메뉴 건너뛰기




Volumn 38, Issue 9, 2016, Pages 903-916

Coiled-coils: The long and short of it

Author keywords

allostery; coiled coil; molecular ruler; molecular spacer; scaffold

Indexed keywords

COILED COIL PROTEIN; DNA; ENZYME; MOLECULAR MOTOR; MOLECULAR SCAFFOLD; PROTEIN; UNCLASSIFIED DRUG;

EID: 84983436060     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600062     Document Type: Article
Times cited : (209)

References (120)
  • 1
    • 84887620404 scopus 로고    scopus 로고
    • What is the total number of protein molecules per cell volume? A call to rethink some published values
    • Milo R. 2013. What is the total number of protein molecules per cell volume? A call to rethink some published values. BioEssays 35: 1050–5.
    • (2013) BioEssays , vol.35 , pp. 1050-1055
    • Milo, R.1
  • 2
    • 0001105482 scopus 로고
    • Is alpha-keratin a coiled coil
    • Crick FH. 1952. Is alpha-keratin a coiled coil? Nature 170: 882–3.
    • (1952) Nature , vol.170 , pp. 882-883
    • Crick, F.H.1
  • 3
    • 0019890491 scopus 로고
    • Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution
    • Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3A resolution. Nature 289: 366–73.
    • (1981) Nature , vol.289 , pp. 366-373
    • Wilson, I.A.1    Skehel, J.J.2    Wiley, D.C.3
  • 4
    • 0000747247 scopus 로고
    • The Fourier transform of a coiled-coil
    • Crick FH. 1953. The Fourier transform of a coiled-coil. Acta Crystallogr 6: 685–9.
    • (1953) Acta Crystallogr , vol.6 , pp. 685-689
    • Crick, F.H.1
  • 5
    • 0000920828 scopus 로고
    • The packing of α-helices: simple coiled-coils
    • Crick FH. 1953. The packing of α-helices: simple coiled-coils. Acta Crystallogr 6: 689–97.
    • (1953) Acta Crystallogr , vol.6 , pp. 689-697
    • Crick, F.H.1
  • 6
    • 79251600167 scopus 로고    scopus 로고
    • Probing designability via a generalized model of helical bundle geometry
    • Grigoryan G, Degrado WF. 2011. Probing designability via a generalized model of helical bundle geometry. J Mol Biol 405: 1079–100.
    • (2011) J Mol Biol , vol.405 , pp. 1079-1100
    • Grigoryan, G.1    Degrado, W.F.2
  • 7
    • 84911394089 scopus 로고    scopus 로고
    • CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies
    • Wood CW, Bruning M, Ibarra AA, Bartlett GJ et al. 2014. CCBuilder: an interactive web-based tool for building, designing and assessing coiled-coil protein assemblies. Bioinformatics 30: 3029–35.
    • (2014) Bioinformatics , vol.30 , pp. 3029-3035
    • Wood, C.W.1    Bruning, M.2    Ibarra, A.A.3    Bartlett, G.J.4
  • 8
    • 17444424974 scopus 로고    scopus 로고
    • The structure of alpha-helical coiled coils
    • Lupas AN, Gruber M. 2005. The structure of alpha-helical coiled coils. Adv Protein Chem 70: 37–78.
    • (2005) Adv Protein Chem , vol.70 , pp. 37-78
    • Lupas, A.N.1    Gruber, M.2
  • 9
    • 0034808117 scopus 로고    scopus 로고
    • Comparing function and structure between entire proteomes
    • Liu J, Rost B. 2001. Comparing function and structure between entire proteomes. Protein Sci 10: 1970–9.
    • (2001) Protein Sci , vol.10 , pp. 1970-1979
    • Liu, J.1    Rost, B.2
  • 10
    • 29244468267 scopus 로고    scopus 로고
    • Coiled-coil protein composition of 22 proteomes—differences and common themes in subcellular infrastructure and traffic control
    • Rose A, Schraegle SJ, Stahlberg EA, Meier I. 2005. Coiled-coil protein composition of 22 proteomes—differences and common themes in subcellular infrastructure and traffic control. BMC Evol Biol 5: 66.
    • (2005) BMC Evol Biol , vol.5 , pp. 66
    • Rose, A.1    Schraegle, S.J.2    Stahlberg, E.A.3    Meier, I.4
  • 11
    • 77957750326 scopus 로고    scopus 로고
    • The evolution and structure prediction of coiled coils across all genomes
    • Rackham OJ, Madera M, Armstrong CT, Vincent TL et al. 2010. The evolution and structure prediction of coiled coils across all genomes. J Mol Biol 403: 480–93.
    • (2010) J Mol Biol , vol.403 , pp. 480-493
    • Rackham, O.J.1    Madera, M.2    Armstrong, C.T.3    Vincent, T.L.4
  • 12
    • 0030624409 scopus 로고    scopus 로고
    • Coiled-coil assembly by peptides with non-heptad sequence motifs
    • Hicks MR, Holberton DV, Kowalczyk C, Woolfson DN. 1997. Coiled-coil assembly by peptides with non-heptad sequence motifs. Fold Des 2: 149–58.
    • (1997) Fold Des , vol.2 , pp. 149-158
    • Hicks, M.R.1    Holberton, D.V.2    Kowalczyk, C.3    Woolfson, D.N.4
  • 14
    • 17444433002 scopus 로고    scopus 로고
    • The design of coiled-coil structures and assemblies
    • Woolfson DN. 2005. The design of coiled-coil structures and assemblies. Adv Protein Chem 70: 79–112.
    • (2005) Adv Protein Chem , vol.70 , pp. 79-112
    • Woolfson, D.N.1
  • 15
    • 84908244550 scopus 로고    scopus 로고
    • Computational design of water-soluble alpha-helical barrels
    • Thomson AR, Wood CW, Burton AJ, Bartlett GJ et al. 2014. Computational design of water-soluble alpha-helical barrels. Science 346: 485–8.
    • (2014) Science , vol.346 , pp. 485-488
    • Thomson, A.R.1    Wood, C.W.2    Burton, A.J.3    Bartlett, G.J.4
  • 16
    • 84877588832 scopus 로고    scopus 로고
    • Self-assembling cages from coiled-coil peptide modules
    • Fletcher JM, Harniman RL, Barnes FR, Boyle AL et al. 2013. Self-assembling cages from coiled-coil peptide modules. Science 340: 595–9.
