-
1
-
-
0037434697
-
Dynein structure and power stroke
-
Burgess, S.A., M.L. Walker, H. Sakakibara, P.J. Knight, and K. Oiwa 2003. Dynein structure and power stroke. Nature. 421:715-718. http://dx.doi.org/10.1038/nature01377
-
(2003)
Nature
, vol.421
, pp. 715-718
-
-
Burgess, S.A.1
Walker, M.L.2
Sakakibara, H.3
Knight, P.J.4
Oiwa, K.5
-
2
-
-
58149229093
-
Structure and functional role of dynein's microtubule-binding domain
-
Carter, A.P., J.E. Garbarino, E.M. Wilson-Kubalek, W.E. Shipley, C. Cho, R.A. Milligan, R.D. Vale, and I.R. Gibbons 2008. Structure and functional role of dynein's microtubule-binding domain. Science. 322:1691-1695. http://dx.doi.org/10.1126/science.1164424
-
(2008)
Science
, vol.322
, pp. 1691-1695
-
-
Carter, A.P.1
Garbarino, J.E.2
Wilson-Kubalek, E.M.3
Shipley, W.E.4
Cho, C.5
Milligan, R.A.6
Vale, R.D.7
Gibbons, I.R.8
-
3
-
-
79952254224
-
Crystal structure of the dynein motor domain
-
Carter, A.P., C. Cho, L. Jin, and R.D. Vale. 2011. Crystal structure of the dynein motor domain. Science. 331:1159-1165. http://dx.doi.org/10.1126/science.1202393
-
(2011)
Science
, vol.331
, pp. 1159-1165
-
-
Carter, A.P.1
Cho, C.2
Jin, L.3
Vale, R.D.4
-
4
-
-
0020016614
-
Microtubule structure in Caenorhabditis elegans neurons
-
Chalfie, M. 1982. Microtubule structure in Caenorhabditis elegans neurons. Cold Spring Harb. Symp. Quant. Biol. 46:255-261. http://dx.doi.org/10.1101/SQB.1982.046.01.028
-
(1982)
Cold Spring Harb. Symp. Quant. Biol.
, vol.46
, pp. 255-261
-
-
Chalfie, M.1
-
5
-
-
0024536382
-
Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons
-
Chalfie, M., and M. Au. 1989. Genetic control of differentiation of the Caenorhabditis elegans touch receptor neurons. Science. 243:1027-1033. http://dx.doi.org/10.1126/science.2646709
-
(1989)
Science
, vol.243
, pp. 1027-1033
-
-
Chalfie, M.1
Au, M.2
-
6
-
-
0025814877
-
New data on the microtubule surface lattice
-
Chrétien, D., and R.H. Wade. 1991. New data on the microtubule surface lattice. Biol. Cell. 71:161-174. http://dx.doi.org/10.1016/0248-4900(91)90062-R
-
(1991)
Biol. Cell
, vol.71
, pp. 161-174
-
-
Chrétien, D.1
Wade, R.H.2
-
7
-
-
0027248960
-
Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae
-
Davis, A., C.R. Sage, L. Wilson, and K.W. Farrell. 1993. Purification and biochemical characterization of tubulin from the budding yeast Saccharomyces cerevisiae. Biochemistry. 32:8823-8835. http://dx.doi.org/10.1021/bi00085a013
-
(1993)
Biochemistry
, vol.32
, pp. 8823-8835
-
-
Davis, A.1
Sage, C.R.2
Wilson, L.3
Farrell, K.W.4
-
8
-
-
84855828496
-
Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains
-
DeWitt, M.A., A.Y. Chang, P.A. Combs, and A. Yildiz. 2012. Cytoplasmic dynein moves through uncoordinated stepping of the AAA+ ring domains. Science. 335:221-225. http://dx.doi.org/10.1126/science.1215804
-
(2012)
Science
, vol.335
, pp. 221-225
-
-
DeWitt, M.A.1
Chang, A.Y.2
Combs, P.A.3
Yildiz, A.4
-
9
-
-
33845305513
-
The iterative helical real space reconstruction method: surmounting the problems posed by real polymers
-
Egelman, E.H. 2007. The iterative helical real space reconstruction method: surmounting the problems posed by real polymers. J. Struct. Biol. 157:83-94. http://dx.doi.org/10.1016/j.jsb.2006.05.015
-
(2007)
J. Struct. Biol.
, vol.157
, pp. 83-94
-
-
Egelman, E.H.1
-
10
-
-
13244281317
-
Coot: model-building tools for molecular graphics
-
Emsley, P., and K. Cowtan. 2004. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60:2126-2132. http://dx.doi.org/10.1107/S0907444904019158
-
(2004)
Acta Crystallogr. D Biol. Crystallogr.
