86.
-
(2015)
Front Cell Dev Biol
, vol.3
, pp. 86
-
-
Witkos, T.M.1
Lowe, M.2
-
34
-
-
13844317835
-
Golgin tethers define subpopulations of COPI vesicles
-
Malsam J, Satoh A, Pelletier L, Warren G. 2005. Golgin tethers define subpopulations of COPI vesicles. Science 307: 1095–8.
-
(2005)
Science
, vol.307
, pp. 1095-1098
-
-
Malsam, J.1
Satoh, A.2
Pelletier, L.3
Warren, G.4
-
35
-
-
84910104915
-
Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
-
Wong M, Munro S. 2014. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346: 1256898.
-
(2014)
Science
, vol.346
, pp. 1256898
-
-
Wong, M.1
Munro, S.2
-
36
-
-
84930630268
-
GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations
-
Ishida R, Yamamoto A, Nakayama K, Sohda M et al. 2015. GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations. FEBS J 282: 2232–44.
-
(2015)
FEBS J
, vol.282
, pp. 2232-2244
-
-
Ishida, R.1
Yamamoto, A.2
Nakayama, K.3
Sohda, M.4
-
37
-
-
84968796233
-
Protein flexibility is required for vesicle tethering at the Golgi
-
Cheung PY, Limouse C, Mabuchi H, Pfeffer SR. 2015. Protein flexibility is required for vesicle tethering at the Golgi. Elife 4.
-
(2015)
Elife
, vol.4
-
-
Cheung, P.Y.1
Limouse, C.2
Mabuchi, H.3
Pfeffer, S.R.4
-
38
-
-
17244363408
-
Molecular organization of the Ndc80 complex, an essential kinetochore component
-
Wei RR, Sorger PK, Harrison SC. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102: 5363–7.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 5363-5367
-
-
Wei, R.R.1
Sorger, P.K.2
Harrison, S.C.3
-
39
-
-
43049146221
-
Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
-
Ciferri C, Pasqualato S, Screpanti E, Varetti G et al. 2008. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133: 427–39.
-
(2008)
Cell
, vol.133
, pp. 427-439
-
-
Ciferri, C.1
Pasqualato, S.2
Screpanti, E.3
Varetti, G.4
-
40
-
-
84861602372
-
Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment
-
Varma D, Chandrasekaran S, Sundin LJ, Reidy KT et al. 2012. Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment. Nat Cell Biol 14: 593–603.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 593-603
-
-
Varma, D.1
Chandrasekaran, S.2
Sundin, L.J.3
Reidy, K.T.4
-
41
-
-
84934439568
-
The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling
-
Aravamudhan P, Goldfarb AA, Joglekar AP. 2015. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 17: 868–79.
-
(2015)
Nat Cell Biol
, vol.17
, pp. 868-879
-
-
Aravamudhan, P.1
Goldfarb, A.A.2
Joglekar, A.P.3
-
42
-
-
84931034097
-
CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
-
Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A et al. 2015. CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348: 1264–7.
-
(2015)
Science
, vol.348
, pp. 1264-1267
-
-
Hiruma, Y.1
Sacristan, C.2
Pachis, S.T.3
Adamopoulos, A.4
-
43
-
-
84931098021
-
CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C
-
Ji Z, Gao H, Yu H. 2015. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348: 1260–4.
-
(2015)
Science
, vol.348
, pp. 1260-1264
-
-
Ji, Z.1
Gao, H.2
Yu, H.3
-
44
-
-
84860783506
-
Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface
-
Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW et al. 2012. Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46: 274–86.
-
(2012)
Mol Cell
, vol.46
, pp. 274-286
-
-
Jeyaprakash, A.A.1
Santamaria, A.2
Jayachandran, U.3
Chan, Y.W.4
-
45
-
-
84867161119
-
Coiled-coil networking shapes cell molecular machinery
-
Wang Y, Zhang X, Zhang H, Lu Y et al. 2012. Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23: 3911–22.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 3911-3922
-
-
Wang, Y.1
Zhang, X.2
Zhang, H.3
Lu, Y.4
-
46
-
-
84905719833
-
NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane
-
Kotak S, Busso C, Gonczy P. 2014. NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J 33: 1815–30.
