메뉴 건너뛰기




Volumn 38, Issue 9, 2016, Pages 881-893

Gene activation by metazoan enhancers: Diverse mechanisms stimulate distinct steps of transcription

Author keywords

enhancer; eRNA; gene regulation; massively parallel reporter assay; mediator; transcription factors

Indexed keywords

LONG UNTRANSLATED RNA; POLYCOMB GROUP PROTEIN; RNA POLYMERASE; RNA POLYMERASE II; TRANSCRIPTION FACTOR;

EID: 84983407807     PISSN: 02659247     EISSN: 15211878     Source Type: Journal    
DOI: 10.1002/bies.201600032     Document Type: Article
Times cited : (37)

References (121)
  • 1
    • 0019811465 scopus 로고
    • Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences
    • Banerji J, Rusconi S, Schaffner W. 1981. Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27: 299–308.
    • (1981) Cell , vol.27 , pp. 299-308
    • Banerji, J.1    Rusconi, S.2    Schaffner, W.3
  • 3
    • 84897459814 scopus 로고    scopus 로고
    • An atlas of active enhancers across human cell types and tissues
    • Andersson R, Gebhard C, Miguel-Escalada I, Hoof I, et al. 2014. An atlas of active enhancers across human cell types and tissues. Nature 507: 455–61.
    • (2014) Nature , vol.507 , pp. 455-461
    • Andersson, R.1    Gebhard, C.2    Miguel-Escalada, I.3    Hoof, I.4
  • 4
    • 84928017429 scopus 로고    scopus 로고
    • Enhancer variants: evaluating functions in common disease
    • Corradin O, Scacheri PC. 2014. Enhancer variants: evaluating functions in common disease. Genome Med 6: 85.
    • (2014) Genome Med , vol.6 , pp. 85
    • Corradin, O.1    Scacheri, P.C.2
  • 5
    • 67249117049 scopus 로고    scopus 로고
    • Potential etiologic and functional implications of genome-wide association loci for human diseases and traits
    • Hindorff LA, Sethupathy P, Junkins HA, Ramos EM, et al. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci USA 106: 9362–7.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 9362-9367
    • Hindorff, L.A.1    Sethupathy, P.2    Junkins, H.A.3    Ramos, E.M.4
  • 7
    • 84865249952 scopus 로고    scopus 로고
    • Transcription factors: from enhancer binding to developmental control
    • Spitz F, Furlong EEM. 2012. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet 13: 613–26.
    • (2012) Nat Rev Genet , vol.13 , pp. 613-626
    • Spitz, F.1    Furlong, E.E.M.2
  • 8
    • 0037188510 scopus 로고    scopus 로고
    • Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly
    • Lettice LA, Horikoshi T, Heaney SJH, van Baren MJ, et al. 2002. Disruption of a long-range cis-acting regulator for Shh causes preaxial polydactyly. Proc Natl Acad Sci USA 99: 7548–53.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 7548-7553
    • Lettice, L.A.1    Horikoshi, T.2    Heaney, S.J.H.3    van Baren, M.J.4
  • 9
    • 0025292742 scopus 로고
    • The beta-globin dominant control region: hypersensitive site 2
    • Philipsen S, Talbot D, Fraser P, Grosveld F. 1990. The beta-globin dominant control region: hypersensitive site 2. EMBO J 9: 2159–67.
    • (1990) EMBO J , vol.9 , pp. 2159-2167
    • Philipsen, S.1    Talbot, D.2    Fraser, P.3    Grosveld, F.4
  • 10
    • 0025365230 scopus 로고
    • Detailed analysis of the site 3 region of the human beta-globin dominant control region
    • Talbot D, Philipsen S, Fraser P, Grosveld F. 1990. Detailed analysis of the site 3 region of the human beta-globin dominant control region. EMBO J 9: 2169–77.
    • (1990) EMBO J , vol.9 , pp. 2169-2177
    • Talbot, D.1    Philipsen, S.2    Fraser, P.3    Grosveld, F.4
  • 11
    • 0029294548 scopus 로고
    • A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation
    • Roberts SG, Choy B, Walker SS, Lin YS, et al. 1995. A role for activator-mediated TFIIB recruitment in diverse aspects of transcriptional regulation. Curr Biol 5: 508–16.
    • (1995) Curr Biol , vol.5 , pp. 508-516
    • Roberts, S.G.1    Choy, B.2    Walker, S.S.3    Lin, Y.S.4
  • 12
    • 0030943297 scopus 로고    scopus 로고
    • Position-dependent transcriptional regulation of the murine dihydrofolate reductase promoter by the E2F transactivation domain
    • Fry CJ, Slansky JE, Farnham PJ. 1997. Position-dependent transcriptional regulation of the murine dihydrofolate reductase promoter by the E2F transactivation domain. Mol Cell Biol 17: 1966–76.
    • (1997) Mol Cell Biol , vol.17 , pp. 1966-1976
    • Fry, C.J.1    Slansky, J.E.2    Farnham, P.J.3
  • 13
    • 34547147926 scopus 로고    scopus 로고
    • Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae
    • Dobi KC, Winston F. 2007. Analysis of transcriptional activation at a distance in Saccharomyces cerevisiae. Mol Cell Biol 27: 5575–86.
    • (2007) Mol Cell Biol , vol.27 , pp. 5575-5586
    • Dobi, K.C.1    Winston, F.2
  • 14
    • 84943654279 scopus 로고    scopus 로고
    • Analysis of polygenic mutants suggests a role for mediator in regulating transcriptional activation distance in Saccharomyces cerevisiae
    • Reavey CT, Hickman MJ, Dobi KC, Botstein D, et al. 2015. Analysis of polygenic mutants suggests a role for mediator in regulating transcriptional activation distance in Saccharomyces cerevisiae. Genetics 201: 599–612.
    • (2015) Genetics , vol.201 , pp. 599-612
    • Reavey, C.T.1    Hickman, M.J.2    Dobi, K.C.3    Botstein, D.4
  • 15
    • 0027052876 scopus 로고
    • Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions
    • Seipel K, Georgiev O, Schaffner W. 1992. Different activation domains stimulate transcription from remote (‘enhancer’) and proximal (‘promoter’) positions. EMBO J 11: 4961–8.
    • (1992) EMBO J , vol.11 , pp. 4961-4968
    • Seipel, K.1    Georgiev, O.2    Schaffner, W.3
  • 16
    • 84911494217 scopus 로고    scopus 로고
    • Principles of regulatory information conservation between mouse and human
    • Cheng Y, Ma Z, Kim B-H, Wu W, et al. 2014. Principles of regulatory information conservation between mouse and human. Nature 515: 371–5.