, vol.60
, pp. 2126-2132
-
-
Emsley, P.1
Cowtan, K.2
-
11
-
-
0027359388
-
Cytoplasmic dynein is required for normal nuclear segregation in yeast
-
Eshel, D., L.A. Urrestarazu, S. Vissers, J.C. Jauniaux, J.C. van Vliet-Reedijk, R.J. Planta, and I.R. Gibbons. 1993. Cytoplasmic dynein is required for normal nuclear segregation in yeast. Proc. Natl. Acad. Sci. USA. 90:11172-11176. http://dx.doi.org/10.1073/pnas.90.23.11172
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 11172-11176
-
-
Eshel, D.1
Urrestarazu, L.A.2
Vissers, S.3
Jauniaux, J.C.4
van Vliet-Reedijk, J.C.5
Planta, R.J.6
Gibbons, I.R.7
-
12
-
-
77957996302
-
Direct visualization of secondary structures of F-actin by electron cryomicroscopy
-
Fujii, T., A.H. Iwane, T. Yanagida, and K. Namba. 2010. Direct visualization of secondary structures of F-actin by electron cryomicroscopy. Nature. 467:724-728. http://dx.doi.org/10.1038/nature09372
-
(2010)
Nature
, vol.467
, pp. 724-728
-
-
Fujii, T.1
Iwane, A.H.2
Yanagida, T.3
Namba, K.4
-
13
-
-
0019781934
-
Cilia and flagella of eukaryotes
-
Gibbons, I.R. 1981. Cilia and flagella of eukaryotes. J. Cell Biol. 91:107s-124s. http://dx.doi.org/10.1083/jcb.91.3.107s
-
(1981)
J. Cell Biol.
, vol.91
, pp. 107s-124s
-
-
Gibbons, I.R.1
-
14
-
-
21244479076
-
The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk
-
Gibbons, I.R., J.E. Garbarino, C.E. Tan, S.L. Reck-Peterson, R.D. Vale, and A.P. Carter. 2005. The affinity of the dynein microtubule-binding domain is modulated by the conformation of its coiled-coil stalk. J. Biol. Chem. 280:23960-23965. http://dx.doi.org/10.1074/jbc.M501636200
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 23960-23965
-
-
Gibbons, I.R.1
Garbarino, J.E.2
Tan, C.E.3
Reck-Peterson, S.L.4
Vale, R.D.5
Carter, A.P.6
-
15
-
-
0037975662
-
Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin
-
Gupta, M.L. Jr., C.J. Bode, G.I. Georg, and R.H. Himes. 2003. Understanding tubulin-Taxol interactions: mutations that impart Taxol binding to yeast tubulin. Proc. Natl. Acad. Sci. USA. 100:6394-6397. http://dx.doi.org/10.1073/pnas.1131967100
-
(2003)
Proc. Natl. Acad. Sci. USA
, vol.100
, pp. 6394-6397
-
-
Gupta, M.L.1
Bode, C.J.2
Georg, G.I.3
Himes, R.H.4
-
16
-
-
0025104145
-
Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay
-
Harada, Y., K. Sakurada, T. Aoki, D.D. Thomas, and T. Yanagida. 1990. Mechanochemical coupling in actomyosin energy transduction studied by in vitro movement assay. J. Mol. Biol. 216:49-68. http://dx.doi.org/10.1016/S0022-2836(05)80060-9
-
(1990)
J. Mol. Biol.
, vol.216
, pp. 49-68
-
-
Harada, Y.1
Sakurada, K.2
Aoki, T.3
Thomas, D.D.4
Yanagida, T.5
-
17
-
-
33751534800
-
The dynein family at a glance
-
Höök, P., and R.B. Vallee. 2006. The dynein family at a glance. J. Cell Sci. 119:4369-4371. http://dx.doi.org/10.1242/jcs.03176
-
(2006)
J. Cell Sci.
, vol.119
, pp. 4369-4371
-
-
Höök, P.1
Vallee, R.B.2
-
18
-
-
0025762199
-
Preparation of modified tubulins
-
Hyman, A., D. Drechsel, D. Kellogg, S. Salser, K. Sawin, P. Steffen, L. Wordeman, and T. Mitchison. 1991. Preparation of modified tubulins. Methods Enzymol. 196:478-485. http://dx.doi.org/10.1016/0076-6879(91)96041-O
-
(1991)
Methods Enzymol.