-
(2014)
EMBO J
, vol.33
, pp. 1815-1830
-
-
Kotak, S.1
Busso, C.2
Gonczy, P.3
-
47
-
-
84958568925
-
NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures
-
Seldin L, Muroyama A, Lechler T. 2016. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. Elife 5.
-
(2016)
Elife
, vol.5
-
-
Seldin, L.1
Muroyama, A.2
Lechler, T.3
-
48
-
-
84903386058
-
Coiled-coil proteins facilitated the functional expansion of the centrosome
-
Kuhn M, Hyman AA, Beyer A. 2014. Coiled-coil proteins facilitated the functional expansion of the centrosome. PLoS Comput Biol 10: e1003657.
-
(2014)
PLoS Comput Biol
, vol.10
-
-
Kuhn, M.1
Hyman, A.A.2
Beyer, A.3
-
49
-
-
84869236675
-
SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly
-
Qiao R, Cabral G, Lettman MM, Dammermann A et al. 2012. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 31: 4334–47.
-
(2012)
EMBO J
, vol.31
, pp. 4334-4347
-
-
Qiao, R.1
Cabral, G.2
Lettman, M.M.3
Dammermann, A.4
-
51
-
-
35348893241
-
Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole
-
Hiraki M, Nakazawa Y, Kamiya R, Hirono M. 2007. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr Biol 17: 1778–83.
-
(2007)
Curr Biol
, vol.17
, pp. 1778-1783
-
-
Hiraki, M.1
Nakazawa, Y.2
Kamiya, R.3
Hirono, M.4
-
52
-
-
84871211229
-
Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces
-
Bayless BA, Giddings TH, Jr., Winey M, Pearson CG. 2012. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol Biol Cell 23: 4820–32.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 4820-4832
-
-
Bayless, B.A.1
Giddings, T.H.2
Winey, M.3
Pearson, C.G.4
-
53
-
-
84856411124
-
Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
-
Li S, Fernandez JJ, Marshall WF, Agard DA. 2012. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 31: 552–62.
-
(2012)
EMBO J
, vol.31
, pp. 552-562
-
-
Li, S.1
Fernandez, J.J.2
Marshall, W.F.3
Agard, D.A.4
-
54
-
-
84883829412
-
Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry
-
Guichard P, Hachet V, Majubu N, Neves A et al. 2013. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr Biol 23: 1620–8.
-
(2013)
Curr Biol
, vol.23
, pp. 1620-1628
-
-
Guichard, P.1
Hachet, V.2
Majubu, N.3
Neves, A.4
-
55
-
-
14744267674
-
Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications
-
Kim JS, DeGiovanni A, Jancarik J, Adams PD et al. 2005. Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications. Proc Natl Acad Sci USA 102: 3248–53.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 3248-3253
-
-
Kim, J.S.1
DeGiovanni, A.2
Jancarik, J.3
Adams, P.D.4
-
56
-
-
0043192605
-
Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR
-
Changela A, Chen K, Xue Y, Holschen J et al. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383–7.
-
(2003)
Science
, vol.301
, pp. 1383-1387
-
-
Changela, A.1
Chen, K.2
Xue, Y.3
Holschen, J.4
-
57
-
-
84939832273
-
TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter
-
Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC et al. 2015. TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349: 877–81.
-
(2015)
Science
, vol.349
, pp. 877-881
-
-
Philips, S.J.1
Canalizo-Hernandez, M.2
Yildirim, I.3
Schatz, G.C.4
-
58
-
-
84921445757
-
Molecular basis for SMC rod formation and its dissolution upon DNA binding
-
Soh YM, Burmann F, Shin HC, Oda T et al. 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol Cell 57: 290–303.
-
(2015)
Mol Cell
, vol.57
, pp. 290-303
-
-
Soh, Y.M.1
Burmann, F.2
Shin, H.C.3
Oda, T.4
-
59
-
-
33750021276
-
Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
-
Gruber S, Arumugam P, Katou Y, Kuglitsch D et al. 2006. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127: 523–37.