    • (2013) Science , vol.340 , pp. 595-599
    • Fletcher, J.M.1    Harniman, R.L.2    Barnes, F.R.3    Boyle, A.L.4
  • 17
    • 84879093742 scopus 로고    scopus 로고
    • Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments
    • Gradisar H, Bozic S, Doles T, Vengust D et al. 2013. Design of a single-chain polypeptide tetrahedron assembled from coiled-coil segments. Nat Chem Biol 9: 362–6.
    • (2013) Nat Chem Biol , vol.9 , pp. 362-366
    • Gradisar, H.1    Bozic, S.2    Doles, T.3    Vengust, D.4
  • 18
    • 84908235298 scopus 로고    scopus 로고
    • High thermodynamic stability of parametrically designed helical bundles
    • Huang PS, Oberdorfer G, Xu C, Pei XY et al. 2014. High thermodynamic stability of parametrically designed helical bundles. Science 346: 481–5.
    • (2014) Science , vol.346 , pp. 481-485
    • Huang, P.S.1    Oberdorfer, G.2    Xu, C.3    Pei, X.Y.4
  • 19
    • 84934964499 scopus 로고    scopus 로고
    • De novo protein design: how do we expand into the universe of possible protein structures
    • Woolfson DN, Bartlett GJ, Burton AJ, Heal JW et al. 2015. De novo protein design: how do we expand into the universe of possible protein structures? Curr Opin Struct Biol 33: 16–26.
    • (2015) Curr Opin Struct Biol , vol.33 , pp. 16-26
    • Woolfson, D.N.1    Bartlett, G.J.2    Burton, A.J.3    Heal, J.W.4
  • 20
    • 33747788700 scopus 로고    scopus 로고
    • Comparative analysis of coiled-coil prediction methods
    • Gruber M, Soding J, Lupas AN. 2006. Comparative analysis of coiled-coil prediction methods. J Struct Biol 155: 140–5.
    • (2006) J Struct Biol , vol.155 , pp. 140-145
    • Gruber, M.1    Soding, J.2    Lupas, A.N.3
  • 21
    • 58149119313 scopus 로고    scopus 로고
    • A periodic table of coiled-coil protein structures
    • Moutevelis E, Woolfson DN. 2009. A periodic table of coiled-coil protein structures. J Mol Biol 385: 726–32.
    • (2009) J Mol Biol , vol.385 , pp. 726-732
    • Moutevelis, E.1    Woolfson, D.N.2
  • 22
    • 58149185130 scopus 로고    scopus 로고
    • CC+: a relational database of coiled-coil structures
    • Testa OD, Moutevelis E, Woolfson DN. 2009. CC+: a relational database of coiled-coil structures. Nucleic Acids Res 37: D315–22.
    • (2009) Nucleic Acids Res , vol.37 , pp. D315-D322
    • Testa, O.D.1    Moutevelis, E.2    Woolfson, D.N.3
  • 23
    • 33846665911 scopus 로고    scopus 로고
    • A catalytic coiled coil: structural insights into the activation of the Rab GTPase Sec4p by Sec2p
    • Dong G, Medkova M, Novick P, Reinisch KM. 2007. A catalytic coiled coil: structural insights into the activation of the Rab GTPase Sec4p by Sec2p. Mol Cell 25: 455–62.
    • (2007) Mol Cell , vol.25 , pp. 455-462
    • Dong, G.1    Medkova, M.2    Novick, P.3    Reinisch, K.M.4
  • 25
    • 0026439779 scopus 로고
    • Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima
    • Engel AM, Cejka Z, Lupas A, Lottspeich F et al. 1992. Isolation and cloning of Omp alpha, a coiled-coil protein spanning the periplasmic space of the ancestral eubacterium Thermotoga maritima. EMBO J 11: 4369–78.
    • (1992) EMBO J , vol.11 , pp. 4369-4378
    • Engel, A.M.1    Cejka, Z.2    Lupas, A.3    Lottspeich, F.4
  • 26
    • 0028987628 scopus 로고
    • Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima
    • Lupas A, Muller S, Goldie K, Engel AM et al. 1995. Model structure of the Omp alpha rod, a parallel four-stranded coiled coil from the hyperthermophilic eubacterium Thermotoga maritima. J Mol Biol 248: 180–9.
    • (1995) J Mol Biol , vol.248 , pp. 180-189
    • Lupas, A.1    Muller, S.2    Goldie, K.3    Engel, A.M.4
  • 27
    • 0027382276 scopus 로고
    • A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated
    • Kilmartin JV, Dyos SL, Kershaw D, Finch JT. 1993. A spacer protein in the Saccharomyces cerevisiae spindle poly body whose transcript is cell cycle-regulated. J Cell Biol 123: 1175–84.
    • (1993) J Cell Biol , vol.123 , pp. 1175-1184
    • Kilmartin, J.V.1    Dyos, S.L.2    Kershaw, D.3    Finch, J.T.4
  • 28
    • 0027244942 scopus 로고
    • Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350kDa
    • Linstedt AD, Hauri HP. 1993. Giantin, a novel conserved Golgi membrane protein containing a cytoplasmic domain of at least 350kDa. Mol Biol Cell 4: 679–93.
    • (1993) Mol Biol Cell , vol.4 , pp. 679-693
    • Linstedt, A.D.1    Hauri, H.P.2
  • 29
    • 0034616420 scopus 로고    scopus 로고
    • Binding relationships of membrane tethering components. The giantin N terminus and the GM130N terminus compete for binding to the p115C terminus
    • Linstedt AD, Jesch SA, Mehta A, Lee TH et al. 2000. Binding relationships of membrane tethering components. The giantin N terminus and the GM130N terminus compete for binding to the p115C terminus. J Biol Chem 275: 10196–201.
    • (2000) J Biol Chem , vol.275 , pp. 10196-10201
    • Linstedt, A.D.1    Jesch, S.A.2    Mehta, A.3    Lee, T.H.4
  • 30
    • 0034723203 scopus 로고    scopus 로고
    • The amino-terminal domain of the golgi protein giantin interacts directly with the vesicle-tethering protein p115
    • Lesa GM, Seemann J, Shorter J, Vandekerckhove J et al. 2000. The amino-terminal domain of the golgi protein giantin interacts directly with the vesicle-tethering protein p115. J Biol Chem 275: 2831–6.