, vol.196
, pp. 478-485
-
-
Hyman, A.1
Drechsel, D.2
Kellogg, D.3
Salser, S.4
Sawin, K.5
Steffen, P.6
Wordeman, L.7
Mitchison, T.8
-
19
-
-
33846037932
-
Mutations in α-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans
-
Keays, D.A., G. Tian, K. Poirier, G.J. Huang, C. Siebold, J. Cleak, P.L. Oliver, M. Fray, R.J. Harvey, Z. Molnár, et al. 2007. Mutations in α-tubulin cause abnormal neuronal migration in mice and lissencephaly in humans. Cell. 128:45-57. http://dx.doi.org/10.1016/j.cell.2006.12.017
-
(2007)
Cell
, vol.128
, pp. 45-57
-
-
Keays, D.A.1
Tian, G.2
Poirier, K.3
Huang, G.J.4
Siebold, C.5
Cleak, J.6
Oliver, P.L.7
Fray, M.8
Harvey, R.J.9
Molnár, Z.10
-
20
-
-
0022497304
-
The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate
-
Kodama, T., K. Fukui, and K. Kometani. 1986. The initial phosphate burst in ATP hydrolysis by myosin and subfragment-1 as studied by a modified malachite green method for determination of inorganic phosphate. J. Biochem. 99:1465-1472.
-
(1986)
J. Biochem.
, vol.99
, pp. 1465-1472
-
-
Kodama, T.1
Fukui, K.2
Kometani, K.3
-
21
-
-
22444450774
-
ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein
-
Kon, T., T. Mogami, R. Ohkura, M. Nishiura, and K. Sutoh. 2005. ATP hydrolysis cycle-dependent tail motions in cytoplasmic dynein. Nat. Struct. Mol. Biol. 12:513-519. http://dx.doi.org/10.1038/nsmb930
-
(2005)
Nat. Struct. Mol. Biol.
, vol.12
, pp. 513-519
-
-
Kon, T.1
Mogami, T.2
Ohkura, R.3
Nishiura, M.4
Sutoh, K.5
-
22
-
-
62049083505
-
Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding
-
Kon, T., K. Imamula, A.J. Roberts, R. Ohkura, P.J. Knight, I.R. Gibbons, S.A. Burgess, and K. Sutoh. 2009a. Helix sliding in the stalk coiled coil of dynein couples ATPase and microtubule binding. Nat. Struct. Mol. Biol. 16:325-333. http://dx.doi.org/10.1038/nsmb.1555
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 325-333
-
-
Kon, T.1
Imamula, K.2
Roberts, A.J.3
Ohkura, R.4
Knight, P.J.5
Gibbons, I.R.6
Burgess, S.A.7
Sutoh, K.8
-
23
-
-
77956623682
-
Protein engineering approaches to study the dynein mechanism using a Dictyostelium expression system
-
Kon, T., T. Shima, and K. Sutoh. 2009b. Protein engineering approaches to study the dynein mechanism using a Dictyostelium expression system. Methods Cell Biol. 92:65-82. http://dx.doi.org/10.1016/S0091-679X(08)92005-7
-
(2009)
Methods Cell Biol.