-
(2006)
Cell
, vol.127
, pp. 523-537
-
-
Gruber, S.1
Arumugam, P.2
Katou, Y.3
Kuglitsch, D.4
-
60
-
-
80455173885
-
The Rad50 coiled-coil domain is indispensable for Mre11 complex functions
-
Hohl M, Kwon Y, Galvan SM, Xue X et al. 2011. The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nat Struct Mol Biol 18: 1124–31.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 1124-1131
-
-
Hohl, M.1
Kwon, Y.2
Galvan, S.M.3
Xue, X.4
-
61
-
-
79953803622
-
ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair
-
Williams GJ, Williams RS, Williams JS, Moncalian G et al. 2011. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat Struct Mol Biol 18: 423–31.
-
(2011)
Nat Struct Mol Biol
, vol.18
, pp. 423-431
-
-
Williams, G.J.1
Williams, R.S.2
Williams, J.S.3
Moncalian, G.4
-
62
-
-
79953283489
-
The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair
-
Lammens K, Bemeleit DJ, Mockel C, Clausing E et al. 2011. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145: 54–66.
-
(2011)
Cell
, vol.145
, pp. 54-66
-
-
Lammens, K.1
Bemeleit, D.J.2
Mockel, C.3
Clausing, E.4
-
63
-
-
84855870632
-
ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex
-
Mockel C, Lammens K, Schele A, Hopfner KP. 2012. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res 40: 914–27.
-
(2012)
Nucleic Acids Res
, vol.40
, pp. 914-927
-
-
Mockel, C.1
Lammens, K.2
Schele, A.3
Hopfner, K.P.4
-
64
-
-
79956301873
-
Crystal structure of the Mre11-Rad50-ATPgammaS complex: understanding the interplay between Mre11 and Rad50
-
Lim HS, Kim JS, Park YB, Gwon GH et al. 2011. Crystal structure of the Mre11-Rad50-ATPgammaS complex: understanding the interplay between Mre11 and Rad50. Genes Dev 25: 1091–104.
-
(2011)
Genes Dev
, vol.25
, pp. 1091-1104
-
-
Lim, H.S.1
Kim, J.S.2
Park, Y.B.3
Gwon, G.H.4
-
65
-
-
84924910336
-
Interdependence of the rad50 hook and globular domain functions
-
Hohl M, Kochanczyk T, Tous C, Aguilera A et al. 2015. Interdependence of the rad50 hook and globular domain functions. Mol Cell 57: 479–91.
-
(2015)
Mol Cell
, vol.57
, pp. 479-491
-
-
Hohl, M.1
Kochanczyk, T.2
Tous, C.3
Aguilera, A.4
-
66
-
-
84942342645
-
Functional analysis of the bacteriophage T4 rad50 homolog (gp46) coiled-coil domain
-
Barfoot T, Herdendorf TJ, Behning BR, Stohr BA et al. 2015. Functional analysis of the bacteriophage T4 rad50 homolog (gp46) coiled-coil domain. J Biol Chem 290: 23905–15.
-
(2015)
J Biol Chem
, vol.290
, pp. 23905-23915
-
-
Barfoot, T.1
Herdendorf, T.J.2
Behning, B.R.3
Stohr, B.A.4
-
67
-
-
84949779756
-
Force generation by skelmuscle is controlled by mechanosensing in myosin filaments
-
Linari M, Brunello E, Reconditi M, Fusi L et al. 2015. Force generation by skelmuscle is controlled by mechanosensing in myosin filaments. Nature 528: 276–9.
-
(2015)
Nature
, vol.528
, pp. 276-279
-
-
Linari, M.1
Brunello, E.2
Reconditi, M.3
Fusi, L.4
-
68
-
-
84953339920
-
How dynein and dynactin transport cargos: a structural perspective
-
Carter AP, Diamant AG, Urnavicius L. 2016. How dynein and dynactin transport cargos: a structural perspective. Curr Opin Struct Biol 37: 62–70.
-
(2016)
Curr Opin Struct Biol
, vol.37
, pp. 62-70
-
-
Carter, A.P.1
Diamant, A.G.2
Urnavicius, L.3
-
69
-
-
84925533369
-
Structure of human cytoplasmic dynein-2 primed for its power stroke
-
Schmidt H, Zalyte R, Urnavicius L, Carter AP. 2015. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518: 435–8.