    • (2000) J Biol Chem , vol.275 , pp. 2831-2836
    • Lesa, G.M.1    Seemann, J.2    Shorter, J.3    Vandekerckhove, J.4
  • 31
    • 0032498855 scopus 로고    scopus 로고
    • A role for giantin in docking COPI vesicles to Golgi membranes
    • Sonnichsen B, Lowe M, Levine T, Jamsa E et al. 1998. A role for giantin in docking COPI vesicles to Golgi membranes. J Cell Biol 140: 1013–21.
    • (1998) J Cell Biol , vol.140 , pp. 1013-1021
    • Sonnichsen, B.1    Lowe, M.2    Levine, T.3    Jamsa, E.4
  • 32
    • 33646033471 scopus 로고    scopus 로고
    • Sequence divergence of coiled coils-structural rods, myosin filament packing, and the extraordinary conservation of cohesins
    • White GE, Erickson HP. 2006. Sequence divergence of coiled coils-structural rods, myosin filament packing, and the extraordinary conservation of cohesins. J Struct Biol 154: 111–21.
    • (2006) J Struct Biol , vol.154 , pp. 111-121
    • White, G.E.1    Erickson, H.P.2
  • 33
    • 85043368012 scopus 로고    scopus 로고
    • The Golgin family of coiled-coil tethering proteins
    • Witkos TM, Lowe M. 2015. The Golgin family of coiled-coil tethering proteins. Front Cell Dev Biol 3: 86.
    • (2015) Front Cell Dev Biol , vol.3 , pp. 86
    • Witkos, T.M.1    Lowe, M.2
  • 34
    • 13844317835 scopus 로고    scopus 로고
    • Golgin tethers define subpopulations of COPI vesicles
    • Malsam J, Satoh A, Pelletier L, Warren G. 2005. Golgin tethers define subpopulations of COPI vesicles. Science 307: 1095–8.
    • (2005) Science , vol.307 , pp. 1095-1098
    • Malsam, J.1    Satoh, A.2    Pelletier, L.3    Warren, G.4
  • 35
    • 84910104915 scopus 로고    scopus 로고
    • Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins
    • Wong M, Munro S. 2014. Membrane trafficking. The specificity of vesicle traffic to the Golgi is encoded in the golgin coiled-coil proteins. Science 346: 1256898.
    • (2014) Science , vol.346 , pp. 1256898
    • Wong, M.1    Munro, S.2
  • 36
    • 84930630268 scopus 로고    scopus 로고
    • GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations
    • Ishida R, Yamamoto A, Nakayama K, Sohda M et al. 2015. GM130 is a parallel tetramer with a flexible rod-like structure and N-terminally open (Y-shaped) and closed (I-shaped) conformations. FEBS J 282: 2232–44.
    • (2015) FEBS J , vol.282 , pp. 2232-2244
    • Ishida, R.1    Yamamoto, A.2    Nakayama, K.3    Sohda, M.4
  • 37
    • 84968796233 scopus 로고    scopus 로고
    • Protein flexibility is required for vesicle tethering at the Golgi
    • Cheung PY, Limouse C, Mabuchi H, Pfeffer SR. 2015. Protein flexibility is required for vesicle tethering at the Golgi. Elife 4.
    • (2015) Elife , vol.4
    • Cheung, P.Y.1    Limouse, C.2    Mabuchi, H.3    Pfeffer, S.R.4
  • 38
    • 17244363408 scopus 로고    scopus 로고
    • Molecular organization of the Ndc80 complex, an essential kinetochore component
    • Wei RR, Sorger PK, Harrison SC. 2005. Molecular organization of the Ndc80 complex, an essential kinetochore component. Proc Natl Acad Sci USA 102: 5363–7.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 5363-5367
    • Wei, R.R.1    Sorger, P.K.2    Harrison, S.C.3
  • 39
    • 43049146221 scopus 로고    scopus 로고
    • Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex
    • Ciferri C, Pasqualato S, Screpanti E, Varetti G et al. 2008. Implications for kinetochore-microtubule attachment from the structure of an engineered Ndc80 complex. Cell 133: 427–39.
    • (2008) Cell , vol.133 , pp. 427-439
    • Ciferri, C.1    Pasqualato, S.2    Screpanti, E.3    Varetti, G.4
  • 40
    • 84861602372 scopus 로고    scopus 로고
    • Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment
    • Varma D, Chandrasekaran S, Sundin LJ, Reidy KT et al. 2012. Recruitment of the human Cdt1 replication licensing protein by the loop domain of Hec1 is required for stable kinetochore-microtubule attachment. Nat Cell Biol 14: 593–603.
    • (2012) Nat Cell Biol , vol.14 , pp. 593-603
    • Varma, D.1    Chandrasekaran, S.2    Sundin, L.J.3    Reidy, K.T.4
  • 41
    • 84934439568 scopus 로고    scopus 로고
    • The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling
    • Aravamudhan P, Goldfarb AA, Joglekar AP. 2015. The kinetochore encodes a mechanical switch to disrupt spindle assembly checkpoint signalling. Nat Cell Biol 17: 868–79.
    • (2015) Nat Cell Biol , vol.17 , pp. 868-879
    • Aravamudhan, P.1    Goldfarb, A.A.2    Joglekar, A.P.3
  • 42
    • 84931034097 scopus 로고    scopus 로고
    • CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling
    • Hiruma Y, Sacristan C, Pachis ST, Adamopoulos A et al. 2015. CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science 348: 1264–7.
    • (2015) Science , vol.348 , pp. 1264-1267
    • Hiruma, Y.1    Sacristan, C.2    Pachis, S.T.3    Adamopoulos, A.4
  • 43
    • 84931098021 scopus 로고    scopus 로고
    • CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C
    • Ji Z, Gao H, Yu H. 2015. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science 348: 1260–4.
    • (2015) Science , vol.348 , pp. 1260-1264
    • Ji, Z.1    Gao, H.2    Yu, H.3
  • 44
    • 84860783506 scopus 로고    scopus 로고
    • Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface
    • Jeyaprakash AA, Santamaria A, Jayachandran U, Chan YW et al. 2012. Structural and functional organization of the Ska complex, a key component of the kinetochore-microtubule interface. Mol Cell 46: 274–86.
    • (2012) Mol Cell , vol.46 , pp. 274-286
    • Jeyaprakash, A.A.1    Santamaria, A.2    Jayachandran, U.3    Chan, Y.W.4
  • 45
    • 84867161119 scopus 로고    scopus 로고
    • Coiled-coil networking shapes cell molecular machinery
    • Wang Y, Zhang X, Zhang H, Lu Y et al. 2012. Coiled-coil networking shapes cell molecular machinery. Mol Biol Cell 23: 3911–22.