    • (2014) Nature , vol.515 , pp. 371-375
    • Cheng, Y.1    Ma, Z.2    Kim, B.-H.3    Wu, W.4
  • 17
    • 0018732960 scopus 로고
    • Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA
    • Weil PA, Luse DS, Segall J, Roeder RG. 1979. Selective and accurate initiation of transcription at the Ad2 major late promotor in a soluble system dependent on purified RNA polymerase II and DNA. Cell 18: 469–84.
    • (1979) Cell , vol.18 , pp. 469-484
    • Weil, P.A.1    Luse, D.S.2    Segall, J.3    Roeder, R.G.4
  • 18
    • 33747881750 scopus 로고    scopus 로고
    • The general transcription machinery and general cofactors
    • Thomas MC, Chiang C-M. 2006. The general transcription machinery and general cofactors. Crit Rev Biochem Mol Biol 41: 105–78.
    • (2006) Crit Rev Biochem Mol Biol , vol.41 , pp. 105-178
    • Thomas, M.C.1    Chiang, C.-M.2
  • 20
    • 0028282551 scopus 로고
    • A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II
    • Kim YJ, Björklund S, Li Y, Sayre MH, et al. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77: 599–608.
    • (1994) Cell , vol.77 , pp. 599-608
    • Kim, Y.J.1    Björklund, S.2    Li, Y.3    Sayre, M.H.4
  • 21
    • 84923811117 scopus 로고    scopus 로고
    • The Mediator complex: a central integrator of transcription
    • Allen BL, Taatjes DJ. 2015. The Mediator complex: a central integrator of transcription. Nat Rev Mol Cell Biol 16: 155–66.
    • (2015) Nat Rev Mol Cell Biol , vol.16 , pp. 155-166
    • Allen, B.L.1    Taatjes, D.J.2
  • 22
    • 80455164640 scopus 로고    scopus 로고
    • Origins and activity of the Mediator complex
    • Conaway RC, Conaway JW. 2011. Origins and activity of the Mediator complex. Semin Cell Dev Biol 22: 729–34.
    • (2011) Semin Cell Dev Biol , vol.22 , pp. 729-734
    • Conaway, R.C.1    Conaway, J.W.2
  • 23
    • 60149091656 scopus 로고    scopus 로고
    • ChIP-seq accurately predicts tissue-specific activity of enhancers
    • Visel A, Blow MJ, Li Z, Zhang T, et al. 2009. ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 457: 854–8.
    • (2009) Nature , vol.457 , pp. 854-858
    • Visel, A.1    Blow, M.J.2    Li, Z.3    Zhang, T.4
  • 24
    • 33847334699 scopus 로고    scopus 로고
    • Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome
    • Heintzman ND, Stuart RK, Hon G, Fu Y, et al. 2007. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39: 311–8.
    • (2007) Nat Genet , vol.39 , pp. 311-318
    • Heintzman, N.D.1    Stuart, R.K.2    Hon, G.3    Fu, Y.4
  • 25
    • 84929135130 scopus 로고    scopus 로고
    • Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers
    • Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat Biotechnol 33: 510–7.
    • (2015) Nat Biotechnol , vol.33 , pp. 510-517
    • Hilton, I.B.1    D'Ippolito, A.M.2    Vockley, C.M.3    Thakore, P.I.4
  • 26
    • 84886084801 scopus 로고    scopus 로고
    • Locus-specific editing of histone modifications at endogenous enhancers
    • Mendenhall EM, Williamson KE, Reyon D, Zou JY, et al. 2013. Locus-specific editing of histone modifications at endogenous enhancers. Nat Biotechnol 31: 1133–6.
    • (2013) Nat Biotechnol , vol.31 , pp. 1133-1136
    • Mendenhall, E.M.1    Williamson, K.E.2    Reyon, D.3    Zou, J.Y.4
  • 27
    • 84928924333 scopus 로고    scopus 로고
    • Functional annotation of native enhancers with a Cas9-histone demethylase fusion
    • Kearns NA, Pham H, Tabak B, Genga RM, et al. 2015. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat Methods 12: 401–3.
    • (2015) Nat Methods , vol.12 , pp. 401-403
    • Kearns, N.A.1    Pham, H.2    Tabak, B.3    Genga, R.M.4
  • 28
    • 84872509787 scopus 로고    scopus 로고
    • Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation
    • Yu Y, Chen Y, Kim B, Wang H, et al. 2013. Olig2 targets chromatin remodelers to enhancers to initiate oligodendrocyte differentiation. Cell 152: 248–61.
    • (2013) Cell , vol.152 , pp. 248-261
    • Yu, Y.1    Chen, Y.2    Kim, B.3    Wang, H.4
  • 29
    • 84890717859 scopus 로고    scopus 로고
    • Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation
    • Shi J, Whyte WA, Zepeda-Mendoza CJ, Milazzo JP, et al. 2013. Role of SWI/SNF in acute leukemia maintenance and enhancer-mediated Myc regulation. Genes Dev 27: 2648–62.
    • (2013) Genes Dev , vol.27 , pp. 2648-2662
    • Shi, J.1    Whyte, W.A.2    Zepeda-Mendoza, C.J.3    Milazzo, J.P.4
  • 30
    • 84888790012 scopus 로고    scopus 로고
    • Enhancer transcribed RNAs arise from hypomethylated, Tet-occupied genomic regions
    • Pulakanti K, Pinello L, Stelloh C, Blinka S, et al. 2013. Enhancer transcribed RNAs arise from hypomethylated, Tet-occupied genomic regions. Epigenetics 8: 1303–20.
    • (2013) Epigenetics , vol.8 , pp. 1303-1320
    • Pulakanti, K.1    Pinello, L.2    Stelloh, C.3    Blinka, S.4
  • 31
    • 80051515081 scopus 로고    scopus 로고
    • Polycomb eviction as a new distant enhancer function
    • Vernimmen D, Lynch MD, De Gobbi M, Garrick D, et al. 2011. Polycomb eviction as a new distant enhancer function. Genes Dev 25: 1583–8.
    • (2011) Genes Dev , vol.25 , pp. 1583-1588
    • Vernimmen, D.1    Lynch, M.D.2    De Gobbi, M.3    Garrick, D.4
  • 32
    • 84892392571 scopus 로고    scopus 로고
    • Polycomb potentiates Meis2 activation in midbrain by mediating interaction of the promoter with a tissue-specific enhancer
    • Kondo T, Isono K, Kondo K, Endo TA, et al. 2014. Polycomb potentiates Meis2 activation in midbrain by mediating interaction of the promoter with a tissue-specific enhancer. Dev Cell 28: 94–101.