-
(2015)
Nature
, vol.518
, pp. 435-438
-
-
Schmidt, H.1
Zalyte, R.2
Urnavicius, L.3
Carter, A.P.4
-
70
-
-
84910052449
-
Allosteric communication in the dynein motor domain
-
Bhabha G, Cheng HC, Zhang N, Moeller A et al. 2014. Allosteric communication in the dynein motor domain. Cell 159: 857–68.
-
(2014)
Cell
, vol.159
, pp. 857-868
-
-
Bhabha, G.1
Cheng, H.C.2
Zhang, N.3
Moeller, A.4
-
71
-
-
84866438004
-
Structural basis for microtubule binding and release by dynein
-
Redwine WB, Hernandez-Lopez R, Zou S, Huang J et al. 2012. Structural basis for microtubule binding and release by dynein. Science 337: 1532–6.
-
(2012)
Science
, vol.337
, pp. 1532-1536
-
-
Redwine, W.B.1
Hernandez-Lopez, R.2
Zou, S.3
Huang, J.4
-
73
-
-
84920118416
-
Structure of the entire stalk region of the Dynein motor domain
-
Nishikawa Y, Oyama T, Kamiya N, Kon T et al. 2014. Structure of the entire stalk region of the Dynein motor domain. J Mol Biol 426: 3232–45.
-
(2014)
J Mol Biol
, vol.426
, pp. 3232-3245
-
-
Nishikawa, Y.1
Oyama, T.2
Kamiya, N.3
Kon, T.4
-
74
-
-
84921713912
-
A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation
-
Uchimura S, Fujii T, Takazaki H, Ayukawa R et al. 2015. A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J Cell Biol 208: 211–22.
-
(2015)
J Cell Biol
, vol.208
, pp. 211-222
-
-
Uchimura, S.1
Fujii, T.2
Takazaki, H.3
Ayukawa, R.4
-
75
-
-
84876330295
-
Crystal clear insights into how the dynein motor moves
-
Carter AP. 2013. Crystal clear insights into how the dynein motor moves. J Cell Sci 126: 705–13.
-
(2013)
J Cell Sci
, vol.126
, pp. 705-713
-
-
Carter, A.P.1
-
76
-
-
84949656634
-
Structural change in the dynein stalk region associated with two different affinities for the microtubule
-
Nishikawa Y, Inatomi M, Iwasaki H, Kurisu G. 2016. Structural change in the dynein stalk region associated with two different affinities for the microtubule. J Mol Biol 428: 1886–96.
-
(2016)
J Mol Biol
, vol.428
, pp. 1886-1896
-
-
Nishikawa, Y.1
Inatomi, M.2
Iwasaki, H.3
Kurisu, G.4
-
77
-
-
0029989974
-
Crystal structure of the kinesin motor domain reveals a structural similarity to myosin
-
Kull FJ, Sablin EP, Lau R, Fletterick RJ et al. 1996. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380: 550–5.
-
(1996)
Nature
, vol.380
, pp. 550-555
-
-
Kull, F.J.1
Sablin, E.P.2
Lau, R.3
Fletterick, R.J.4
-
78
-
-
80051633233
-
The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
-
Kaan HY, Hackney DD, Kozielski F. 2011. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333: 883–5.
-
(2011)
Science
, vol.333
, pp. 883-885
-
-
Kaan, H.Y.1
Hackney, D.D.2
Kozielski, F.3
-
79
-
-
0031471243
-
The crystal structure of dimeric kinesin and implications for microtubule-dependent motility
-
Kozielski F, Sack S, Marx A, Thormahlen M et al. 1997. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91: 985–94.
-
(1997)
Cell
, vol.91
, pp. 985-994
-
-
Kozielski, F.1
Sack, S.2
Marx, A.3
Thormahlen, M.4
-
80
-
-
84881396280
-
Structure of a kinesin-tubulin complex and implications for kinesin motility
-
Gigant B, Wang W, Dreier B, Jiang Q et al. 2013. Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 20: 1001–7.
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 1001-1007
-
-
Gigant, B.1
Wang, W.2
Dreier, B.3
Jiang, Q.4
-
81
-
-
33750456180
-
The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy
-
Kerssemakers J, Howard J, Hess H, Diez S. 2006. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc Natl Acad Sci USA 103: 15812–7.
