-
1
-
-
84877605000
-
Cellular self-defense: how cell-autonomous immunity protects against pathogens
-
23661752
-
Randow F, MacMicking JD, James LC. Cellular self-defense: how cell-autonomous immunity protects against pathogens. Science 2013; 340:701-6; PMID:23661752; https://doi.org/10.1126/science.1233028
-
(2013)
Science
, vol.340
, pp. 701-706
-
-
Randow, F.1
MacMicking, J.D.2
James, L.C.3
-
2
-
-
84884688909
-
Self and non-self discrimination of intracellular membranes by the innate immune system
-
24068918
-
Coers J. Self and non-self discrimination of intracellular membranes by the innate immune system. PLoS Pathog 2013; 9:e1003538; PMID:24068918
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003538
-
-
Coers, J.1
-
3
-
-
84867658917
-
IFN-Inducible GTPases in Host Cell Defense
-
23084913
-
Kim B-H, Shenoy AR, Kumar P, Bradfield CJ, MacMicking JD. IFN-Inducible GTPases in Host Cell Defense. Cell Host Microbe 2012; 12:432-44; PMID:23084913; https://doi.org/10.1016/j.chom.2012.09.007
-
(2012)
Cell Host Microbe
, vol.12
, pp. 432-444
-
-
Kim, B.-H.1
Shenoy, A.R.2
Kumar, P.3
Bradfield, C.J.4
MacMicking, J.D.5
-
5
-
-
79951552359
-
The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens
-
21052678
-
Hunn JP, Feng CG, Sher A, Howard JC. The immunity-related GTPases in mammals: a fast-evolving cell-autonomous resistance system against intracellular pathogens. Mamm Genome 2010; 22:43-54; PMID:21052678; https://doi.org/10.1007/s00335-010-9293-3
-
(2010)
Mamm Genome
, vol.22
, pp. 43-54
-
-
Hunn, J.P.1
Feng, C.G.2
Sher, A.3
Howard, J.C.4
-
6
-
-
79955777383
-
A family of IFN- -inducible 65-kD GTPases protects against bacterial infection
-
21551061
-
Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD. A family of IFN- -inducible 65-kD GTPases protects against bacterial infection. Science 2011; 332:717-21; PMID:21551061; https://doi.org/10.1126/science.1201711
-
(2011)
Science
, vol.332
, pp. 717-721
-
-
Kim, B.H.1
Shenoy, A.R.2
Kumar, P.3
Das, R.4
Tiwari, S.5
MacMicking, J.D.6
-
7
-
-
84900564237
-
Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases
-
24739961
-
Meunier E, Dick MS, Dreier RF, Schürmann N, Broz DK, Kenzelmann Broz D, Warming S, Roose-Girma M, Bumann D, Kayagaki N, et al. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 2014; 509:366-70; PMID:24739961; https://doi.org/10.1038/nature13157
-
(2014)
Nature
, vol.509
, pp. 366-370
-
-
Meunier, E.1
Dick, M.S.2
Dreier, R.F.3
Schürmann, N.4
Broz, D.K.5
Kenzelmann Broz, D.6
Warming, S.7
Roose-Girma, M.8
Bumann, D.9
Kayagaki, N.10
-
8
-
-
84955212917
-
Interferon-inducible GTPases in cell autonomous and innate immunity
-
26572694
-
Meunier E, Broz P. Interferon-inducible GTPases in cell autonomous and innate immunity. Cell Microbiol 2016; 18:168-180; PMID:26572694; https://doi.org/10.1111/cmi.12546
-
(2016)
Cell Microbiol
, vol.18
, pp. 168-180
-
-
Meunier, E.1
Broz, P.2
-
9
-
-
53549109432
-
Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii
-
18772884
-
Hunn JP, Koenen-Waisman S, Papic N, Schroeder N, Pawlowski N, Lange R, Kaiser F, Zerrahn J, Martens S, Howard JC. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J 2008; 27:2495-509; PMID:18772884; https://doi.org/10.1038/emboj.2008.176
-
(2008)
EMBO J
, vol.27
, pp. 2495-2509
-
-
Hunn, J.P.1
Koenen-Waisman, S.2
Papic, N.3
Schroeder, N.4
Pawlowski, N.5
Lange, R.6
Kaiser, F.7
Zerrahn, J.8
Martens, S.9
Howard, J.C.10
-
10
-
-
84879547102
-
IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of ‘self’ IRGM proteins
-
23785284
-
Haldar AK, Saka HA, Piro AS, Dunn JD, Henry SC, Taylor GA, Frickel EM, Valdivia RH, Coers J. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of ‘self’ IRGM proteins. PLoS Pathog 2013; 9:e1003414; PMID:23785284; https://doi.org/10.1371/journal.ppat.1003414