    • (2014) Dev Cell , vol.28 , pp. 94-101
    • Kondo, T.1    Isono, K.2    Kondo, K.3    Endo, T.A.4
  • 33
    • 84891478098 scopus 로고    scopus 로고
    • Chromatin organization and global regulation of Hox gene clusters
    • Montavon T, Duboule D. 2013. Chromatin organization and global regulation of Hox gene clusters. Philos Trans R Soc B Biol Sci 368: 20120367.
    • (2013) Philos Trans R Soc B Biol Sci , vol.368 , pp. 20120367
    • Montavon, T.1    Duboule, D.2
  • 34
  • 35
    • 81855227640 scopus 로고    scopus 로고
    • A regulatory archipelago controls Hox genes transcription in digits
    • Montavon T, Soshnikova N, Mascrez B, Joye E, et al. 2011. A regulatory archipelago controls Hox genes transcription in digits. Cell 147: 1132–45.
    • (2011) Cell , vol.147 , pp. 1132-1145
    • Montavon, T.1    Soshnikova, N.2    Mascrez, B.3    Joye, E.4
  • 36
    • 84878754528 scopus 로고    scopus 로고
    • A switch between topological domains underlies HoxD genes collinearity in mouse limbs
    • Andrey G, Montavon T, Mascrez B, Gonzalez F, et al. 2013. A switch between topological domains underlies HoxD genes collinearity in mouse limbs. Science 340: 1234167.
    • (2013) Science , vol.340 , pp. 1234167
    • Andrey, G.1    Montavon, T.2    Mascrez, B.3    Gonzalez, F.4
  • 37
    • 84900414095 scopus 로고    scopus 로고
    • The histone lysine demethylase JMJD3/KDM6B is recruited to p53 bound promoters and enhancer elements in a p53 dependent manner
    • Williams K, Christensen J, Rappsilber J, Nielsen AL, et al. 2014. The histone lysine demethylase JMJD3/KDM6B is recruited to p53 bound promoters and enhancer elements in a p53 dependent manner. PLoS ONE 9: 9e96545.
    • (2014) PLoS ONE , vol.9
    • Williams, K.1    Christensen, J.2    Rappsilber, J.3    Nielsen, A.L.4
  • 38
    • 84952639359 scopus 로고    scopus 로고
    • Polycomb in transcriptional phase transition of developmental genes
    • Kondo T, Ito S, Koseki H. 2016. Polycomb in transcriptional phase transition of developmental genes. Trends Biochem Sci 41: 9–19.
    • (2016) Trends Biochem Sci , vol.41 , pp. 9-19
    • Kondo, T.1    Ito, S.2    Koseki, H.3
  • 39
    • 84871699564 scopus 로고    scopus 로고
    • Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans
    • Adelman K, Lis JT. 2012. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet 13: 720–31.
    • (2012) Nat Rev Genet , vol.13 , pp. 720-731
    • Adelman, K.1    Lis, J.T.2
  • 40
    • 84894579192 scopus 로고    scopus 로고
    • Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release
    • Liu W, Ma Q, Wong K, Li W, et al. 2013. Brd4 and JMJD6-associated anti-pause enhancers in regulation of transcriptional pause release. Cell 155: 1581–95.
    • (2013) Cell , vol.155 , pp. 1581-1595
    • Liu, W.1    Ma, Q.2    Wong, K.3    Li, W.4
  • 41
    • 84876222028 scopus 로고    scopus 로고
    • Selective inhibition of tumor oncogenes by disruption of super-enhancers
    • Lovén J, Hoke HA, Lin CY, Lau A, et al. 2013. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell 153: 320–34.
    • (2013) Cell , vol.153 , pp. 320-334
    • Lovén, J.1    Hoke, H.A.2    Lin, C.Y.3    Lau, A.4
  • 42
    • 84871160931 scopus 로고    scopus 로고
    • Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells
    • Zhang W, Prakash C, Sum C, Gong Y, et al. 2012. Bromodomain-containing protein 4 (BRD4) regulates RNA polymerase II serine 2 phosphorylation in human CD4+ T cells. J Biol Chem 287: 43137–55.
    • (2012) J Biol Chem , vol.287 , pp. 43137-43155
    • Zhang, W.1    Prakash, C.2    Sum, C.3    Gong, Y.4
  • 43
    • 84881192460 scopus 로고    scopus 로고
    • BET bromodomains mediate transcriptional pause release in heart failure
    • Anand P, Brown JD, Lin CY, Qi J, et al. 2013. BET bromodomains mediate transcriptional pause release in heart failure. Cell 154: 569–82.
    • (2013) Cell , vol.154 , pp. 569-582
    • Anand, P.1    Brown, J.D.2    Lin, C.Y.3    Qi, J.4
  • 44
    • 0037131186 scopus 로고    scopus 로고
    • Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter
    • Eberhardy SR, Farnham PJ. 2002. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J Biol Chem 277: 40156–62.
    • (2002) J Biol Chem , vol.277 , pp. 40156-40162
    • Eberhardy, S.R.1    Farnham, P.J.2
  • 45
    • 84904785973 scopus 로고    scopus 로고
    • Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis
    • Sabò A, Kress TR, Pelizzola M, de Pretis S, et al. 2014. Selective transcriptional regulation by Myc in cellular growth control and lymphomagenesis. Nature 511: 488–92.
    • (2014) Nature , vol.511 , pp. 488-492
    • Sabò, A.1    Kress, T.R.2    Pelizzola, M.3    de Pretis, S.4
  • 46
    • 84872605250 scopus 로고    scopus 로고
    • The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation
    • Lin C, Garruss AS, Luo Z, Guo F, et al. 2013. The RNA Pol II elongation factor Ell3 marks enhancers in ES cells and primes future gene activation. Cell 152: 144–56.
    • (2013) Cell , vol.152 , pp. 144-156
    • Lin, C.1    Garruss, A.S.2    Luo, Z.3    Guo, F.4
  • 47
    • 84938760450 scopus 로고    scopus 로고
    • Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization
    • Kaikkonen MU, Niskanen H, Romanoski CE, Kansanen E, et al. 2014. Control of VEGF-A transcriptional programs by pausing and genomic compartmentalization. Nucleic Acids Res 42: 12570–84.
    • (2014) Nucleic Acids Res , vol.42 , pp. 12570-12584
    • Kaikkonen, M.U.1    Niskanen, H.2    Romanoski, C.E.3    Kansanen, E.4
  • 48
    • 0036208492 scopus 로고    scopus 로고
    • Formation of the androgen receptor transcription complex
    • Shang Y, Myers M, Brown M. 2002. Formation of the androgen receptor transcription complex. Mol Cell 9: 601–10.