-
(2006)
Proc Natl Acad Sci USA
, vol.103
, pp. 15812-15817
-
-
Kerssemakers, J.1
Howard, J.2
Hess, H.3
Diez, S.4
-
82
-
-
0347623370
-
Kinesin moves by an asymmetric hand-over-hand mechanism
-
Asbury CL, Fehr AN, Block SM. 2003. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302: 2130–4.
-
(2003)
Science
, vol.302
, pp. 2130-2134
-
-
Asbury, C.L.1
Fehr, A.N.2
Block, S.M.3
-
85
-
-
84898420146
-
Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers
-
Scholey JE, Nithianantham S, Scholey JM, Al-Bassam J. 2014. Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. Elife 3: e02217.
-
(2014)
Elife
, vol.3
-
-
Scholey, J.E.1
Nithianantham, S.2
Scholey, J.M.3
Al-Bassam, J.4
-
86
-
-
0024151931
-
Complement evasion by bacteria and parasites
-
Joiner KA. 1988. Complement evasion by bacteria and parasites. Annu Rev Microbiol 42: 201–30.
-
(1988)
Annu Rev Microbiol
, vol.42
, pp. 201-230
-
-
Joiner, K.A.1
-
87
-
-
84926419267
-
A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide
-
Hagelueken G, Clarke BR, Huang H, Tuukkanen A et al. 2015. A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide. Nat Struct Mol Biol 22: 50–6.
-
(2015)
Nat Struct Mol Biol
, vol.22
, pp. 50-56
-
-
Hagelueken, G.1
Clarke, B.R.2
Huang, H.3
Tuukkanen, A.4
-
88
-
-
0030615004
-
P160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions
-
Ishizaki T, Naito M, Fujisawa K, Maekawa M et al. 1997. P160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404: 118–24.
-
(1997)
FEBS Lett
, vol.404
, pp. 118-124
-
-
Ishizaki, T.1
Naito, M.2
Fujisawa, K.3
Maekawa, M.4
-
89
-
-
0029789678
-
The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton
-
Leung T, Chen XQ, Manser E, Lim L. 1996. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16: 5313–27.
-
(1996)
Mol Cell Biol
, vol.16
, pp. 5313-5327
-
-
Leung, T.1
Chen, X.Q.2
Manser, E.3
Lim, L.4
-
90
-
-
84948807337
-
A molecular ruler regulates cytoskelremodelling by the Rho kinases
-
Truebestein L, Elsner DJ, Fuchs E, Leonard TA. 2015. A molecular ruler regulates cytoskelremodelling by the Rho kinases. Nat Commun 6: 10029.
-
(2015)
Nat Commun
, vol.6
, pp. 10029
-
-
Truebestein, L.1
Elsner, D.J.2
Fuchs, E.3
Leonard, T.A.4
-
91
-
-
78049288556
-
Structural basis of the constitutive activity of protein kinase CK2
-
Olsen BB, Guerra B, Niefind K, Issinger OG. 2010. Structural basis of the constitutive activity of protein kinase CK2. Methods Enzymol 484: 515–29.
-
(2010)
Methods Enzymol
, vol.484
, pp. 515-529
-
-
Olsen, B.B.1
Guerra, B.2
Niefind, K.3
Issinger, O.G.4
-
92
-
-
0041461882
-
Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin
-
Jiang G, Giannone G, Critchley DR, Fukumoto E et al. 2003. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424: 334–7.
-
(2003)
Nature
, vol.424
, pp. 334-337
-
-
Jiang, G.1
Giannone, G.2
Critchley, D.R.3
Fukumoto, E.4
-
93
-
-
59149094538
-
Stretching single talin rod molecules activates vinculin binding
-
del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P et al. 2009. Stretching single talin rod molecules activates vinculin binding. Science 323: 638–41.
-
(2009)
Science
, vol.323
, pp. 638-641
-
-
del Rio, A.1
Perez-Jimenez, R.2
Liu, R.3
Roca-Cusachs, P.4
-
94
-
-
84892586645
-
Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology
-
Mohan S, Das D, Bauer RJ, Heroux A et al. 2013. Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology. PLoS ONE 8: e81075.