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003414
-
-
Haldar, A.K.1
Saka, H.A.2
Piro, A.S.3
Dunn, J.D.4
Henry, S.C.5
Taylor, G.A.6
Frickel, E.M.7
Valdivia, R.H.8
Coers, J.9
-
11
-
-
13444310671
-
Immune control of phagosomal bacteria by p47 GTPases
-
15694860
-
MacMicking JD. Immune control of phagosomal bacteria by p47 GTPases. Curr Opin Microbiol 2005; 8:74-82; PMID:15694860; https://doi.org/10.1016/j.mib.2004.12.012
-
(2005)
Curr Opin Microbiol
, vol.8
, pp. 74-82
-
-
MacMicking, J.D.1
-
12
-
-
46249112488
-
Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane
-
18512349
-
Sinai AP. Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane. Subcell Biochem 2008; 47:155-64; PMID:18512349; https://doi.org/10.1007/978-0-387-78267-6_12
-
(2008)
Subcell Biochem
, vol.47
, pp. 155-164
-
-
Sinai, A.P.1
-
13
-
-
49649126253
-
Disruption of Toxoplasma gondii Parasitophorous Vacuoles by the Mouse p47-Resistance GTPases
-
16304607
-
Martens S, Parvanova I, Zerrahn J, Griffiths G, Schell G, Reichmann G, Howard JC. Disruption of Toxoplasma gondii Parasitophorous Vacuoles by the Mouse p47-Resistance GTPases. PLoS Pathog 2005; 1:e24; PMID:16304607; https://doi.org/10.1371/journal.ppat.0010024
-
(2005)
PLoS Pathog
, vol.1
, pp. e24
-
-
Martens, S.1
Parvanova, I.2
Zerrahn, J.3
Griffiths, G.4
Schell, G.5
Reichmann, G.6
Howard, J.C.7
-
14
-
-
33748444233
-
Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages
-
16940170
-
Ling YM, Shaw MH, Ayala C, Coppens I, Taylor GA, Ferguson DJP, Yap GS. Vacuolar and plasma membrane stripping and autophagic elimination of Toxoplasma gondii in primed effector macrophages. J Exp Med 2006; 203:2063-71; PMID:16940170; https://doi.org/10.1084/jem.20061318
-
(2006)
J Exp Med
, vol.203
, pp. 2063-2071
-
-
Ling, Y.M.1
Shaw, M.H.2
Ayala, C.3
Coppens, I.4
Taylor, G.A.5
Ferguson, D.J.P.6
Yap, G.S.7
-
15
-
-
61449117883
-
Disruption of the toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG Proteins) triggers necrotic cell death
-
19197351
-
Zhao YO, Khaminets A, Hunn JP, Howard JC. Disruption of the toxoplasma gondii parasitophorous vacuole by IFNγ-inducible immunity-related GTPases (IRG Proteins) triggers necrotic cell death. PLoS Pathog 2009; 5:e1000288; PMID:19197351; https://doi.org/10.1371/journal.ppat.1000288
-
(2009)
PLoS Pathog
, vol.5
, pp. e1000288
-
-
Zhao, Y.O.1
Khaminets, A.2
Hunn, J.P.3
Howard, J.C.4
-
16
-
-
77954430293
-
Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole
-
20109161
-
Khaminets A, Hunn JP, Könen-Waisman S, Zhao YO, Preukschat D, Coers J, Boyle JP, Ong Y-C, Boothroyd JC, Reichmann G, et al. Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell Microbiol 2010; 12:939-61; PMID:20109161; https://doi.org/10.1111/j.1462-5822.2010.01443.x
-
(2010)
Cell Microbiol
, vol.12
, pp. 939-961
-
-
Khaminets, A.1
Hunn, J.P.2
Könen-Waisman, S.3
Zhao, Y.O.4
Preukschat, D.5
Coers, J.6
Boyle, J.P.7
Ong, Y.-C.8
Boothroyd, J.C.9
Reichmann, G.10
-
17
-
-
80052235117
-
Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy
-
21757726
-
Traver MK, Henry SC, Cantillana V, Oliver T, Hunn JP, Howard JC, Beer S, Pfeffer K, Coers J, Taylor GA. Immunity-related GTPase M (IRGM) proteins influence the localization of guanylate-binding protein 2 (GBP2) by modulating macroautophagy. J Biol Chem 2011; 286:30471-80; PMID:21757726; https://doi.org/10.1074/jbc.M111.251967
-
(2011)
J Biol Chem
, vol.286
, pp. 30471-30480
-
-
Traver, M.K.1
Henry, S.C.2
Cantillana, V.3
Oliver, T.4
Hunn, J.P.5
Howard, J.C.6
Beer, S.7
Pfeffer, K.8
Coers, J.9
Taylor, G.A.10