    • (2002) Mol Cell , vol.9 , pp. 601-610
    • Shang, Y.1    Myers, M.2    Brown, M.3
  • 49
    • 0034854577 scopus 로고    scopus 로고
    • Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter
    • Johnson KD, Christensen HM, Zhao B, Bresnick EH. 2001. Distinct mechanisms control RNA polymerase II recruitment to a tissue-specific locus control region and a downstream promoter. Mol Cell 8: 465–71.
    • (2001) Mol Cell , vol.8 , pp. 465-471
    • Johnson, K.D.1    Christensen, H.M.2    Zhao, B.3    Bresnick, E.H.4
  • 50
    • 9644302474 scopus 로고    scopus 로고
    • Recruitment of transcription complexes to the β-globin gene locus in vivo and in vitro
    • Vieira KF, Levings PP, Hill MA, Crusselle VJ, et al. 2004. Recruitment of transcription complexes to the β-globin gene locus in vivo and in vitro. J Biol Chem 279: 50350–7.
    • (2004) J Biol Chem , vol.279 , pp. 50350-50357
    • Vieira, K.F.1    Levings, P.P.2    Hill, M.A.3    Crusselle, V.J.4
  • 51
    • 77952367798 scopus 로고    scopus 로고
    • Widespread transcription at neuronal activity-regulated enhancers
    • Kim T-K, Hemberg M, Gray JM, Costa AM, et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465: 182–7.
    • (2010) Nature , vol.465 , pp. 182-187
    • Kim, T.-K.1    Hemberg, M.2    Gray, J.M.3    Costa, A.M.4
  • 52
    • 77952908743 scopus 로고    scopus 로고
    • A large fraction of extragenic RNA pol II transcription sites overlap enhancers
    • De Santa F, Barozzi I, Mietton F, Ghisletti S, et al. 2010. A large fraction of extragenic RNA pol II transcription sites overlap enhancers. PLoS Biol 8: e1000384.
    • (2010) PLoS Biol , vol.8
    • De Santa, F.1    Barozzi, I.2    Mietton, F.3    Ghisletti, S.4
  • 53
    • 79961022267 scopus 로고    scopus 로고
    • Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters
    • Koch F, Fenouil R, Gut M, Cauchy P, et al. 2011. Transcription initiation platforms and GTF recruitment at tissue-specific enhancers and promoters. Nat Struct Mol Biol 18: 956–63.
    • (2011) Nat Struct Mol Biol , vol.18 , pp. 956-963
    • Koch, F.1    Fenouil, R.2    Gut, M.3    Cauchy, P.4
  • 54
    • 0037418280 scopus 로고    scopus 로고
    • Androgen-induced recruitment of RNA polymerase II to a nuclear receptor-p160 coactivator complex
    • Louie MC, Yang HQ, Ma A-H, Xu W, et al. 2003. Androgen-induced recruitment of RNA polymerase II to a nuclear receptor-p160 coactivator complex. Proc Natl Acad Sci USA 100: 2226–30.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 2226-2230
    • Louie, M.C.1    Yang, H.Q.2    Ma, A.-H.3    Xu, W.4
  • 55
    • 4544330542 scopus 로고    scopus 로고
    • An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene
    • Zhao H, Dean A. 2004. An insulator blocks spreading of histone acetylation and interferes with RNA polymerase II transfer between an enhancer and gene. Nucleic Acids Res 32: 4903–19.
    • (2004) Nucleic Acids Res , vol.32 , pp. 4903-4919
    • Zhao, H.1    Dean, A.2
  • 56
    • 84899013571 scopus 로고    scopus 로고
    • Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain
    • Barrow JJ, Li Y, Hossain M, Huang S, et al. 2014. Dissecting the function of the adult β-globin downstream promoter region using an artificial zinc finger DNA-binding domain. Nucleic Acids Res 42: 4363–74.
    • (2014) Nucleic Acids Res , vol.42 , pp. 4363-4374
    • Barrow, J.J.1    Li, Y.2    Hossain, M.3    Huang, S.4
  • 57
    • 0033215443 scopus 로고    scopus 로고
    • Looping versus linking: toward a model for long-distance gene activation
    • Bulger M, Groudine M. 1999. Looping versus linking: toward a model for long-distance gene activation. Genes Dev 13: 2465–77.
    • (1999) Genes Dev , vol.13 , pp. 2465-2477
    • Bulger, M.1    Groudine, M.2
  • 58
    • 84950143919 scopus 로고    scopus 로고
    • The hierarchy of transcriptional activation: fFrom enhancer to promoter
    • Vernimmen D, Bickmore WA. 2015. The hierarchy of transcriptional activation: fFrom enhancer to promoter. Trends Genet 31: 696–708.
    • (2015) Trends Genet , vol.31 , pp. 696-708
    • Vernimmen, D.1    Bickmore, W.A.2
  • 59
    • 34548708489 scopus 로고    scopus 로고
    • A facilitated tracking and transcription mechanism of long-range enhancer function
    • Zhu X, Ling J, Zhang L, Pi W, et al. 2007. A facilitated tracking and transcription mechanism of long-range enhancer function. Nucleic Acids Res 35: 5532–44.
    • (2007) Nucleic Acids Res , vol.35 , pp. 5532-5544
    • Zhu, X.1    Ling, J.2    Zhang, L.3    Pi, W.4
  • 60
    • 24044540381 scopus 로고    scopus 로고
    • Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking
    • Wang Q, Carroll JS, Brown M. 2005. Spatial and temporal recruitment of androgen receptor and its coactivators involves chromosomal looping and polymerase tracking. Mol Cell 19: 631–42.
    • (2005) Mol Cell , vol.19 , pp. 631-642
    • Wang, Q.1    Carroll, J.S.2    Brown, M.3
  • 61
    • 0026482145 scopus 로고
    • Transcription of the hypersensitive site HS2 enhancer in erythroid cells
    • Tuan D, Kong S, Hu K. 1992. Transcription of the hypersensitive site HS2 enhancer in erythroid cells. Proc Natl Acad Sci USA 89: 11219–23.
    • (1992) Proc Natl Acad Sci USA , vol.89 , pp. 11219-11223
    • Tuan, D.1    Kong, S.2    Hu, K.3
  • 62
    • 14044259362 scopus 로고    scopus 로고
    • Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage
    • Szutorisz H, Canzonetta C, Georgiou A, Chow C, et al. 2005. Formation of an active tissue-specific chromatin domain initiated by epigenetic marking at the embryonic stem cell stage. Mol Cell Biol 25: 1804–20.