    • (2012) Mol Biol Cell , vol.23 , pp. 3911-3922
    • Wang, Y.1    Zhang, X.2    Zhang, H.3    Lu, Y.4
  • 46
    • 84905719833 scopus 로고    scopus 로고
    • NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane
    • Kotak S, Busso C, Gonczy P. 2014. NuMA interacts with phosphoinositides and links the mitotic spindle with the plasma membrane. EMBO J 33: 1815–30.
    • (2014) EMBO J , vol.33 , pp. 1815-1830
    • Kotak, S.1    Busso, C.2    Gonczy, P.3
  • 47
    • 84958568925 scopus 로고    scopus 로고
    • NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures
    • Seldin L, Muroyama A, Lechler T. 2016. NuMA-microtubule interactions are critical for spindle orientation and the morphogenesis of diverse epidermal structures. Elife 5.
    • (2016) Elife , vol.5
    • Seldin, L.1    Muroyama, A.2    Lechler, T.3
  • 48
    • 84903386058 scopus 로고    scopus 로고
    • Coiled-coil proteins facilitated the functional expansion of the centrosome
    • Kuhn M, Hyman AA, Beyer A. 2014. Coiled-coil proteins facilitated the functional expansion of the centrosome. PLoS Comput Biol 10: e1003657.
    • (2014) PLoS Comput Biol , vol.10
    • Kuhn, M.1    Hyman, A.A.2    Beyer, A.3
  • 49
    • 84869236675 scopus 로고    scopus 로고
    • SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly
    • Qiao R, Cabral G, Lettman MM, Dammermann A et al. 2012. SAS-6 coiled-coil structure and interaction with SAS-5 suggest a regulatory mechanism in C. elegans centriole assembly. EMBO J 31: 4334–47.
    • (2012) EMBO J , vol.31 , pp. 4334-4347
    • Qiao, R.1    Cabral, G.2    Lettman, M.M.3    Dammermann, A.4
  • 51
    • 35348893241 scopus 로고    scopus 로고
    • Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole
    • Hiraki M, Nakazawa Y, Kamiya R, Hirono M. 2007. Bld10p constitutes the cartwheel-spoke tip and stabilizes the 9-fold symmetry of the centriole. Curr Biol 17: 1778–83.
    • (2007) Curr Biol , vol.17 , pp. 1778-1783
    • Hiraki, M.1    Nakazawa, Y.2    Kamiya, R.3    Hirono, M.4
  • 52
    • 84871211229 scopus 로고    scopus 로고
    • Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces
    • Bayless BA, Giddings TH, Jr., Winey M, Pearson CG. 2012. Bld10/Cep135 stabilizes basal bodies to resist cilia-generated forces. Mol Biol Cell 23: 4820–32.
    • (2012) Mol Biol Cell , vol.23 , pp. 4820-4832
    • Bayless, B.A.1    Giddings, T.H.2    Winey, M.3    Pearson, C.G.4
  • 53
    • 84856411124 scopus 로고    scopus 로고
    • Three-dimensional structure of basal body triplet revealed by electron cryo-tomography
    • Li S, Fernandez JJ, Marshall WF, Agard DA. 2012. Three-dimensional structure of basal body triplet revealed by electron cryo-tomography. EMBO J 31: 552–62.
    • (2012) EMBO J , vol.31 , pp. 552-562
    • Li, S.1    Fernandez, J.J.2    Marshall, W.F.3    Agard, D.A.4
  • 54
    • 84883829412 scopus 로고    scopus 로고
    • Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry
    • Guichard P, Hachet V, Majubu N, Neves A et al. 2013. Native architecture of the centriole proximal region reveals features underlying its 9-fold radial symmetry. Curr Biol 23: 1620–8.
    • (2013) Curr Biol , vol.23 , pp. 1620-1628
    • Guichard, P.1    Hachet, V.2    Majubu, N.3    Neves, A.4
  • 55
    • 14744267674 scopus 로고    scopus 로고
    • Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications
    • Kim JS, DeGiovanni A, Jancarik J, Adams PD et al. 2005. Crystal structure of DNA sequence specificity subunit of a type I restriction-modification enzyme and its functional implications. Proc Natl Acad Sci USA 102: 3248–53.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 3248-3253
    • Kim, J.S.1    DeGiovanni, A.2    Jancarik, J.3    Adams, P.D.4
  • 56
    • 0043192605 scopus 로고    scopus 로고
    • Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR
    • Changela A, Chen K, Xue Y, Holschen J et al. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383–7.
    • (2003) Science , vol.301 , pp. 1383-1387
    • Changela, A.1    Chen, K.2    Xue, Y.3    Holschen, J.4
  • 57
    • 84939832273 scopus 로고    scopus 로고
    • TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter
    • Philips SJ, Canalizo-Hernandez M, Yildirim I, Schatz GC et al. 2015. TRANSCRIPTION. Allosteric transcriptional regulation via changes in the overall topology of the core promoter. Science 349: 877–81.
    • (2015) Science , vol.349 , pp. 877-881
    • Philips, S.J.1    Canalizo-Hernandez, M.2    Yildirim, I.3    Schatz, G.C.4
  • 58
    • 84921445757 scopus 로고    scopus 로고
    • Molecular basis for SMC rod formation and its dissolution upon DNA binding
    • Soh YM, Burmann F, Shin HC, Oda T et al. 2015. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol Cell 57: 290–303.
    • (2015) Mol Cell , vol.57 , pp. 290-303
    • Soh, Y.M.1    Burmann, F.2    Shin, H.C.3    Oda, T.4
  • 59
    • 33750021276 scopus 로고    scopus 로고
    • Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
    • Gruber S, Arumugam P, Katou Y, Kuglitsch D et al. 2006. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127: 523–37.
    • (2006) Cell , vol.127 , pp. 523-537
    • Gruber, S.1    Arumugam, P.2    Katou, Y.3    Kuglitsch, D.4
  • 60
    • 80455173885 scopus 로고    scopus 로고
    • The Rad50 coiled-coil domain is indispensable for Mre11 complex functions
    • Hohl M, Kwon Y, Galvan SM, Xue X et al. 2011. The Rad50 coiled-coil domain is indispensable for Mre11 complex functions. Nat Struct Mol Biol 18: 1124–31.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 1124-1131
    • Hohl, M.1    Kwon, Y.2    Galvan, S.M.3    Xue, X.4
  • 61
    • 79953803622 scopus 로고    scopus 로고
    • ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair
    • Williams GJ, Williams RS, Williams JS, Moncalian G et al. 2011. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat Struct Mol Biol 18: 423–31.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 423-431
    • Williams, G.J.1    Williams, R.S.2    Williams, J.S.3    Moncalian, G.4
  • 62
    • 79953283489 scopus 로고    scopus 로고
    • The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair
    • Lammens K, Bemeleit DJ, Mockel C, Clausing E et al. 2011. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145: 54–66.