, vol.92
, pp. 65-82
-
-
Kon, T.1
Shima, T.2
Sutoh, K.3
-
24
-
-
84859918439
-
The 2.8 Å crystal structure of the dynein motor domain
-
Kon, T., T. Oyama, R. Shimo-Kon, K. Imamula, T. Shima, K. Sutoh, and G. Kurisu. 2012. The 2.8 Å crystal structure of the dynein motor domain. Nature. 484:345-350. http://dx.doi.org/10.1038/nature10955
-
(2012)
Nature
, vol.484
, pp. 345-350
-
-
Kon, T.1
Oyama, T.2
Shimo-Kon, R.3
Imamula, K.4
Shima, T.5
Sutoh, K.6
Kurisu, G.7
-
25
-
-
0034001336
-
Functional elements within the dynein microtubule-binding domain
-
Koonce, M.P., and I. Tikhonenko. 2000. Functional elements within the dynein microtubule-binding domain. Mol. Biol. Cell. 11:523-529. http://dx.doi.org/10.1091/mbc.11.2.523
-
(2000)
Mol. Biol. Cell
, vol.11
, pp. 523-529
-
-
Koonce, M.P.1
Tikhonenko, I.2
-
26
-
-
0027453547
-
Disruption of mitotic spindle orientation in a yeast dynein mutant
-
Li, Y.Y., E. Yeh, T. Hays, and K. Bloom. 1993. Disruption of mitotic spindle orientation in a yeast dynein mutant. Proc. Natl. Acad. Sci. USA. 90:10096-10100. http://dx.doi.org/10.1073/pnas.90.21.10096
-
(1993)
Proc. Natl. Acad. Sci. USA
, vol.90
, pp. 10096-10100
-
-
Li, Y.Y.1
Yeh, E.2
Hays, T.3
Bloom, K.4
-
27
-
-
0035834521
-
Refined structure of α β-tubulin at 3.5 Å resolution
-
Löwe, J., H. Li, K.H. Downing, and E. Nogales. 2001. Refined structure of α β-tubulin at 3.5 Å resolution. J. Mol. Biol. 313:1045-1057. http://dx.doi.org/10.1006/jmbi.2001.5077
-
(2001)
J. Mol. Biol.
, vol.313
, pp. 1045-1057
-
-
Löwe, J.1
Li, H.2
Downing, K.H.3
Nogales, E.4
-
28
-
-
0028865659
-
Mechanism of microtubule kinesin ATPase
-
Ma, Y.Z., and E.W. Taylor. 1995. Mechanism of microtubule kinesin ATPase. Biochemistry. 34:13242-13251. http://dx.doi.org/10.1021/bi00040a040
-
(1995)
Biochemistry
, vol.34
, pp. 13242-13251
-
-
Ma, Y.Z.1
Taylor, E.W.2
-
29
-
-
9244232349
-
Molecular motors: strategies to get along
-
Mallik, R., and S.P. Gross. 2004. Molecular motors: strategies to get along. Curr. Biol. 14:R971-R982. http://dx.doi.org/10.1016/j.cub.2004.10.046
-
(2004)
Curr. Biol.
, vol.14
, pp. R971-R982
-
-
Mallik, R.1
Gross, S.P.2
-
30
-
-
33748781976
-
Tools for integrated sequence-structure analysis with UCSF Chimera
-
Meng, E.C., E.F. Pettersen, G.S. Couch, C.C. Huang, and T.E. Ferrin. 2006. Tools for integrated sequence-structure analysis with UCSF Chimera. BMC Bioinformatics. 7:339. http://dx.doi.org/10.1186/1471-2105-7-339
-
(2006)
BMC Bioinformatics
, vol.7
, pp. 339
-
-
Meng, E.C.1
Pettersen, E.F.2
Couch, G.S.3
Huang, C.C.4
Ferrin, T.E.5
-
31
-
-
0038441501
-
Accurate determination of local defocus and specimen tilt in electron microscopy
-
Mindell, J.A., and N. Grigorieff. 2003. Accurate determination of local defocus and specimen tilt in electron microscopy. J. Struct. Biol. 142:334-347. http://dx.doi.org/10.1016/S1047-8477(03)00069-8
-
(2003)
J. Struct. Biol.
, vol.142
, pp. 334-347
-
-
Mindell, J.A.1
Grigorieff, N.2
-
32
-
-
77951558010
-
One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions
-
Minoura, I., E. Katayama, K. Sekimoto, and E. Muto. 2010. One-dimensional Brownian motion of charged nanoparticles along microtubules: a model system for weak binding interactions. Biophys. J. 98:1589-1597. http://dx.doi.org/10.1016/j.bpj.2009.12.4323
-
(2010)
Biophys. J.
, vol.98
, pp. 1589-1597
-
-
Minoura, I.1
Katayama, E.2
Sekimoto, K.3
Muto, E.4
-
33
-
-
84886285756
-
Overexpression, purification, and functional analysis of recombinant human tubulin dimer
-
Minoura, I., Y. Hachikubo, Y. Yamakita, H. Takazaki, R. Ayukawa, S. Uchimura, and E. Muto. 2013. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587:3450-3455. http://dx.doi.org/10.1016/j.febslet.2013.08.032
-
(2013)
FEBS Lett.