    • (2005) Mol Cell Biol , vol.25 , pp. 1804-1820
    • Szutorisz, H.1    Canzonetta, C.2    Georgiou, A.3    Chow, C.4
  • 63
    • 33746423865 scopus 로고    scopus 로고
    • Locus control region transcription plays an active role in long-range gene activation
    • Ho Y, Elefant F, Liebhaber SA, Cooke NE. 2006. Locus control region transcription plays an active role in long-range gene activation. Mol Cell 23: 365–75.
    • (2006) Mol Cell , vol.23 , pp. 365-375
    • Ho, Y.1    Elefant, F.2    Liebhaber, S.A.3    Cooke, N.E.4
  • 64
    • 0031306463 scopus 로고    scopus 로고
    • The effect of distance on long-range chromatin interactions
    • Dillon N, Trimborn T, Strouboulis J, Fraser P, et al. 1997. The effect of distance on long-range chromatin interactions. Mol Cell 1: 131–9.
    • (1997) Mol Cell , vol.1 , pp. 131-139
    • Dillon, N.1    Trimborn, T.2    Strouboulis, J.3    Fraser, P.4
  • 65
    • 0032479079 scopus 로고    scopus 로고
    • Going the distance: a current view of enhancer action
    • Blackwood EM, Kadonaga JT. 1998. Going the distance: a current view of enhancer action. Science 281: 60–3.
    • (1998) Science , vol.281 , pp. 60-63
    • Blackwood, E.M.1    Kadonaga, J.T.2
  • 66
    • 0036923739 scopus 로고    scopus 로고
    • Dynamics of enhancer-promoter communication during differentiation-induced gene activation
    • Hatzis P, Talianidis I. 2002. Dynamics of enhancer-promoter communication during differentiation-induced gene activation. Mol Cell 10: 1467–77.
    • (2002) Mol Cell , vol.10 , pp. 1467-1477
    • Hatzis, P.1    Talianidis, I.2
  • 67
    • 84861095603 scopus 로고    scopus 로고
    • Topological domains in mammalian genomes identified by analysis of chromatin interactions
    • Dixon JR, Selvaraj S, Yue F, Kim A, et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485: 376–80.
    • (2012) Nature , vol.485 , pp. 376-380
    • Dixon, J.R.1    Selvaraj, S.2    Yue, F.3    Kim, A.4
  • 68
    • 84861100147 scopus 로고    scopus 로고
    • Spatial partitioning of the regulatory landscape of the X-inactivation centre
    • Nora EP, Lajoie BR, Schulz EG, Giorgetti L, et al. 2012. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature 485: 381–5.
    • (2012) Nature , vol.485 , pp. 381-385
    • Nora, E.P.1    Lajoie, B.R.2    Schulz, E.G.3    Giorgetti, L.4
  • 69
    • 84948403758 scopus 로고    scopus 로고
    • Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes
    • Sanborn AL, Rao SSP, Huang S-C, Durand NC, et al. 2015. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc Natl Acad Sci USA 112: E6456–65.
    • (2015) Proc Natl Acad Sci USA , vol.112 , pp. E6456-E6465
    • Sanborn, A.L.1    Rao, S.S.P.2    Huang, S.-C.3    Durand, N.C.4
  • 70
    • 84919949716 scopus 로고    scopus 로고
    • A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping
    • Rao SSP, Huntley MH, Durand NC, Stamenova EK, et al. 2014. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159: 1665–80.
    • (2014) Cell , vol.159 , pp. 1665-1680
    • Rao, S.S.P.1    Huntley, M.H.2    Durand, N.C.3    Stamenova, E.K.4
  • 71
    • 84940090292 scopus 로고    scopus 로고
    • Predicting chromatin organization using histone marks
    • Huang J, Marco E, Pinello L, Yuan G-C. 2015. Predicting chromatin organization using histone marks. Genome Biol 16: 162.
    • (2015) Genome Biol , vol.16 , pp. 162
    • Huang, J.1    Marco, E.2    Pinello, L.3    Yuan, G.-C.4
  • 72
    • 84873456575 scopus 로고    scopus 로고
    • ERNAs are required for p53-dependent enhancer activity and gene transcription
    • Melo CA, Drost J, Wijchers PJ, van de Werken H, et al. 2013. ERNAs are required for p53-dependent enhancer activity and gene transcription. Mol Cell 49: 524–35.
    • (2013) Mol Cell , vol.49 , pp. 524-535
    • Melo, C.A.1    Drost, J.2    Wijchers, P.J.3    van de Werken, H.4
  • 73
    • 84879694221 scopus 로고    scopus 로고
    • Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription
    • Lam MTY, Cho H, Lesch HP, Gosselin D, et al. 2013. Rev-Erbs repress macrophage gene expression by inhibiting enhancer-directed transcription. Nature 498: 511–5.
    • (2013) Nature , vol.498 , pp. 511-515
    • Lam, M.T.Y.1    Cho, H.2    Lesch, H.P.3    Gosselin, D.4
  • 74
    • 84874368349 scopus 로고    scopus 로고
    • Activating RNAs associate with Mediator to enhance chromatin architecture and transcription
    • Lai F, Orom UA, Cesaroni M, Beringer M, et al. 2013. Activating RNAs associate with Mediator to enhance chromatin architecture and transcription. Nature 494: 497–501.
    • (2013) Nature , vol.494 , pp. 497-501
    • Lai, F.1    Orom, U.A.2    Cesaroni, M.3    Beringer, M.4
  • 75
    • 84879695128 scopus 로고    scopus 로고
    • Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation
    • Li W, Notani D, Ma Q, Tanasa B, et al. 2013. Functional roles of enhancer RNAs for oestrogen-dependent transcriptional activation. Nature 498: 516–20.
    • (2013) Nature , vol.498 , pp. 516-520
    • Li, W.1    Notani, D.2    Ma, Q.3    Tanasa, B.4
  • 76
    • 84883756441 scopus 로고    scopus 로고
    • ERNAs promote transcription by establishing chromatin accessibility at defined genomic loci
    • Mousavi K, Zare H, Dell'orso S, Grontved L, et al. 2013. ERNAs promote transcription by establishing chromatin accessibility at defined genomic loci. Mol Cell 51: 606–17.