-
18
-
-
84944076968
-
p62 Plays a specific role in interferon-γ-induced presentation of a toxoplasma vacuolar antigen
-
26440898
-
Lee Y, Sasai M, Ma JS, Sakaguchi N, Ohshima J, Bando H, Saitoh T, Akira S, Yamamoto M. p62 Plays a specific role in interferon-γ-induced presentation of a toxoplasma vacuolar antigen. Cell Rep 2015; 13:223-233; PMID:26440898; https://doi.org/10.1016/j.celrep.2015.09.005
-
(2015)
Cell Rep
, vol.13
, pp. 223-233
-
-
Lee, Y.1
Sasai, M.2
Ma, J.S.3
Sakaguchi, N.4
Ohshima, J.5
Bando, H.6
Saitoh, T.7
Akira, S.8
Yamamoto, M.9
-
19
-
-
84944242576
-
Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins
-
26417105
-
Haldar AK, Foltz C, Finethy R, Piro AS, Feeley EM, Pilla-Moffett DM, Komatsu M, Frickel E-M, Coers J. Ubiquitin systems mark pathogen-containing vacuoles as targets for host defense by guanylate binding proteins. Proc Natl Acad Sci USA 2015; 112:E5628-37; PMID:26417105; https://doi.org/10.1073/pnas.1515966112
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, pp. E5628-E5637
-
-
Haldar, A.K.1
Foltz, C.2
Finethy, R.3
Piro, A.S.4
Feeley, E.M.5
Pilla-Moffett, D.M.6
Komatsu, M.7
Frickel, E.-M.8
Coers, J.9
-
20
-
-
84876857964
-
Guanylate-binding Protein 1 (Gbp1) Contributes to Cell-autonomous Immunity against Toxoplasma gondii
-
23633952
-
Selleck EM, Fentress SJ, Beatty WL, Degrandi D, Pfeffer K, Virgin HW, MacMicking JD, Sibley LD. Guanylate-binding Protein 1 (Gbp1) Contributes to Cell-autonomous Immunity against Toxoplasma gondii. PLoS Pathog 2013; 9:e1003320; PMID:23633952; https://doi.org/10.1371/journal.ppat.1003320
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003320
-
-
Selleck, E.M.1
Fentress, S.J.2
Beatty, W.L.3
Degrandi, D.4
Pfeffer, K.5
Virgin, H.W.6
MacMicking, J.D.7
Sibley, L.D.8
-
21
-
-
84898471391
-
The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to chlamydia- and toxoplasma-containing vacuoles and host resistance
-
24466199
-
Haldar AK, Piro AS, Pilla DM, Yamamoto M, Coers J. The E2-like conjugation enzyme Atg3 promotes binding of IRG and Gbp proteins to chlamydia- and toxoplasma-containing vacuoles and host resistance. PLoS One 2014; 9:e86684; PMID:24466199; https://doi.org/10.1371/journal.pone.0086684
-
(2014)
PLoS One
, vol.9
-
-
Haldar, A.K.1
Piro, A.S.2
Pilla, D.M.3
Yamamoto, M.4
Coers, J.5
-
22
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
18996346
-
Zhao Z, Fux B, Goodwin M, Dunay IR, Strong D, Miller BC, Cadwell K, Delgado MA, Ponpuak M, Green KG, et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 2008; 4:458-69; PMID:18996346; https://doi.org/10.1016/j.chom.2008.10.003
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-469
-
-
Zhao, Z.1
Fux, B.2
Goodwin, M.3
Dunay, I.R.4
Strong, D.5
Miller, B.C.6
Cadwell, K.7
Delgado, M.A.8
Ponpuak, M.9
Green, K.G.10
-
23
-
-
78751672975
-
Autophagy in immunity and inflammation
-
21248839
-
Levine B, Mizushima N, Virgin HW. Autophagy in immunity and inflammation. Nature 2011; 469:323-35; PMID:21248839; https://doi.org/10.1038/nature09782
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
24
-
-
57649115443
-
Inactive and Active States of the Interferon-inducible Resistance GTPase, Irga6, in Vivo
-
18784077
-
Papic N, Hunn JP, Pawlowski N, Zerrahn J, Howard JC. Inactive and Active States of the Interferon-inducible Resistance GTPase, Irga6, in Vivo. J Biol Chem 2008; 283:32143-51; PMID:18784077; https://doi.org/10.1074/jbc.M804846200
-
(2008)
J Biol Chem
, vol.283
, pp. 32143-32151
-
-
Papic, N.1
Hunn, J.P.2
Pawlowski, N.3
Zerrahn, J.4
Howard, J.C.5
-
25
-
-
84902829671
-
The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy
-
24931121
-