    • (2011) Cell , vol.145 , pp. 54-66
    • Lammens, K.1    Bemeleit, D.J.2    Mockel, C.3    Clausing, E.4
  • 63
    • 84855870632 scopus 로고    scopus 로고
    • ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex
    • Mockel C, Lammens K, Schele A, Hopfner KP. 2012. ATP driven structural changes of the bacterial Mre11:Rad50 catalytic head complex. Nucleic Acids Res 40: 914–27.
    • (2012) Nucleic Acids Res , vol.40 , pp. 914-927
    • Mockel, C.1    Lammens, K.2    Schele, A.3    Hopfner, K.P.4
  • 64
    • 79956301873 scopus 로고    scopus 로고
    • Crystal structure of the Mre11-Rad50-ATPgammaS complex: understanding the interplay between Mre11 and Rad50
    • Lim HS, Kim JS, Park YB, Gwon GH et al. 2011. Crystal structure of the Mre11-Rad50-ATPgammaS complex: understanding the interplay between Mre11 and Rad50. Genes Dev 25: 1091–104.
    • (2011) Genes Dev , vol.25 , pp. 1091-1104
    • Lim, H.S.1    Kim, J.S.2    Park, Y.B.3    Gwon, G.H.4
  • 65
    • 84924910336 scopus 로고    scopus 로고
    • Interdependence of the rad50 hook and globular domain functions
    • Hohl M, Kochanczyk T, Tous C, Aguilera A et al. 2015. Interdependence of the rad50 hook and globular domain functions. Mol Cell 57: 479–91.
    • (2015) Mol Cell , vol.57 , pp. 479-491
    • Hohl, M.1    Kochanczyk, T.2    Tous, C.3    Aguilera, A.4
  • 66
    • 84942342645 scopus 로고    scopus 로고
    • Functional analysis of the bacteriophage T4 rad50 homolog (gp46) coiled-coil domain
    • Barfoot T, Herdendorf TJ, Behning BR, Stohr BA et al. 2015. Functional analysis of the bacteriophage T4 rad50 homolog (gp46) coiled-coil domain. J Biol Chem 290: 23905–15.
    • (2015) J Biol Chem , vol.290 , pp. 23905-23915
    • Barfoot, T.1    Herdendorf, T.J.2    Behning, B.R.3    Stohr, B.A.4
  • 67
    • 84949779756 scopus 로고    scopus 로고
    • Force generation by skelmuscle is controlled by mechanosensing in myosin filaments
    • Linari M, Brunello E, Reconditi M, Fusi L et al. 2015. Force generation by skelmuscle is controlled by mechanosensing in myosin filaments. Nature 528: 276–9.
    • (2015) Nature , vol.528 , pp. 276-279
    • Linari, M.1    Brunello, E.2    Reconditi, M.3    Fusi, L.4
  • 68
    • 84953339920 scopus 로고    scopus 로고
    • How dynein and dynactin transport cargos: a structural perspective
    • Carter AP, Diamant AG, Urnavicius L. 2016. How dynein and dynactin transport cargos: a structural perspective. Curr Opin Struct Biol 37: 62–70.
    • (2016) Curr Opin Struct Biol , vol.37 , pp. 62-70
    • Carter, A.P.1    Diamant, A.G.2    Urnavicius, L.3
  • 69
    • 84925533369 scopus 로고    scopus 로고
    • Structure of human cytoplasmic dynein-2 primed for its power stroke
    • Schmidt H, Zalyte R, Urnavicius L, Carter AP. 2015. Structure of human cytoplasmic dynein-2 primed for its power stroke. Nature 518: 435–8.
    • (2015) Nature , vol.518 , pp. 435-438
    • Schmidt, H.1    Zalyte, R.2    Urnavicius, L.3    Carter, A.P.4
  • 70
    • 84910052449 scopus 로고    scopus 로고
    • Allosteric communication in the dynein motor domain
    • Bhabha G, Cheng HC, Zhang N, Moeller A et al. 2014. Allosteric communication in the dynein motor domain. Cell 159: 857–68.
    • (2014) Cell , vol.159 , pp. 857-868
    • Bhabha, G.1    Cheng, H.C.2    Zhang, N.3    Moeller, A.4
  • 71
    • 84866438004 scopus 로고    scopus 로고
    • Structural basis for microtubule binding and release by dynein
    • Redwine WB, Hernandez-Lopez R, Zou S, Huang J et al. 2012. Structural basis for microtubule binding and release by dynein. Science 337: 1532–6.
    • (2012) Science , vol.337 , pp. 1532-1536
    • Redwine, W.B.1    Hernandez-Lopez, R.2    Zou, S.3    Huang, J.4
  • 72
    • 58149229093 scopus 로고    scopus 로고
    • Structure and functional role of dynein's microtubule-binding domain
    • Carter AP, Garbarino JE, Wilson-Kubalek EM, Shipley WE et al. 2008. Structure and functional role of dynein's microtubule-binding domain. Science 322: 1691–5.
    • (2008) Science , vol.322 , pp. 1691-1695
    • Carter, A.P.1    Garbarino, J.E.2    Wilson-Kubalek, E.M.3    Shipley, W.E.4
  • 73
    • 84920118416 scopus 로고    scopus 로고
    • Structure of the entire stalk region of the Dynein motor domain
    • Nishikawa Y, Oyama T, Kamiya N, Kon T et al. 2014. Structure of the entire stalk region of the Dynein motor domain. J Mol Biol 426: 3232–45.
    • (2014) J Mol Biol , vol.426 , pp. 3232-3245
    • Nishikawa, Y.1    Oyama, T.2    Kamiya, N.3    Kon, T.4
  • 74
    • 84921713912 scopus 로고    scopus 로고
    • A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation
    • Uchimura S, Fujii T, Takazaki H, Ayukawa R et al. 2015. A flipped ion pair at the dynein-microtubule interface is critical for dynein motility and ATPase activation. J Cell Biol 208: 211–22.