    • (2013) Mol Cell , vol.51 , pp. 606-617
    • Mousavi, K.1    Zare, H.2    Dell'orso, S.3    Grontved, L.4
  • 77
    • 84922391291 scopus 로고    scopus 로고
    • Enhancer RNA facilitates NELF release from immediate early Genes
    • Schaukowitch K, Joo J-Y, Liu X, Watts JK, et al. 2014. Enhancer RNA facilitates NELF release from immediate early Genes. Mol Cell 56: 29–42.
    • (2014) Mol Cell , vol.56 , pp. 29-42
    • Schaukowitch, K.1    Joo, J.-Y.2    Liu, X.3    Watts, J.K.4
  • 78
    • 84902286789 scopus 로고    scopus 로고
    • Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes
    • IIott NE, Heward JA, Roux B, Tsitsiou E, et al. 2014. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun 5: 3979.
    • (2014) Nat Commun , vol.5 , pp. 3979
    • IIott, N.E.1    Heward, J.A.2    Roux, B.3    Tsitsiou, E.4
  • 79
    • 84901020399 scopus 로고    scopus 로고
    • Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation
    • Hsieh C-L, Fei T, Chen Y, Li T, et al. 2014. Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA 111: 7319–24.
    • (2014) Proc Natl Acad Sci USA , vol.111 , pp. 7319-7324
    • Hsieh, C.-L.1    Fei, T.2    Chen, Y.3    Li, T.4
  • 80
    • 84947766170 scopus 로고    scopus 로고
    • Transcription factor trapping by RNA in gene regulatory elements
    • Sigova AA, Abraham BJ, Ji X, Molinie B, et al. 2015. Transcription factor trapping by RNA in gene regulatory elements. Science 350: 978–81.
    • (2015) Science , vol.350 , pp. 978-981
    • Sigova, A.A.1    Abraham, B.J.2    Ji, X.3    Molinie, B.4
  • 81
    • 84957654693 scopus 로고    scopus 로고
    • Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation
    • Cloutier SC, Wang S, Ma WK, Al Husini N, et al. 2016. Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol Cell 61: 393–404.
    • (2016) Mol Cell , vol.61 , pp. 393-404
    • Cloutier, S.C.1    Wang, S.2    Ma, W.K.3    Al Husini, N.4
  • 82
    • 84920954858 scopus 로고    scopus 로고
    • Nuclear stability and transcriptional directionality separate functionally distinct RNA species
    • Andersson R, Refsing Andersen P, Valen E, Core LJ, et al. 2014. Nuclear stability and transcriptional directionality separate functionally distinct RNA species. Nat Commun 5: 5336.
    • (2014) Nat Commun , vol.5 , pp. 5336
    • Andersson, R.1    Refsing Andersen, P.2    Valen, E.3    Core, L.J.4
  • 83
    • 84940419156 scopus 로고    scopus 로고
    • Integrator mediates the biogenesis of enhancer RNAs
    • Lai F, Gardini A, Zhang A, Shiekhattar R. 2015. Integrator mediates the biogenesis of enhancer RNAs. Nature 525: 399–403.
    • (2015) Nature , vol.525 , pp. 399-403
    • Lai, F.1    Gardini, A.2    Zhang, A.3    Shiekhattar, R.4
  • 84
    • 84962129303 scopus 로고    scopus 로고
    • Unlinking an lncRNA from its associated cis element
    • Paralkar VR, Taborda CC, Huang P, Yao Y, et al. 2016. Unlinking an lncRNA from its associated cis element. Mol Cell 62: 104–10.
    • (2016) Mol Cell , vol.62 , pp. 104-110
    • Paralkar, V.R.1    Taborda, C.C.2    Huang, P.3    Yao, Y.4
  • 85
    • 84878451215 scopus 로고    scopus 로고
    • Gene regulation by the act of long non-coding RNA transcription
    • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. 2013. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 11: 59.
    • (2013) BMC Biol , vol.11 , pp. 59
    • Kornienko, A.E.1    Guenzl, P.M.2    Barlow, D.P.3    Pauler, F.M.4
  • 86
    • 84855508402 scopus 로고    scopus 로고
    • Enhancers and silencers: an integrated and simple model for their function
    • Kolovos P, Knoch TA, Grosveld FG, Cook PR, et al. 2012. Enhancers and silencers: an integrated and simple model for their function. Epigenetics Chromatin 5: 1–8.
    • (2012) Epigenetics Chromatin , vol.5 , pp. 1-8
    • Kolovos, P.1    Knoch, T.A.2    Grosveld, F.G.3    Cook, P.R.4
  • 87
    • 84862908850 scopus 로고    scopus 로고
    • Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation
    • Li G, Ruan X, Auerbach RK, Sandhu KS, et al. 2012. Extensive promoter-centered chromatin interactions provide a topological basis for transcription regulation. Cell 148: 84–98.
    • (2012) Cell , vol.148 , pp. 84-98
    • Li, G.1    Ruan, X.2    Auerbach, R.K.3    Sandhu, K.S.4
  • 88
    • 84938287359 scopus 로고    scopus 로고
    • A unified architecture of transcriptional regulatory elements
    • Andersson R, Sandelin A, Danko CG. 2015. A unified architecture of transcriptional regulatory elements. Trends Genet 31: 426–33.
    • (2015) Trends Genet , vol.31 , pp. 426-433
    • Andersson, R.1    Sandelin, A.2    Danko, C.G.3
  • 89
    • 33747072322 scopus 로고    scopus 로고
    • Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster
    • Moorman C, Sun LV, Wang J, de Wit E, et al. 2006. Hotspots of transcription factor colocalization in the genome of Drosophila melanogaster. Proc Natl Acad Sci USA 103: 12027–32.
    • (2006) Proc Natl Acad Sci USA , vol.103 , pp. 12027-12032
    • Moorman, C.1    Sun, L.V.2    Wang, J.3    de Wit, E.4
  • 90
    • 84886780296 scopus 로고    scopus 로고
    • Dynamic trans-acting factor colocalization in human cells
    • Xie D, Boyle AP, Wu L, Zhai J, et al. 2013. Dynamic trans-acting factor colocalization in human cells. Cell 155: 713–24.
    • (2013) Cell , vol.155 , pp. 713-724
    • Xie, D.1    Boyle, A.P.2    Wu, L.3    Zhai, J.4
  • 91
    • 84923345330 scopus 로고    scopus 로고
    • An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape
    • Chen H, Li H, Liu F, Zheng X, et al. 2015. An integrative analysis of TFBS-clustered regions reveals new transcriptional regulation models on the accessible chromatin landscape. Sci Rep 5: 8465.