, vol.587
, pp. 3450-3455
-
-
Minoura, I.1
Hachikubo, Y.2
Yamakita, Y.3
Takazaki, H.4
Ayukawa, R.5
Uchimura, S.6
Muto, E.7
-
34
-
-
3342957252
-
Dynein and kinesin share an overlapping microtubule-binding site
-
Mizuno, N., S. Toba, M. Edamatsu, J. Watai-Nishii, N. Hirokawa, Y.Y. Toyoshima, and M. Kikkawa. 2004. Dynein and kinesin share an overlapping microtubule-binding site. EMBO J. 23:2459-2467. http://dx.doi.org/10.1038/sj.emboj.7600240
-
(2004)
EMBO J
, vol.23
, pp. 2459-2467
-
-
Mizuno, N.1
Toba, S.2
Edamatsu, M.3
Watai-Nishii, J.4
Hirokawa, N.5
Toyoshima, Y.Y.6
Kikkawa, M.7
-
35
-
-
84920118416
-
Structure of the entire stalk region of the Dynein motor domain
-
Nishikawa, Y., T. Oyama, N. Kamiya, T. Kon, Y.Y. Toyoshima, H. Nakamura, and G. Kurisu. 2014. Structure of the entire stalk region of the Dynein motor domain. J. Mol. Biol. 426:3232-3245. http://dx.doi.org/10.1016/j.jmb.2014.06.023
-
(2014)
J. Mol. Biol.
, vol.426
, pp. 3232-3245
-
-
Nishikawa, Y.1
Oyama, T.2
Kamiya, N.3
Kon, T.4
Toyoshima, Y.Y.5
Nakamura, H.6
Kurisu, G.7
-
36
-
-
79954448219
-
C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation
-
Numata, N., T. Shima, R. Ohkura, T. Kon, and K. Sutoh. 2011. C-sequence of the Dictyostelium cytoplasmic dynein participates in processivity modulation. FEBS Lett. 585:1185-1190. http://dx.doi.org/10.1016/j.febslet.2011.03.036
-
(2011)
FEBS Lett.
, vol.585
, pp. 1185-1190
-
-
Numata, N.1
Shima, T.2
Ohkura, R.3
Kon, T.4
Sutoh, K.5
-
37
-
-
0029157332
-
Two microtubuleassociated proteins required for anaphase spindle movement in Saccharomyces cerevisiae
-
(published erratum appears in J. Cell Biol. 1995. 131:561)
-
Pellman, D., M. Bagget, Y.H. Tu, G.R. Fink, and H. Tu. 1995. Two microtubuleassociated proteins required for anaphase spindle movement in Saccharomyces cerevisiae. J. Cell Biol. 130:1373-1385. (published erratum appears in J. Cell Biol. 1995. 131:561) http://dx.doi.org/10.1083/jcb.130.6.1373
-
(1995)
J. Cell Biol.
, vol.130
, pp. 1373-1385
-
-
Pellman, D.1
Bagget, M.2
Tu, Y.H.3
Fink, G.R.4
Tu, H.5
-
38
-
-
84856710211
-
Dynein achieves processive motion using both stochastic and coordinated stepping
-
Qiu, W., N.D. Derr, B.S. Goodman, E. Villa, D. Wu, W. Shih, and S.L. Reck-Peterson. 2012. Dynein achieves processive motion using both stochastic and coordinated stepping. Nat. Struct. Mol. Biol. 19:193-200. http://dx.doi.org/10.1038/nsmb.2205
-
(2012)
Nat. Struct. Mol. Biol.