Choi J, Park S, Biering SB, Selleck E, Liu CY, Zhang X, Fujita N, Saitoh T, Akira S, Yoshimori T, et al. The parasitophorous vacuole membrane of Toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 2014; 40:924-35; PMID:24931121; https://doi.org/10.1016/j.immuni.2014.05.006
-
(2014)
Immunity
, vol.40
, pp. 924-935
-
-
Choi, J.1
Park, S.2
Biering, S.B.3
Selleck, E.4
Liu, C.Y.5
Zhang, X.6
Fujita, N.7
Saitoh, T.8
Akira, S.9
Yoshimori, T.10
-
26
-
-
84866122688
-
Autophagy modulation as a potential therapeutic target for diverse diseases
-
22935804
-
Rubinsztein DC, Codogno P, Levine B. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov 2012; 11:709-30; PMID:22935804; https://doi.org/10.1038/nrd3802
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 709-730
-
-
Rubinsztein, D.C.1
Codogno, P.2
Levine, B.3
-
27
-
-
84855645313
-
Mechanisms of Autophagosome Biogenesis
-
22240478
-
Rubinsztein DC, Shpilka T, Elazar Z. Mechanisms of Autophagosome Biogenesis. Current Biology 2012; 22:R29-R34; PMID:22240478; https://doi.org/10.1016/j.cub.2011.11.034
-
(2012)
Current Biology
, vol.22
, pp. R29-R34
-
-
Rubinsztein, D.C.1
Shpilka, T.2
Elazar, Z.3
-
28
-
-
84897535028
-
Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii
-
24563254
-
Ohshima J, Lee Y, Sasai M, Saitoh T, Su Ma J, Kamiyama N, Matsuura Y, Pann-Ghill S, Hayashi M, Ebisu S, et al. Role of mouse and human autophagy proteins in IFN-γ-induced cell-autonomous responses against Toxoplasma gondii. J Immunol 2014; 192:3328-35; PMID:24563254; https://doi.org/10.4049/jimmunol.1302822
-
(2014)
J Immunol
, vol.192
, pp. 3328-3335
-
-
Ohshima, J.1
Lee, Y.2
Sasai, M.3
Saitoh, T.4
Su Ma, J.5
Kamiyama, N.6
Matsuura, Y.7
Pann-Ghill, S.8
Hayashi, M.9
Ebisu, S.10
-
29
-
-
43949143804
-
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
18321988
-
Fujita N, Itoh T, Omori H, Fukuda M, Noda T, Yoshimori T. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008; 19:2092-100; PMID:18321988; https://doi.org/10.1091/mbc.E07-12-1257
-
(2008)
Mol Biol Cell
, vol.19
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
30
-
-
79960878784
-
Atg8: an autophagy-related ubiquitin-like protein family
-
21867568
-
Shpilka T, Weidberg H, Pietrokovski S, Elazar Z. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226; PMID:21867568; https://doi.org/10.1186/gb-2011-12-7-226
-
(2011)
Genome Biol
, vol.12
, pp. 226
-
-
Shpilka, T.1
Weidberg, H.2
Pietrokovski, S.3
Elazar, Z.4
-
31
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
20418806
-
Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V, Elazar Z. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 2010; 29:1792-802; PMID:20418806; https://doi.org/10.1038/emboj.2010.74
-
(2010)
EMBO J
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
32
-
-
84964412536
-
Autophagy of cytoplasmic bulk cargo does not require LC3
-
26237084
-
Engedal N, Seglen PO. Autophagy of cytoplasmic bulk cargo does not require LC3. Autophagy 2016; 12:439-41; PMID:26237084; https://doi.org/10.1080/15548627.2015.1076606
-
(2016)
Autophagy
, vol.12
, pp. 439-441
-
-
Engedal, N.1
Seglen, P.O.2
-
33
-
-
84899821545
-
Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures
-
24668264
-
Lystad AH, Ichimura Y, Takagi K, Yang Y, Pankiv S, Kanegae Y, Kageyama S, Suzuki M, Saito I, Mizushima T, et al. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 2014; 15:557-65; PMID:24668264; https://doi.org/10.1002/embr.201338003
-
(2014)
EMBO Rep
, vol.15
, pp. 557-565
-
-
Lystad, A.H.1
Ichimura, Y.2
Takagi, K.3
Yang, Y.4
Pankiv, S.5
Kanegae, Y.6
Kageyama, S.7
Suzuki, M.8
Saito, I.9
Mizushima, T.10
-
34
-
-
84949057575
-
FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting Region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy
-
26468287
-
Olsvik HL, Lamark T, Takagi K, Larsen KB, Evjen G, Øvervatn A, Mizushima T, Johansen T. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting Region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J Biol Chem 2015; 290:29361-74; PMID:26468287; https://doi.org/10.1074/jbc.M115.686915
-
(2015)
J Biol Chem
, vol.290
, pp. 29361-29374
-
-
Olsvik, H.L.1
Lamark, T.2
Takagi, K.3
Larsen, K.B.4
Evjen, G.5
Øvervatn, A.6
Mizushima, T.7
Johansen, T.8
-
35
-
-
84926406721
-
Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs
-
25684710
-
Szalai P, Hagen LK, Sætre F, Luhr M, Sponheim M, Øverbye A, Mills IG, Seglen PO, Engedal N. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 2015; 333:21-38; PMID:25684710; https://doi.org/10.1016/j.yexcr.2015.02.003
-
(2015)
Exp Cell Res
, vol.333
, pp. 21-38
-
-
Szalai, P.1
Hagen, L.K.2
Sætre, F.3
Luhr, M.4
Sponheim, M.5
Øverbye, A.6
Mills, I.G.7
Seglen, P.O.8
Engedal, N.9
-
36
-
-
84979036004
-
Targeting by AutophaGy proteins (TAG): Targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy
-
27172324
-
Park S, Choi J, Biering SB, Dominici E, Williams LE. Targeting by AutophaGy proteins (TAG): Targeting of IFNG-inducible GTPases to membranes by the LC3 conjugation system of autophagy. Autophagy 2016; 12:1153-67; PMID:27172324; https://doi.org/10.1080/15548627.2016.1178447
-
(2016)
Autophagy
, vol.12
, pp. 1153-1167
-
-
Park, S.1
Choi, J.2
Biering, S.B.3
Dominici, E.4
Williams, L.E.5
-
37
-
-
52049084405
-
The Anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes
-
18922474
-
Haruki H, Nishikawa J, Laemmli UK. The Anchor-away technique: rapid, conditional establishment of yeast mutant phenotypes. Mol Cell 2008; 31:925-32; PMID:18922474; https://doi.org/10.1016/j.molcel.2008.07.020
-
(2008)
Mol Cell
, vol.31
, pp. 925-932
-
-
Haruki, H.1
Nishikawa, J.2
Laemmli, U.K.3
-
38
-
-
84902009946
-
LC3 Binding to the Scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes
-
24914561
-
Fu M-M, Nirschl JJ, Holzbaur ELF. LC3 Binding to the Scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 2014; 29:577-90; PMID:24914561; https://doi.org/10.1016/j.devcel.2014.04.015
-
(2014)
Dev Cell
, vol.29
, pp. 577-590
-
-
Fu, M.-M.1
Nirschl, J.J.2
Holzbaur, E.L.F.3
-
39
-
-
33748506089
-
Human IRGM induces autophagy to eliminate intracellular mycobacteria
-
16888103
-
Singh SB, Davis AS, Taylor GA, Deretic V. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313:1438-41; PMID:16888103; https://doi.org/10.1126/science.1129577
-
(2006)
Science
, vol.313
, pp. 1438-1441
-
-
Singh, S.B.1
Davis, A.S.2
Taylor, G.A.3
Deretic, V.4
-
40
-
-
84869418270
-
Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke
-
22874556
-
He S, Wang C, Dong H, Xia F, Zhou H, Jiang X, Pei C, Ren H, Li H, Li R, et al. Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy 2012; 8:1621-7; PMID:22874556; https://doi.org/10.4161/auto.21561
-
(2012)
Autophagy
, vol.8
, pp. 1621-1627
-
-
He, S.1
Wang, C.2
Dong, H.3
Xia, F.4
Zhou, H.5
Jiang, X.6
Pei, C.7
Ren, H.8
Li, H.9
Li, R.10
-
41
-
-
84928926952
-
IRGM governs the core autophagy machinery to conduct antimicrobial defense
-
25891078
-
Chauhan S, Mandell MA, Deretic V. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol Cell 2015; 58:507-21; PMID:25891078; https://doi.org/10.1016/j.molcel.2015.03.020
-
(2015)
Mol Cell
, vol.58
, pp. 507-521
-
-
Chauhan, S.1
Mandell, M.A.2
Deretic, V.3
-
42
-
-
84864290306
-
IFN-γ-Inducible Irga6 mediates host resistance against chlamydia trachomatis via autophagy
-
19242543
-