    • (2015) J Cell Biol , vol.208 , pp. 211-222
    • Uchimura, S.1    Fujii, T.2    Takazaki, H.3    Ayukawa, R.4
  • 75
    • 84876330295 scopus 로고    scopus 로고
    • Crystal clear insights into how the dynein motor moves
    • Carter AP. 2013. Crystal clear insights into how the dynein motor moves. J Cell Sci 126: 705–13.
    • (2013) J Cell Sci , vol.126 , pp. 705-713
    • Carter, A.P.1
  • 76
    • 84949656634 scopus 로고    scopus 로고
    • Structural change in the dynein stalk region associated with two different affinities for the microtubule
    • Nishikawa Y, Inatomi M, Iwasaki H, Kurisu G. 2016. Structural change in the dynein stalk region associated with two different affinities for the microtubule. J Mol Biol 428: 1886–96.
    • (2016) J Mol Biol , vol.428 , pp. 1886-1896
    • Nishikawa, Y.1    Inatomi, M.2    Iwasaki, H.3    Kurisu, G.4
  • 77
    • 0029989974 scopus 로고    scopus 로고
    • Crystal structure of the kinesin motor domain reveals a structural similarity to myosin
    • Kull FJ, Sablin EP, Lau R, Fletterick RJ et al. 1996. Crystal structure of the kinesin motor domain reveals a structural similarity to myosin. Nature 380: 550–5.
    • (1996) Nature , vol.380 , pp. 550-555
    • Kull, F.J.1    Sablin, E.P.2    Lau, R.3    Fletterick, R.J.4
  • 78
    • 80051633233 scopus 로고    scopus 로고
    • The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition
    • Kaan HY, Hackney DD, Kozielski F. 2011. The structure of the kinesin-1 motor-tail complex reveals the mechanism of autoinhibition. Science 333: 883–5.
    • (2011) Science , vol.333 , pp. 883-885
    • Kaan, H.Y.1    Hackney, D.D.2    Kozielski, F.3
  • 79
    • 0031471243 scopus 로고    scopus 로고
    • The crystal structure of dimeric kinesin and implications for microtubule-dependent motility
    • Kozielski F, Sack S, Marx A, Thormahlen M et al. 1997. The crystal structure of dimeric kinesin and implications for microtubule-dependent motility. Cell 91: 985–94.
    • (1997) Cell , vol.91 , pp. 985-994
    • Kozielski, F.1    Sack, S.2    Marx, A.3    Thormahlen, M.4
  • 80
    • 84881396280 scopus 로고    scopus 로고
    • Structure of a kinesin-tubulin complex and implications for kinesin motility
    • Gigant B, Wang W, Dreier B, Jiang Q et al. 2013. Structure of a kinesin-tubulin complex and implications for kinesin motility. Nat Struct Mol Biol 20: 1001–7.
    • (2013) Nat Struct Mol Biol , vol.20 , pp. 1001-1007
    • Gigant, B.1    Wang, W.2    Dreier, B.3    Jiang, Q.4
  • 81
    • 33750456180 scopus 로고    scopus 로고
    • The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy
    • Kerssemakers J, Howard J, Hess H, Diez S. 2006. The distance that kinesin-1 holds its cargo from the microtubule surface measured by fluorescence interference contrast microscopy. Proc Natl Acad Sci USA 103: 15812–7.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 15812-15817
    • Kerssemakers, J.1    Howard, J.2    Hess, H.3    Diez, S.4
  • 82
    • 0347623370 scopus 로고    scopus 로고
    • Kinesin moves by an asymmetric hand-over-hand mechanism
    • Asbury CL, Fehr AN, Block SM. 2003. Kinesin moves by an asymmetric hand-over-hand mechanism. Science 302: 2130–4.
    • (2003) Science , vol.302 , pp. 2130-2134
    • Asbury, C.L.1    Fehr, A.N.2    Block, S.M.3
  • 85
    • 84898420146 scopus 로고    scopus 로고
    • Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers
    • Scholey JE, Nithianantham S, Scholey JM, Al-Bassam J. 2014. Structural basis for the assembly of the mitotic motor Kinesin-5 into bipolar tetramers. Elife 3: e02217.
    • (2014) Elife , vol.3
    • Scholey, J.E.1    Nithianantham, S.2    Scholey, J.M.3    Al-Bassam, J.4
  • 86
    • 0024151931 scopus 로고
    • Complement evasion by bacteria and parasites
    • Joiner KA. 1988. Complement evasion by bacteria and parasites. Annu Rev Microbiol 42: 201–30.
    • (1988) Annu Rev Microbiol , vol.42 , pp. 201-230
    • Joiner, K.A.1
  • 87
    • 84926419267 scopus 로고    scopus 로고
    • A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide
    • Hagelueken G, Clarke BR, Huang H, Tuukkanen A et al. 2015. A coiled-coil domain acts as a molecular ruler to regulate O-antigen chain length in lipopolysaccharide. Nat Struct Mol Biol 22: 50–6.
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 50-56
    • Hagelueken, G.1    Clarke, B.R.2    Huang, H.3    Tuukkanen, A.4
  • 88
    • 0030615004 scopus 로고    scopus 로고
    • P160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions
    • Ishizaki T, Naito M, Fujisawa K, Maekawa M et al. 1997. P160ROCK, a Rho-associated coiled-coil forming protein kinase, works downstream of Rho and induces focal adhesions. FEBS Lett 404: 118–24.
    • (1997) FEBS Lett , vol.404 , pp. 118-124
    • Ishizaki, T.1    Naito, M.2    Fujisawa, K.3    Maekawa, M.4
  • 89
    • 0029789678 scopus 로고    scopus 로고
    • The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton
    • Leung T, Chen XQ, Manser E, Lim L. 1996. The p160 RhoA-binding kinase ROK alpha is a member of a kinase family and is involved in the reorganization of the cytoskeleton. Mol Cell Biol 16: 5313–27.
    • (1996) Mol Cell Biol , vol.16 , pp. 5313-5327
    • Leung, T.1    Chen, X.Q.2    Manser, E.3    Lim, L.4
  • 90
    • 84948807337 scopus 로고    scopus 로고
    • A molecular ruler regulates cytoskelremodelling by the Rho kinases
    • Truebestein L, Elsner DJ, Fuchs E, Leonard TA. 2015. A molecular ruler regulates cytoskelremodelling by the Rho kinases. Nat Commun 6: 10029.