, vol.19
, pp. 193-200
-
-
Qiu, W.1
Derr, N.D.2
Goodman, B.S.3
Villa, E.4
Wu, D.5
Shih, W.6
Reck-Peterson, S.L.7
-
39
-
-
84866438004
-
Structural basis for microtubule binding and release by dynein
-
Redwine, W.B., R. Hernández-López, S. Zou, J. Huang, S.L. Reck-Peterson, and A.E. Leschziner. 2012. Structural basis for microtubule binding and release by dynein. Science. 337:1532-1536. http://dx.doi.org/10.1126/science.1224151
-
(2012)
Science
, vol.337
, pp. 1532-1536
-
-
Redwine, W.B.1
Hernández-López, R.2
Zou, S.3
Huang, J.4
Reck-Peterson, S.L.5
Leschziner, A.E.6
-
40
-
-
84886304872
-
Functions and mechanics of dynein motor proteins
-
Roberts, A.J., T. Kon, P.J. Knight, K. Sutoh, and S.A. Burgess. 2013. Functions and mechanics of dynein motor proteins. Nat. Rev. Mol. Cell Biol. 14:713-726. http://dx.doi.org/10.1038/nrm3667
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 713-726
-
-
Roberts, A.J.1
Kon, T.2
Knight, P.J.3
Sutoh, K.4
Burgess, S.A.5
-
41
-
-
0022575638
-
End-to-end annealing of microtubules in vitro
-
Rothwell, S.W., W.A. Grasser, and D.B. Murphy. 1986. End-to-end annealing of microtubules in vitro. J. Cell Biol. 102:619-627. http://dx.doi.org/10.1083/jcb.102.2.619
-
(1986)
J. Cell Biol.
, vol.102
, pp. 619-627
-
-
Rothwell, S.W.1
Grasser, W.A.2
Murphy, D.B.3
-
42
-
-
0028890381
-
Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation
-
Saunders, W.S., D. Koshland, D. Eshel, I.R. Gibbons, and M.A. Hoyt. 1995. Saccharomyces cerevisiae kinesin- and dynein-related proteins required for anaphase chromosome segregation. J. Cell Biol. 128:617-624. http://dx.doi.org/10.1083/jcb.128.4.617
-
(1995)
J. Cell Biol.
, vol.128
, pp. 617-624
-
-
Saunders, W.S.1
Koshland, D.2
Eshel, D.3
Gibbons, I.R.4
Hoyt, M.A.5
-
43
-
-
33749263141
-
Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor
-
Shima, T., K. Imamula, T. Kon, R. Ohkura, and K. Sutoh. 2006. Head-head coordination is required for the processive motion of cytoplasmic dynein, an AAA+ molecular motor. J. Struct. Biol. 156:182-189. http://dx.doi.org/10.1016/j.jsb.2006.03.014
-
(2006)
J. Struct. Biol.
, vol.156
, pp. 182-189
-
-
Shima, T.1
Imamula, K.2
Kon, T.3
Ohkura, R.4
Sutoh, K.5
-
44
-
-
34248200882
-
The beginning of kinesin's forcegenerating cycle visualized at 9-Å resolution
-
Sindelar, C.V., and K.H. Downing. 2007. The beginning of kinesin's forcegenerating cycle visualized at 9-Å resolution. J. Cell Biol. 177:377-385. http://dx.doi.org/10.1083/jcb.200612090
-
(2007)
J. Cell Biol.
, vol.177
, pp. 377-385
-
-
Sindelar, C.V.1
Downing, K.H.2
-
45
-
-
0034722373
-
Engineering the processive run length of the kinesin motor
-
Thorn, K.S., J.A. Ubersax, and R.D. Vale. 2000. Engineering the processive run length of the kinesin motor. J. Cell Biol. 151:1093-1100. http://dx.doi.org/10.1083/jcb.151.5.1093
-
(2000)
J. Cell Biol.
, vol.151
, pp. 1093-1100
-
-
Thorn, K.S.1
Ubersax, J.A.2
Vale, R.D.3
-
46
-
-
38949092920
-
Protein structure fitting and refinement guided by cryo-EM density
-
Topf, M., K. Lasker, B. Webb, H. Wolfson, W. Chiu, and A. Sali. 2008. Protein structure fitting and refinement guided by cryo-EM density. Structure. 16:295-307. http://dx.doi.org/10.1016/j.str.2007.11.016
-
(2008)
Structure
, vol.16
, pp. 295-307
-
-
Topf, M.1
Lasker, K.2
Webb, B.3
Wolfson, H.4
Chiu, W.5
Sali, A.6
-
47
-
-
33845684194
-
Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin
-
Uchimura, S., Y. Oguchi, M. Katsuki, T. Usui, H. Osada, J. Nikawa, S. Ishiwata, and E. Muto. 2006. Identification of a strong binding site for kinesin on the microtubule using mutant analysis of tubulin. EMBO J. 25:5932-5941. http://dx.doi.org/10.1038/sj.emboj.7601442
-
(2006)
EMBO J
, vol.25
, pp. 5932-5941
-
-
Uchimura, S.1
Oguchi, Y.2
Katsuki, M.3
Usui, T.4
Osada, H.5
Nikawa, J.6
Ishiwata, S.7
Muto, E.8
-
48
-
-
77950546688
-
Key residues on microtubule responsible for activation of kinesin ATPase
-
Uchimura, S., Y. Oguchi, Y. Hachikubo, S. Ishiwata, and E. Muto. 2010. Key residues on microtubule responsible for activation of kinesin ATPase. EMBO J. 29:1167-1175. http://dx.doi.org/10.1038/emboj.2010.25
-
(2010)
EMBO J.