    • (2015) Sci Rep , vol.5 , pp. 8465
    • Chen, H.1    Li, H.2    Liu, F.3    Zheng, X.4
  • 92
    • 84860503075 scopus 로고    scopus 로고
    • HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature
    • Kvon EZ, Stampfel G, Yanez-Cuna JO, Dickson BJ, et al. 2012. HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev 26: 908–13.
    • (2012) Genes Dev , vol.26 , pp. 908-913
    • Kvon, E.Z.1    Stampfel, G.2    Yanez-Cuna, J.O.3    Dickson, B.J.4
  • 93
    • 84883457107 scopus 로고    scopus 로고
    • Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model
    • Smith RP, Taher L, Patwardhan RP, Kim MJ, et al. 2013. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat Genet 45: 1021–8.
    • (2013) Nat Genet , vol.45 , pp. 1021-1028
    • Smith, R.P.1    Taher, L.2    Patwardhan, R.P.3    Kim, M.J.4
  • 94
    • 84983426403 scopus 로고    scopus 로고
    • Integrating regulatory information via combinatorial control of the transcription cycle
    • Scholes C, DePace AH, Sanchez A. 2016. Integrating regulatory information via combinatorial control of the transcription cycle. bioRxiv, doi: 10.1101/039339
    • (2016) bioRxiv
    • Scholes, C.1    DePace, A.H.2    Sanchez, A.3
  • 95
    • 84902810053 scopus 로고    scopus 로고
    • In pursuit of design principles of regulatory sequences
    • Levo M, Segal E. 2014. In pursuit of design principles of regulatory sequences. Nat Rev Genet 15: 453–68.
    • (2014) Nat Rev Genet , vol.15 , pp. 453-468
    • Levo, M.1    Segal, E.2
  • 96
    • 84939265529 scopus 로고    scopus 로고
    • Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences
    • White MA. 2015. Understanding how cis-regulatory function is encoded in DNA sequence using massively parallel reporter assays and designed sequences. Genomics 106: 165–70.
    • (2015) Genomics , vol.106 , pp. 165-170
    • White, M.A.1
  • 97
    • 84939255435 scopus 로고    scopus 로고
    • Decoding enhancers using massively parallel reporter assays
    • Inoue F, Ahituv N. 2015. Decoding enhancers using massively parallel reporter assays. Genomics 106: 159–64.
    • (2015) Genomics , vol.106 , pp. 159-164
    • Inoue, F.1    Ahituv, N.2
  • 98
    • 84863230316 scopus 로고    scopus 로고
    • Massively parallel functional dissection of mammalian enhancers in vivo
    • Patwardhan RP, Hiatt JB, Witten DM, Kim MJ, et al. 2012. Massively parallel functional dissection of mammalian enhancers in vivo. Nat Biotechnol 30: 265–70.
    • (2012) Nat Biotechnol , vol.30 , pp. 265-270
    • Patwardhan, R.P.1    Hiatt, J.B.2    Witten, D.M.3    Kim, M.J.4
  • 99
    • 84874381107 scopus 로고    scopus 로고
    • Genome-wide quantitative enhancer activity maps identified by STARR-seq
    • Arnold CD, Gerlach D, Stelzer C, Boryn LM, et al. 2013. Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339: 1074–7.
    • (2013) Science , vol.339 , pp. 1074-1077
    • Arnold, C.D.1    Gerlach, D.2    Stelzer, C.3    Boryn, L.M.4
  • 100
    • 84869853147 scopus 로고    scopus 로고
    • Complex effects of nucleotide variants in a mammalian cis-regulatory element
    • Kwasnieski JC, Mogno I, Myers CA, Corbo JC, et al. 2012. Complex effects of nucleotide variants in a mammalian cis-regulatory element. Proc Natl Acad Sci USA 109: 19498–503.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. 19498-19503
    • Kwasnieski, J.C.1    Mogno, I.2    Myers, C.A.3    Corbo, J.C.4
  • 101
    • 84862002321 scopus 로고    scopus 로고
    • Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters
    • Sharon E, Kalma Y, Sharp A, Raveh-Sadka T, et al. 2012. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol 30: 521–30.
    • (2012) Nat Biotechnol , vol.30 , pp. 521-530
    • Sharon, E.1    Kalma, Y.2    Sharp, A.3    Raveh-Sadka, T.4
  • 102
    • 84899670369 scopus 로고    scopus 로고
    • FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells
    • Murtha M, Tokcaer-Keskin Z, Tang Z, Strino F, et al. 2014. FIREWACh: high-throughput functional detection of transcriptional regulatory modules in mammalian cells. Nat Methods 11: 559–65.
    • (2014) Nat Methods , vol.11 , pp. 559-565
    • Murtha, M.1    Tokcaer-Keskin, Z.2    Tang, Z.3    Strino, F.4
  • 103
    • 84899692444 scopus 로고    scopus 로고
    • Function-based identification of mammalian enhancers using site-specific integration
    • Dickel DE, Zhu Y, Nord AS, Wylie JN, et al. 2014. Function-based identification of mammalian enhancers using site-specific integration. Nat Methods 11: 566–71.
    • (2014) Nat Methods , vol.11 , pp. 566-571
    • Dickel, D.E.1    Zhu, Y.2    Nord, A.S.3    Wylie, J.N.4
  • 104
    • 84882737017 scopus 로고    scopus 로고
    • Chromatin position effects assayed by thousands of reporters integrated in parallel
    • Akhtar W, de Jong J, Pindyurin AV, Pagie L, et al. 2013. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154: 914–27.
    • (2013) Cell , vol.154 , pp. 914-927
    • Akhtar, W.1    de Jong, J.2    Pindyurin, A.V.3    Pagie, L.4
  • 105
    • 84863229330 scopus 로고    scopus 로고
    • Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay
    • Melnikov A, Murugan A, Zhang X, Tesileanu T, et al. 2012. Systematic dissection and optimization of inducible enhancers in human cells using a massively parallel reporter assay. Nat Biotechnol 30: 271–7.
    • (2012) Nat Biotechnol , vol.30 , pp. 271-277
    • Melnikov, A.1    Murugan, A.2    Zhang, X.3    Tesileanu, T.4
  • 106
    • 84877147962 scopus 로고    scopus 로고
    • Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay
    • Kheradpour P, Ernst J, Melnikov A, Rogov P, et al. 2013. Systematic dissection of regulatory motifs in 2000 predicted human enhancers using a massively parallel reporter assay. Genome Res 23: 800–11.
    • (2013) Genome Res , vol.23 , pp. 800-811
    • Kheradpour, P.1    Ernst, J.2    Melnikov, A.3    Rogov, P.4
  • 107
    • 71849118573 scopus 로고    scopus 로고
    • High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis
    • Patwardhan RP, Lee C, Litvin O, Young DL, et al. 2009. High-resolution analysis of DNA regulatory elements by synthetic saturation mutagenesis. Nat Biotechnol 27: 1173–5.