    • (2015) Nat Commun , vol.6 , pp. 10029
    • Truebestein, L.1    Elsner, D.J.2    Fuchs, E.3    Leonard, T.A.4
  • 91
    • 78049288556 scopus 로고    scopus 로고
    • Structural basis of the constitutive activity of protein kinase CK2
    • Olsen BB, Guerra B, Niefind K, Issinger OG. 2010. Structural basis of the constitutive activity of protein kinase CK2. Methods Enzymol 484: 515–29.
    • (2010) Methods Enzymol , vol.484 , pp. 515-529
    • Olsen, B.B.1    Guerra, B.2    Niefind, K.3    Issinger, O.G.4
  • 92
    • 0041461882 scopus 로고    scopus 로고
    • Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin
    • Jiang G, Giannone G, Critchley DR, Fukumoto E et al. 2003. Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424: 334–7.
    • (2003) Nature , vol.424 , pp. 334-337
    • Jiang, G.1    Giannone, G.2    Critchley, D.R.3    Fukumoto, E.4
  • 93
    • 59149094538 scopus 로고    scopus 로고
    • Stretching single talin rod molecules activates vinculin binding
    • del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P et al. 2009. Stretching single talin rod molecules activates vinculin binding. Science 323: 638–41.
    • (2009) Science , vol.323 , pp. 638-641
    • del Rio, A.1    Perez-Jimenez, R.2    Liu, R.3    Roca-Cusachs, P.4
  • 94
    • 84892586645 scopus 로고    scopus 로고
    • Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology
    • Mohan S, Das D, Bauer RJ, Heroux A et al. 2013. Structure of a highly conserved domain of rock1 required for shroom-mediated regulation of cell morphology. PLoS ONE 8: e81075.
    • (2013) PLoS ONE , vol.8
    • Mohan, S.1    Das, D.2    Bauer, R.J.3    Heroux, A.4
  • 95
    • 0033601076 scopus 로고    scopus 로고
    • Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice
    • Hildebrand JD, Soriano P. 1999. Shroom, a PDZ domain-containing actin-binding protein, is required for neural tube morphogenesis in mice. Cell 99: 485–97.
    • (1999) Cell , vol.99 , pp. 485-497
    • Hildebrand, J.D.1    Soriano, P.2
  • 96
    • 44449176536 scopus 로고    scopus 로고
    • Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling
    • Nishimura T, Takeichi M. 2008. Shroom3-mediated recruitment of Rho kinases to the apical cell junctions regulates epithelial and neuroepithelial planar remodeling. Development 135: 1493–502.
    • (2008) Development , vol.135 , pp. 1493-1502
    • Nishimura, T.1    Takeichi, M.2
  • 97
    • 84861716217 scopus 로고    scopus 로고
    • Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction
    • Mohan S, Rizaldy R, Das D, Bauer RJ et al. 2012. Structure of Shroom domain 2 reveals a three-segmented coiled-coil required for dimerization, Rock binding, and apical constriction. Mol Biol Cell 23: 2131–42.
    • (2012) Mol Biol Cell , vol.23 , pp. 2131-2142
    • Mohan, S.1    Rizaldy, R.2    Das, D.3    Bauer, R.J.4
  • 98
    • 0036387280 scopus 로고    scopus 로고
    • Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450
    • Sillibourne JE, Milne DM, Takahashi M, Ono Y et al. 2002. Centrosomal anchoring of the protein kinase CK1delta mediated by attachment to the large, coiled-coil scaffolding protein CG-NAP/AKAP450. J Mol Biol 322: 785–97.
    • (2002) J Mol Biol , vol.322 , pp. 785-797
    • Sillibourne, J.E.1    Milne, D.M.2    Takahashi, M.3    Ono, Y.4
  • 99
    • 84898070194 scopus 로고    scopus 로고
    • Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex
    • Chen C, Shi Z, Zhang W, Chen M et al. 2014. Striatins contain a noncanonical coiled coil that binds protein phosphatase 2A A subunit to form a 2:2 heterotetrameric core of striatin-interacting phosphatase and kinase (STRIPAK) complex. J Biol Chem 289: 9651–61.
    • (2014) J Biol Chem , vol.289 , pp. 9651-9661
    • Chen, C.1    Shi, Z.2    Zhang, W.3    Chen, M.4
  • 100
    • 84943138940 scopus 로고    scopus 로고
    • The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division
    • Jia M, Shan Z, Yang Y, Liu C et al. 2015. The structural basis of Miranda-mediated Staufen localization during Drosophila neuroblast asymmetric division. Nat Commun 6: 8381.
    • (2015) Nat Commun , vol.6 , pp. 8381
    • Jia, M.1    Shan, Z.2    Yang, Y.3    Liu, C.4
  • 101
    • 84907185231 scopus 로고    scopus 로고
    • Crystal structure of the cGMP-dependent protein kinase II leucine zipper and Rab11b protein complex reveals molecular details of G-kinase-specific interactions
    • Reger AS, Yang MP, Koide-Yoshida S, Guo E et al. 2014. Crystal structure of the cGMP-dependent protein kinase II leucine zipper and Rab11b protein complex reveals molecular details of G-kinase-specific interactions. J Biol Chem 289: 25393–403.
    • (2014) J Biol Chem , vol.289 , pp. 25393-25403
    • Reger, A.S.1    Yang, M.P.2    Koide-Yoshida, S.3    Guo, E.4
  • 102
    • 73649143080 scopus 로고    scopus 로고
    • Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing
    • De Marco V, Gillespie PJ, Li A, Karantzelis N et al. 2009. Quaternary structure of the human Cdt1-Geminin complex regulates DNA replication licensing. Proc Natl Acad Sci USA 106: 19807–12.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 19807-19812
    • De Marco, V.1    Gillespie, P.J.2    Li, A.3    Karantzelis, N.4
  • 103
    • 70349995780 scopus 로고    scopus 로고
    • Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin
    • Yoshikawa A, Sato Y, Yamashita M, Mimura H et al. 2009. Crystal structure of the NEMO ubiquitin-binding domain in complex with Lys 63-linked di-ubiquitin. FEBS Lett 583: 3317–22.
    • (2009) FEBS Lett , vol.583 , pp. 3317-3322
    • Yoshikawa, A.1    Sato, Y.2    Yamashita, M.3    Mimura, H.4
  • 104
    • 84878846239 scopus 로고    scopus 로고
    • Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein
    • Liu Y, Salter HK, Holding AN, Johnson CM et al. 2013. Bicaudal-D uses a parallel, homodimeric coiled coil with heterotypic registry to coordinate recruitment of cargos to dynein. Genes Dev 27: 1233–46.