, vol.29
, pp. 1167-1175
-
-
Uchimura, S.1
Oguchi, Y.2
Hachikubo, Y.3
Ishiwata, S.4
Muto, E.5
-
49
-
-
79952994820
-
Web servers and services for electrostatics calculations with APBS and PDB2PQR
-
Unni, S., Y. Huang, R.M. Hanson, M. Tobias, S. Krishnan, W.W. Li, J.E. Nielsen, and N.A. Baker. 2011. Web servers and services for electrostatics calculations with APBS and PDB2PQR. J. Comput. Chem. 32:1488-1491. http://dx.doi.org/10.1002/jcc.21720
-
(2011)
J. Comput. Chem.
, vol.32
, pp. 1488-1491
-
-
Unni, S.1
Huang, Y.2
Hanson, R.M.3
Tobias, M.4
Krishnan, S.5
Li, W.W.6
Nielsen, J.E.7
Baker, N.A.8
-
50
-
-
0024805563
-
One-dimensional diffusion of microtubules bound to flagellar dynein
-
Vale, R.D., D.R. Soll, and I.R. Gibbons. 1989. One-dimensional diffusion of microtubules bound to flagellar dynein. Cell. 59:915-925. http://dx.doi.org/10.1016/0092-8674(89)90614-4
-
(1989)
Cell
, vol.59
, pp. 915-925
-
-
Vale, R.D.1
Soll, D.R.2
Gibbons, I.R.3
-
51
-
-
0035312694
-
LIS1: cellular function of a disease-causing gene
-
Vallee, R.B., C. Tai, and N.E. Faulkner. 2001. LIS1: cellular function of a disease-causing gene. Trends Cell Biol. 11:155-160. http://dx.doi.org/10.1016/S0962-8924(01)01956-0
-
(2001)
Trends Cell Biol.
, vol.11
, pp. 155-160
-
-
Vallee, R.B.1
Tai, C.2
Faulkner, N.E.3
-
52
-
-
0030728492
-
Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body
-
Wang, P.J., and T.C. Huffaker. 1997. Stu2p: a microtubule-binding protein that is an essential component of the yeast spindle pole body. J. Cell Biol. 139:1271-1280. http://dx.doi.org/10.1083/jcb.139.5.1271
-
(1997)
J. Cell Biol.
, vol.139
, pp. 1271-1280
-
-
Wang, P.J.1
Huffaker, T.C.2
-
53
-
-
84862863609
-
Real-space refinement with DireX: from global fitting to side-chain improvements
-
Wang, Z., and G.F. Schröder. 2012. Real-space refinement with DireX: from global fitting to side-chain improvements. Biopolymers. 97:687-697. http://dx.doi.org/10.1002/bip.22046
-
(2012)
Biopolymers
, vol.97
, pp. 687-697
-
-
Wang, Z.1
Schröder, G.F.2
-
54
-
-
0034079578
-
The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity
-
Wang, Z., and M.P. Sheetz. 2000. The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity. Biophys. J. 78:1955-1964. http://dx.doi.org/10.1016/S0006-3495(00)76743-9
-
(2000)
Biophys. J.
, vol.78
, pp. 1955-1964
-
-
Wang, Z.1
Sheetz, M.P.2
-
55
-
-
33750973339
-
Electron energy filtering significantly improves amplitude contrast of frozenhydrated protein at 300 kV
-
Yonekura, K., M.B. Braunfeld, S. Maki-Yonekura, and D.A. Agard. 2006. Electron energy filtering significantly improves amplitude contrast of frozenhydrated protein at 300 kV. J. Struct. Biol. 156:524-536. http://dx.doi.org/10.1016/j.jsb.2006.07.016
-
(2006)
J. Struct. Biol.
, vol.156
, pp. 524-536
-
-
Yonekura, K.1
Braunfeld, M.B.2
Maki-Yonekura, S.3
Agard, D.A.4
|