Al-Zeer MA, Al-Younes HM, Braun PR, Zerrahn J, Meyer TF. IFN-γ-Inducible Irga6 mediates host resistance against chlamydia trachomatis via autophagy. PLoS ONE 2009; 4:e4588; PMID:19242543
-
(2009)
PLoS ONE
, vol.4
-
-
Al-Zeer, M.A.1
Al-Younes, H.M.2
Braun, P.R.3
Zerrahn, J.4
Meyer, T.F.5
-
43
-
-
84859982621
-
Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma
-
22520467
-
Hwang S, Maloney NS, Bruinsma MW, Goel G, Duan E, Zhang L, Shrestha B, Diamond MS, Dani A, Sosnovtsev SV, et al. Nondegradative role of Atg5-Atg12/ Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 2012; 11:397-409; PMID:22520467; https://doi.org/10.1016/j.chom.2012.03.002
-
(2012)
Cell Host Microbe
, vol.11
, pp. 397-409
-
-
Hwang, S.1
Maloney, N.S.2
Bruinsma, M.W.3
Goel, G.4
Duan, E.5
Zhang, L.6
Shrestha, B.7
Diamond, M.S.8
Dani, A.9
Sosnovtsev, S.V.10
-
44
-
-
84963830521
-
Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection
-
26728391
-
Maric-Biresev J, Hunn JP, Krut O, Helms JB, Martens S, Howard JC. Loss of the interferon-γ-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biology 2016; 14:1-20; PMID:26728391; https://doi.org/10.1186/s12915-016-0255-4
-
(2016)
BMC Biology
, vol.14
, pp. 1-20
-
-
Maric-Biresev, J.1
Hunn, J.P.2
Krut, O.3
Helms, J.B.4
Martens, S.5
Howard, J.C.6
-
45
-
-
84908330381
-
Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System
-
25356593
-
da Fonseca Ferreira-da-Silva M, Springer-Frauenhoff HM, Bohne W, Howard JC. Identification of the Microsporidian Encephalitozoon cuniculi as a New Target of the IFNγ-Inducible IRG Resistance System. PLoS Pathog 2014; 10:e1004449; PMID:25356593; https://doi.org/10.1371/journal.ppat.1004449
-
(2014)
PLoS Pathog
, vol.10
, pp. e1004449
-
-
da Fonseca Ferreira-da-Silva, M.1
Springer-Frauenhoff, H.M.2
Bohne, W.3
Howard, J.C.4
-
46
-
-
84881452463
-
Irgm1 (LRG-47), a regulator of cell-autonomous immunity, does not localize to mycobacterial or listerial phagosomes in IFN-γ-induced mouse cells
-
23842753
-
Springer HM, Schramm M, Taylor GA, Howard JC. Irgm1 (LRG-47), a regulator of cell-autonomous immunity, does not localize to mycobacterial or listerial phagosomes in IFN-γ-induced mouse cells. J Immunol 2013; 191:1765-1774; PMID:23842753; https://doi.org/10.4049/jimmunol.1300641
-
(2013)
J Immunol
, vol.191
, pp. 1765-1774
-
-
Springer, H.M.1
Schramm, M.2
Taylor, G.A.3
Howard, J.C.4
-
47
-
-
0035968207
-
Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells
-
11294868
-
Blader IJ, Manger ID, Boothroyd JC. Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem 2001; 276:24223-31; PMID:11294868; https://doi.org/10.1074/jbc.M100951200
-
(2001)
J Biol Chem
, vol.276
, pp. 24223-24231
-
-
Blader, I.J.1
Manger, I.D.2
Boothroyd, J.C.3
-
48
-
-
84893115383
-
Innate immunity to Toxoplasma gondiiinfection
-
24457485
-
Yarovinsky F. Innate immunity to Toxoplasma gondiiinfection. Nat Rev Immunol 2014; 14:109-21; PMID:24457485; https://doi.org/10.1038/nri3598
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 109-121
-
-
Yarovinsky, F.1
-
49
-
-
84892858470
-
Toxoplasma gondii-Induced Activation of EGFR Prevents Autophagy Protein-Mediated Killing of the Parasite
-
24367261
-
Muniz-Feliciano L, Van Grol J, Portillo J-AC, Liew L, Liu B, Carlin CR, Carruthers VB, Matthews S, Subauste CS. Toxoplasma gondii-Induced Activation of EGFR Prevents Autophagy Protein-Mediated Killing of the Parasite. PLoS Pathog 2013; 9:e1003809; PMID:24367261; https://doi.org/10.1371/journal.ppat.1003809
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003809
-
-
Muniz-Feliciano, L.1
Van Grol, J.2
Portillo, J.-A.C.3
Liew, L.4
Liu, B.5
Carlin, C.R.6
Carruthers, V.B.7
Matthews, S.8
Subauste, C.S.9
-
50
-
-
84924809439
-