-
(2013)
PLoS ONE
, vol.8
-
-
Mohan, S.1
Das, D.2
Bauer, R.J.3
Heroux, A.4
-
95
-
-
0033601076
-
Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice
-
Hildebrand JD, Soriano P. 1999. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99: 485–97.
-
(1999)
Cell
, vol.99
, pp. 485-497
-
-
Hildebrand, J.D.1
Soriano, P.2
-
96
-
-
44449176536
-
Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling
-
Nishimura T, Takeichi M. 2008. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135: 1493–502.
-
(2008)
Development
, vol.135
, pp. 1493-1502
-
-
Nishimura, T.1
Takeichi, M.2
-
97
-
-
84861716217
-
Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction
-
Mohan S, Rizaldy R, Das D, Bauer RJ et al. 2012. Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction. Mol Biol Cell 23: 2131–42.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 2131-2142
-
-
Mohan, S.1
Rizaldy, R.2
Das, D.3
Bauer, R.J.4
-
98
-
-
0036387280
-
Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450
-
Sillibourne JE, Milne DM, Takahashi M, Ono Y et al. 2002. Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450. J Mol Biol 322: 785–97.
-
(2002)
J Mol Biol
, vol.322
, pp. 785-797
-
-
Sillibourne, J.E.1
Milne, D.M.2
Takahashi, M.3
Ono, Y.4
-
99
-
-
84898070194
-
Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex
-
Chen C, Shi Z, Zhang W, Chen M et al. 2014. Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex. J Biol Chem 289: 9651–61.
-
(2014)
J Biol Chem
, vol.289
, pp. 9651-9661
-
-
Chen, C.1
Shi, Z.2
Zhang, W.3
Chen, M.4
-
100
-
-
84943138940
-
The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division
-
Jia M, Shan Z, Yang Y, Liu C et al. 2015. The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division. Nat Commun 6: 8381.
-
(2015)
Nat Commun
, vol.6
, pp. 8381
-
-
Jia, M.1
Shan, Z.2
Yang, Y.3
Liu, C.4
-
101
-
-
84907185231
-
Crystal structure of the cGMP-dependent protein kinase II leucine zipper and Rab11b protein complex reveals molecular details of G-kinase-specific interactions
-
Reger AS, Yang MP, Koide-Yoshida S, Guo E et al. 2014. Crystal structure of the cGMP-dependent protein kinase II leucine zipper and Rab11b protein complex reveals molecular details of G-kinase-specific interactions. J Biol Chem 289: 25393–403.
-
(2014)
J Biol Chem
, vol.289
, pp. 25393-25403
-
-
Reger, A.S.1
Yang, M.P.2
Koide-Yoshida, S.3
Guo, E.4
-
102
-
-
73649143080
-
Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing
-
De Marco V, Gillespie PJ, Li A, Karantzelis N et al. 2009. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc Natl Acad Sci USA 106: 19807–12.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 19807-19812
-
-
De Marco, V.1
Gillespie, P.J.2
Li, A.3
Karantzelis, N.4
-
103
-
-
70349995780
-
Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin
-
Yoshikawa A, Sato Y, Yamashita M, Mimura H et al. 2009. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett 583: 3317–22.
-
(2009)
FEBS Lett
, vol.583
, pp. 3317-3322
-
-
Yoshikawa, A.1
Sato, Y.2
Yamashita, M.3
Mimura, H.4
-
104
-
-
84878846239
-
Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein
-
Liu Y, Salter HK, Holding AN, Johnson CM et al. 2013. Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. Genes Dev 27: 1233–46.
-
(2013)
Genes Dev
, vol.27
, pp. 1233-1246
-
-
Liu, Y.1
Salter, H.K.2
Holding, A.N.3
Johnson, C.M.4
-
105
-
-
78549254832
-
Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation
-
Wang T, Darwin KH, Li H. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 17: 1352–7.
-
(2010)
Nat Struct Mol Biol
, vol.17
, pp. 1352-1357
-
-
Wang, T.1
Darwin, K.H.2
Li, H.3
-
106
-
-
52949140261
-
A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow
-
Tan I, Yong J, Dong JM, Lim L et al. 2008. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell 135: 123–36.