    • (2009) Nat Biotechnol , vol.27 , pp. 1173-1175
    • Patwardhan, R.P.1    Lee, C.2    Litvin, O.3    Young, D.L.4
  • 108
    • 84881442078 scopus 로고    scopus 로고
    • Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos
    • Gisselbrecht SS, Barrera LA, Porsch M, Aboukhalil A, et al. 2013. Highly parallel assays of tissue-specific enhancers in whole Drosophila embryos. Nat Methods 10: 774–80.
    • (2013) Nat Methods , vol.10 , pp. 774-780
    • Gisselbrecht, S.S.1    Barrera, L.A.2    Porsch, M.3    Aboukhalil, A.4
  • 109
    • 84928136624 scopus 로고    scopus 로고
    • High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq
    • Vanhille L, Griffon A, Maqbool MA, Zacarias-Cabeza J, et al. 2015. High-throughput and quantitative assessment of enhancer activity in mammals by CapStarr-seq. Nat Commun 6: 6905.
    • (2015) Nat Commun , vol.6 , pp. 6905
    • Vanhille, L.1    Griffon, A.2    Maqbool, M.A.3    Zacarias-Cabeza, J.4
  • 110
    • 84946925193 scopus 로고    scopus 로고
    • BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis
    • Canver MC, Smith EC, Sher F, Pinello L, et al. 2015. BCL11A enhancer dissection by Cas9-mediated in situ saturating mutagenesis. Nature 527: 192–7.
    • (2015) Nature , vol.527 , pp. 192-197
    • Canver, M.C.1    Smith, E.C.2    Sher, F.3    Pinello, L.4
  • 111
    • 0030960672 scopus 로고    scopus 로고
    • Transcriptional activation by recruitment
    • Ptashne M, Gann A. 1997. Transcriptional activation by recruitment. Nature 386: 569–77.
    • (1997) Nature , vol.386 , pp. 569-577
    • Ptashne, M.1    Gann, A.2
  • 112
    • 84949196425 scopus 로고    scopus 로고
    • Transcriptional regulators form diverse groups with context-dependent regulatory functions
    • Stampfel G, Kazmar T, Frank O, Wienerroither S, et al. 2015. Transcriptional regulators form diverse groups with context-dependent regulatory functions. Nature 528: 1–8.
    • (2015) Nature , vol.528 , pp. 1-8
    • Stampfel, G.1    Kazmar, T.2    Frank, O.3    Wienerroither, S.4
  • 113
    • 84903942172 scopus 로고    scopus 로고
    • Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation
    • Keung AJ, Bashor CJ, Kiriakov S, Collins JJ, et al. 2014. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158: 110–20.
    • (2014) Cell , vol.158 , pp. 110-120
    • Keung, A.J.1    Bashor, C.J.2    Kiriakov, S.3    Collins, J.J.4
  • 114
    • 84960387483 scopus 로고    scopus 로고
    • A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening
    • Diao Y, Li B, Meng Z, Jung I, et al. 2016. A new class of temporarily phenotypic enhancers identified by CRISPR/Cas9-mediated genetic screening. Genome Res 26: 397–405.
    • (2016) Genome Res , vol.26 , pp. 397-405
    • Diao, Y.1    Li, B.2    Meng, Z.3    Jung, I.4
  • 115
    • 84907257107 scopus 로고    scopus 로고
    • Saturation editing of genomic regions by multiplex homology-directed repair
    • Findlay GM, Boyle EA, Hause RJ, Klein JC, et al. 2014. Saturation editing of genomic regions by multiplex homology-directed repair. Nature 513: 120–3.
    • (2014) Nature , vol.513 , pp. 120-123
    • Findlay, G.M.1    Boyle, E.A.2    Hause, R.J.3    Klein, J.C.4
  • 116
    • 84961226910 scopus 로고    scopus 로고
    • Programmable RNA tracking in live cells with CRISPR/Cas9
    • Nelles DA, Fang MY, O'Connell MR, Xu JL, et al. 2016. Programmable RNA tracking in live cells with CRISPR/Cas9. Cell 165: 488–96.
    • (2016) Cell , vol.165 , pp. 488-496
    • Nelles, D.A.1    Fang, M.Y.2    O'Connell, M.R.3    Xu, J.L.4
  • 117
    • 84894063115 scopus 로고    scopus 로고
    • Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system
    • Chen B, Gilbert LA, Cimini BA, Schnitzbauer J, et al. 2013. Dynamic imaging of genomic loci in living human cells by an optimized CRISPR/Cas system. Cell 155: 1479–91.
    • (2013) Cell , vol.155 , pp. 1479-1491
    • Chen, B.1    Gilbert, L.A.2    Cimini, B.A.3    Schnitzbauer, J.4
  • 118
    • 84966908028 scopus 로고    scopus 로고
    • Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow
    • Ma H, Tu L-C, Naseri A, Huisman M, et al. 2016. Multiplexed labeling of genomic loci with dCas9 and engineered sgRNAs using CRISPRainbow. Nat Biotechnol 34: 528–30.
    • (2016) Nat Biotechnol , vol.34 , pp. 528-530
    • Ma, H.1    Tu, L.-C.2    Naseri, A.3    Huisman, M.4
  • 119
    • 84884906690 scopus 로고    scopus 로고
    • RNA-guided gene activation by CRISPR-Cas9-based transcription factors
    • Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, et al. 2013. RNA-guided gene activation by CRISPR-Cas9-based transcription factors. Nat Methods 10: 973–6.
    • (2013) Nat Methods , vol.10 , pp. 973-976
    • Perez-Pinera, P.1    Kocak, D.D.2    Vockley, C.M.3    Adler, A.F.4
  • 120
    • 84920992414 scopus 로고    scopus 로고
    • Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds
    • Zalatan JG, Lee ME, Almeida R, Gilbert LA, et al. 2015. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160: 339–50.
    • (2015) Cell , vol.160 , pp. 339-350
    • Zalatan, J.G.1    Lee, M.E.2    Almeida, R.3    Gilbert, L.A.4
  • 121
    • 84934267574 scopus 로고    scopus 로고
    • Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display
    • Shechner DM, Hacisuleyman E, Younger ST, Rinn JL. 2015. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat Methods 12: 664–70.
    • (2015) Nat Methods , vol.12 , pp. 664-670
    • Shechner, D.M.1    Hacisuleyman, E.2    Younger, S.T.3    Rinn, J.L.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.