Deacetylation of nuclear LC3 drives autophagy initiation under starvation
-
25601754
-
Huang R, Xu Y, Wan W, Shou X, Qian J, You Z, Liu B, Chang C, Zhou T, Lippincott-Schwartz J, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 2015; 57:456-66; PMID:25601754; https://doi.org/10.1016/j.molcel.2014.12.013
-
(2015)
Mol Cell
, vol.57
, pp. 456-466
-
-
Huang, R.1
Xu, Y.2
Wan, W.3
Shou, X.4
Qian, J.5
You, Z.6
Liu, B.7
Chang, C.8
Zhou, T.9
Lippincott-Schwartz, J.10
-
51
-
-
0042206454
-
Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B
-
12740394
-
He H. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278:29278-87; PMID:12740394; https://doi.org/10.1074/jbc.M303800200
-
(2003)
J Biol Chem
, vol.278
, pp. 29278-29287
-
-
He, H.1
-
52
-
-
84923351636
-
Posttranslational modification of autophagy-related proteins in macroautophagy
-
25484070
-
Xie Y, Kang R, Sun X, Zhong M, Huang J, Klionsky DJ, Tang D. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 2015; 11:28-45; PMID:25484070; https://doi.org/10.4161/15548627.2014.984267
-
(2015)
Autophagy
, vol.11
, pp. 28-45
-
-
Xie, Y.1
Kang, R.2
Sun, X.3
Zhong, M.4
Huang, J.5
Klionsky, D.J.6
Tang, D.7
-
53
-
-
84920418471
-
Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 Is Essential for Autophagy
-
25544559
-
Wilkinson DS, Jariwala JS, Anderson E, Mitra K, Meisenhelder J, Chang JT, Ideker T, Hunter T, Nizet V, Dillin A, et al. Phosphorylation of LC3 by the Hippo Kinases STK3/STK4 Is Essential for Autophagy. Mol Cell 2015; 57:55-68; PMID:25544559; https://doi.org/10.1016/j.molcel.2014.11.019
-
(2015)
Mol Cell
, vol.57
, pp. 55-68
-
-
Wilkinson, D.S.1
Jariwala, J.S.2
Anderson, E.3
Mitra, K.4
Meisenhelder, J.5
Chang, J.T.6
Ideker, T.7
Hunter, T.8
Nizet, V.9
Dillin, A.10
-
54
-
-
84879547102
-
IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of ‘self’ IRGM proteins
-
23785284
-
Haldar AK, Saka HA, Piro AS, Dunn JD, Henry SC, Taylor GA, Frickel EM, Valdivia RH, Coers J. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of ‘self’ IRGM proteins. PLoS Pathog 2013; 9:e1003414-6; PMID:23785284; https://doi.org/10.1371/journal.ppat.1003414
-
(2013)
PLoS Pathog
, vol.9
, pp. e1003414-e1003416
-
-
Haldar, A.K.1
Saka, H.A.2
Piro, A.S.3
Dunn, J.D.4
Henry, S.C.5
Taylor, G.A.6
Frickel, E.M.7
Valdivia, R.H.8
Coers, J.9
-
55
-
-
73649087254
-
Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity
-
19850931
-
Kubota C, Torii S, Hou N, Saito N, Yoshimoto Y, Imai H, Takeuchi T. Constitutive reactive oxygen species generation from autophagosome/lysosome in neuronal oxidative toxicity. J Biol Chem 2010; 285:667-74; PMID:19850931; https://doi.org/10.1074/jbc.M109.053058
-
(2010)
J Biol Chem
, vol.285
, pp. 667-674
-
-
Kubota, C.1
Torii, S.2
Hou, N.3
Saito, N.4
Yoshimoto, Y.5
Imai, H.6
Takeuchi, T.7
-
56
-
-
84864886799
-
Dual roles of Atg8−PE deconjugation by Atg4 in autophagy
-
NOT_FOUND
-
Yu Z-Q, Ni T, Hong B, Wang H-Y, Jiang F-J, Zou S, Chen Y, Zheng X-L, Klionsky DJ, Liang Y, et al. Dual roles of Atg8−PE deconjugation by Atg4 in autophagy. Autophagy 2014; 8:883-92; PMID:NOT_FOUND; https://doi.org/10.4161/auto.19652
-
(2014)
Autophagy
, vol.8
, pp. 883-892
-
-
Yu, Z.-Q.1
Ni, T.2
Hong, B.3
Wang, H.-Y.4
Jiang, F.-J.5
Zou, S.6
Chen, Y.7
Zheng, X.-L.8
Klionsky, D.J.9
Liang, Y.10
-
57
-
-
84920380278
-
The functional and pathologic relevance of autophagy proteases
-
Can't
-
Fernández AF, Lopez-Otin C. The functional and pathologic relevance of autophagy proteases. J Clin Invest 2015; 125:33-41; PMID:Can't; https://doi.org/10.1172/JCI73940
-
(2015)
J Clin Invest
, vol.125
, pp. 33-41
-
-
Fernández, A.F.1
Lopez-Otin, C.2
-
58
-
-
84973633815
-
Mammalian Autophagy: How Does It Work?