-
(2008)
Cell
, vol.135
, pp. 123-136
-
-
Tan, I.1
Yong, J.2
Dong, J.M.3
Lim, L.4
-
107
-
-
84864241713
-
Structure of the rigor actin-tropomyosin-myosin complex
-
Behrmann E, Muller M, Penczek PA, Mannherz HG et al. 2012. Structure of the rigor actin-tropomyosin-myosin complex. Cell 150: 327–38.
-
(2012)
Cell
, vol.150
, pp. 327-338
-
-
Behrmann, E.1
Muller, M.2
Penczek, P.A.3
Mannherz, H.G.4
-
109
-
-
84904381305
-
In vitro reconstitution of a highly processive recombinant human dynein complex
-
Schlager MA, Hoang HT, Urnavicius L, Bullock SL et al. 2014. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33: 1855–68.
-
(2014)
EMBO J
, vol.33
, pp. 1855-1868
-
-
Schlager, M.A.1
Hoang, H.T.2
Urnavicius, L.3
Bullock, S.L.4
-
110
-
-
84904381304
-
Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes
-
McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G et al. 2014. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345: 337–41.
-
(2014)
Science
, vol.345
, pp. 337-341
-
-
McKenney, R.J.1
Huynh, W.2
Tanenbaum, M.E.3
Bhabha, G.4
-
111
-
-
84963975601
-
The structure of the dynactin complex and its interaction with dynein
-
Urnavicius L, Zhang K, Diamant AG, Motz C et al. 2015. The structure of the dynactin complex and its interaction with dynein. Science 347: 1441–6.
-
(2015)
Science
, vol.347
, pp. 1441-1446
-
-
Urnavicius, L.1
Zhang, K.2
Diamant, A.G.3
Motz, C.4
-
114
-
-
72449167058
-
Crystal contacts as nature's docking solutions
-
Krissinel E. 2010. Crystal contacts as nature's docking solutions. J Comput Chem 31: 133–43.
-
(2010)
J Comput Chem
, vol.31
, pp. 133-143
-
-
Krissinel, E.1
-
115
-
-
0026356891
-
Predicting coiled coils from protein sequences
-
Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252: 1162–4.
-
(1991)
Science
, vol.252
, pp. 1162-1164
-
-
Lupas, A.1
Van Dyke, M.2
Stock, J.3
-
116
-
-
33846956769
-
A general amphipathic alpha-helical motif for sensing membrane curvature
-
Drin G, Casella JF, Gautier R, Boehmer T et al. 2007. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14: 138–46.
-
(2007)
Nat Struct Mol Biol
, vol.14
, pp. 138-146
-
-
Drin, G.1
Casella, J.F.2
Gautier, R.3
Boehmer, T.4
-
117
-
-
79960279832
-
Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding
-
Pranke IM, Morello V, Bigay J, Gibson K et al. 2011. Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194: 89–103.
-
(2011)
J Cell Biol
, vol.194
, pp. 89-103
-
-
Pranke, I.M.1
Morello, V.2
Bigay, J.3
Gibson, K.4
-
118
-
-
84921882527
-
Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210
-
Sato K, Roboti P, Mironov AA, Lowe M. 2015. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 26: 537–53.
-
(2015)
Mol Biol Cell
, vol.26
, pp. 537-553
-
-
Sato, K.1
Roboti, P.2
Mironov, A.A.3
Lowe, M.4
-
119
-
-
84861644030
-
Cdt1 throws kinetochore-microtubule attachments for a loop
-
Matson DR, Stukenberg PT. 2012. Cdt1 throws kinetochore-microtubule attachments for a loop. Nat Cell Biol 14: 561–3.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 561-563
-
-
Matson, D.R.1
Stukenberg, P.T.2
-
120
-
-
84906704724
-
The maintenance of chromosome structure: positioning and functioning of SMC complexes
-
Jeppsson K, Kanno T, Shirahige K, Sjogren C. 2014. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15: 601–14.
-
(2014)
Nat Rev Mol Cell Biol
, vol.15
, pp. 601-614
-
-
Jeppsson, K.1
Kanno, T.2
Shirahige, K.3
Sjogren, C.4
|