    • (2013) Genes Dev , vol.27 , pp. 1233-1246
    • Liu, Y.1    Salter, H.K.2    Holding, A.N.3    Johnson, C.M.4
  • 105
    • 78549254832 scopus 로고    scopus 로고
    • Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation
    • Wang T, Darwin KH, Li H. 2010. Binding-induced folding of prokaryotic ubiquitin-like protein on the Mycobacterium proteasomal ATPase targets substrates for degradation. Nat Struct Mol Biol 17: 1352–7.
    • (2010) Nat Struct Mol Biol , vol.17 , pp. 1352-1357
    • Wang, T.1    Darwin, K.H.2    Li, H.3
  • 106
    • 52949140261 scopus 로고    scopus 로고
    • A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow
    • Tan I, Yong J, Dong JM, Lim L et al. 2008. A tripartite complex containing MRCK modulates lamellar actomyosin retrograde flow. Cell 135: 123–36.
    • (2008) Cell , vol.135 , pp. 123-136
    • Tan, I.1    Yong, J.2    Dong, J.M.3    Lim, L.4
  • 107
    • 84864241713 scopus 로고    scopus 로고
    • Structure of the rigor actin-tropomyosin-myosin complex
    • Behrmann E, Muller M, Penczek PA, Mannherz HG et al. 2012. Structure of the rigor actin-tropomyosin-myosin complex. Cell 150: 327–38.
    • (2012) Cell , vol.150 , pp. 327-338
    • Behrmann, E.1    Muller, M.2    Penczek, P.A.3    Mannherz, H.G.4
  • 109
    • 84904381305 scopus 로고    scopus 로고
    • In vitro reconstitution of a highly processive recombinant human dynein complex
    • Schlager MA, Hoang HT, Urnavicius L, Bullock SL et al. 2014. In vitro reconstitution of a highly processive recombinant human dynein complex. EMBO J 33: 1855–68.
    • (2014) EMBO J , vol.33 , pp. 1855-1868
    • Schlager, M.A.1    Hoang, H.T.2    Urnavicius, L.3    Bullock, S.L.4
  • 110
    • 84904381304 scopus 로고    scopus 로고
    • Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes
    • McKenney RJ, Huynh W, Tanenbaum ME, Bhabha G et al. 2014. Activation of cytoplasmic dynein motility by dynactin-cargo adapter complexes. Science 345: 337–41.
    • (2014) Science , vol.345 , pp. 337-341
    • McKenney, R.J.1    Huynh, W.2    Tanenbaum, M.E.3    Bhabha, G.4
  • 111
    • 84963975601 scopus 로고    scopus 로고
    • The structure of the dynactin complex and its interaction with dynein
    • Urnavicius L, Zhang K, Diamant AG, Motz C et al. 2015. The structure of the dynactin complex and its interaction with dynein. Science 347: 1441–6.
    • (2015) Science , vol.347 , pp. 1441-1446
    • Urnavicius, L.1    Zhang, K.2    Diamant, A.G.3    Motz, C.4
  • 112
    • 84926416626 scopus 로고    scopus 로고
    • Structural organization of the dynein-dynactin complex bound to microtubules
    • Chowdhury S, Ketcham SA, Schroer TA, Lander GC. 2015. Structural organization of the dynein-dynactin complex bound to microtubules. Nat Struct Mol Biol 22: 345–7.
    • (2015) Nat Struct Mol Biol , vol.22 , pp. 345-347
    • Chowdhury, S.1    Ketcham, S.A.2    Schroer, T.A.3    Lander, G.C.4
  • 114
    • 72449167058 scopus 로고    scopus 로고
    • Crystal contacts as nature's docking solutions
    • Krissinel E. 2010. Crystal contacts as nature's docking solutions. J Comput Chem 31: 133–43.
    • (2010) J Comput Chem , vol.31 , pp. 133-143
    • Krissinel, E.1
  • 115
    • 0026356891 scopus 로고
    • Predicting coiled coils from protein sequences
    • Lupas A, Van Dyke M, Stock J. 1991. Predicting coiled coils from protein sequences. Science 252: 1162–4.
    • (1991) Science , vol.252 , pp. 1162-1164
    • Lupas, A.1    Van Dyke, M.2    Stock, J.3
  • 116
    • 33846956769 scopus 로고    scopus 로고
    • A general amphipathic alpha-helical motif for sensing membrane curvature
    • Drin G, Casella JF, Gautier R, Boehmer T et al. 2007. A general amphipathic alpha-helical motif for sensing membrane curvature. Nat Struct Mol Biol 14: 138–46.
    • (2007) Nat Struct Mol Biol , vol.14 , pp. 138-146
    • Drin, G.1    Casella, J.F.2    Gautier, R.3    Boehmer, T.4
  • 117
    • 79960279832 scopus 로고    scopus 로고
    • Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding
    • Pranke IM, Morello V, Bigay J, Gibson K et al. 2011. Alpha-synuclein and ALPS motifs are membrane curvature sensors whose contrasting chemistry mediates selective vesicle binding. J Cell Biol 194: 89–103.
    • (2011) J Cell Biol , vol.194 , pp. 89-103
    • Pranke, I.M.1    Morello, V.2    Bigay, J.3    Gibson, K.4
  • 118
    • 84921882527 scopus 로고    scopus 로고
    • Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210
    • Sato K, Roboti P, Mironov AA, Lowe M. 2015. Coupling of vesicle tethering and Rab binding is required for in vivo functionality of the golgin GMAP-210. Mol Biol Cell 26: 537–53.
    • (2015) Mol Biol Cell , vol.26 , pp. 537-553
    • Sato, K.1    Roboti, P.2    Mironov, A.A.3    Lowe, M.4
  • 119
    • 84861644030 scopus 로고    scopus 로고
    • Cdt1 throws kinetochore-microtubule attachments for a loop
    • Matson DR, Stukenberg PT. 2012. Cdt1 throws kinetochore-microtubule attachments for a loop. Nat Cell Biol 14: 561–3.
    • (2012) Nat Cell Biol , vol.14 , pp. 561-563
    • Matson, D.R.1    Stukenberg, P.T.2
  • 120
    • 84906704724 scopus 로고    scopus 로고
    • The maintenance of chromosome structure: positioning and functioning of SMC complexes
    • Jeppsson K, Kanno T, Shirahige K, Sjogren C. 2014. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat Rev Mol Cell Biol 15: 601–14.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , pp. 601-614
    • Jeppsson, K.1    Kanno, T.2    Shirahige, K.3    Sjogren, C.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.