-
26865532
-
Bento CF, Renna M, Ghislat G, Puri C, Ashkenazi A, Vicinanza M, Menzies FM, Rubinsztein DC. Mammalian Autophagy: How Does It Work? Annu Rev Biochem 2016; 85:685-713; PMID:26865532; https://doi.org/10.1146/annurev-biochem-060815-014556
-
(2016)
Annu Rev Biochem
, vol.85
, pp. 685-713
-
-
Bento, C.F.1
Renna, M.2
Ghislat, G.3
Puri, C.4
Ashkenazi, A.5
Vicinanza, M.6
Menzies, F.M.7
Rubinsztein, D.C.8
-
59
-
-
10944253145
-
Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages
-
15607973
-
Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V. Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 2004; 119:753-66; PMID:15607973; https://doi.org/10.1016/j.cell.2004.11.038
-
(2004)
Cell
, vol.119
, pp. 753-766
-
-
Gutierrez, M.G.1
Master, S.S.2
Singh, S.B.3
Taylor, G.A.4
Colombo, M.I.5
Deretic, V.6
-
60
-
-
84855293818
-
IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network
-
22174682
-
GrEgoire IP, Richetta C, Meyniel-Schicklin L, Borel S, Pradezynski F, Diaz O, Deloire A, Azocar O, Baguet J, Le Breton M, et al. IRGM Is a Common Target of RNA Viruses that Subvert the Autophagy Network. PLoS Pathog 2011; 7:e1002422; PMID:22174682; https://doi.org/10.1371/journal.ppat.1002422
-
(2011)
PLoS Pathog
, vol.7
, pp. e1002422
-
-
GrEgoire, I.P.1
Richetta, C.2
Meyniel-Schicklin, L.3
Borel, S.4
Pradezynski, F.5
Diaz, O.6
Deloire, A.7
Azocar, O.8
Baguet, J.9
Le Breton, M.10
-
61
-
-
84885662059
-
Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site
-
23884233
-
Koyama-Honda I, Itakura E, Fujiwara TK, Mizushima N. Temporal analysis of recruitment of mammalian ATG proteins to the autophagosome formation site. Autophagy 2013; 9:1491-1499; PMID:23884233; https://doi.org/10.4161/auto.25529
-
(2013)
Autophagy
, vol.9
, pp. 1491-1499
-
-
Koyama-Honda, I.1
Itakura, E.2
Fujiwara, T.K.3
Mizushima, N.4
-
62
-
-
0035911162
-
Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells
-
11266458
-
Mizushima N, Yamamoto A, Hatano M, Kobayashi Y, Kabeya Y, Suzuki K, Tokuhisa T, Ohsumi Y, Yoshimori T. Dissection of autophagosome formation using Apg5-deficient mouse embryonic stem cells. J Cell Biol 2001; 152:657-68; PMID:11266458; https://doi.org/10.1083/jcb.152.4.657
-
(2001)
J Cell Biol
, vol.152
, pp. 657-668
-
-
Mizushima, N.1
Yamamoto, A.2
Hatano, M.3
Kobayashi, Y.4
Kabeya, Y.5
Suzuki, K.6
Tokuhisa, T.7
Ohsumi, Y.8
Yoshimori, T.9
-
63
-
-
84869210001
-
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
-
23064152
-
Romanov J, Walczak M, Ibiricu I, Schüchner S, Ogris E, Kraft C, Martens S. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 2012; 31:4304-17; PMID:23064152; https://doi.org/10.1038/emboj.2012.278
-
(2012)
EMBO J
, vol.31
, pp. 4304-4317
-
-
Romanov, J.1
Walczak, M.2
Ibiricu, I.3
Schüchner, S.4
Ogris, E.5
Kraft, C.6
Martens, S.7
-
64
-
-
0037166241
-
Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast
-
11897782
-
Kuma A, Mizushima N, Ishihara N, Ohsumi Y. Formation of the approximately 350-kDa Apg12-Apg5.Apg16 multimeric complex, mediated by Apg16 oligomerization, is essential for autophagy in yeast. J Biol Chem 2002; 277:18619-25; PMID:11897782; https://doi.org/10.1074/jbc.M111889200
-
(2002)
J Biol Chem
, vol.277
, pp. 18619-18625
-
-
Kuma, A.1
Mizushima, N.2
Ishihara, N.3
Ohsumi, Y.4
-
65
-
-
84904575441
-
WIPI2 links LC3-conjugation with PI3P, autophagosome formation and pathogen clearance by recruiting Atg12–5-16L1
-
24954904
-
Dooley HC, Razi M, Polson HEJ, Girardin SE, Wilson MI, Tooze SA. WIPI2 links LC3-conjugation with PI3P, autophagosome formation and pathogen clearance by recruiting Atg12–5-16L1. Mol Cell 2014; 55:238-52; PMID:24954904; https://doi.org/10.1016/j.molcel.2014.05.021
-
(2014)
Mol Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.J.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
66
-
-
74049140368
-
Dimeric coiled-coil structure of saccharomyces cerevisiae Atg16 and its functional significance in autophagy
-
19889643
-
Fujioka Y, Noda NN, Nakatogawa H, Ohsumi Y, Inagaki F. Dimeric coiled-coil structure of saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem 2010; 285:1508-15; PMID:19889643; https://doi.org/10.1074/jbc.M109.053520
-
(2010)
J Biol Chem
, vol.285
, pp. 1508-1515
-
-
Fujioka, Y.1
Noda, N.N.2
Nakatogawa, H.3
Ohsumi, Y.4
Inagaki, F.5
-
67
-
-
84886897936
-
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
-
24100292
-
Fujita N, Morita E, Itoh T, Tanaka A, Nakaoka M, Osada Y, Umemoto T, Saitoh T, Nakatogawa H, Kobayashi S, et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 2013; 203:115-28; PMID:24100292; https://doi.org/10.1083/jcb.201304188
-
(2013)
J Cell Biol
, vol.203
, pp. 115-128
-
-
Fujita, N.1
Morita, E.2
Itoh, T.3
Tanaka, A.4
Nakaoka, M.5
Osada, Y.6
Umemoto, T.7
Saitoh, T.8
Nakatogawa, H.9
Kobayashi, S.10
|