-
1
-
-
84862295360
-
Guidelines for the use and interpretation of assays for monitoring autophagy
-
22966490
-
D.J.Klionsky, F.C.Abdalla, H.Abeliovich, R.T.Abraham, A.Acevedo-Arozena, K.Adeli, L.Agholme, M.Agnello, P.Agostinis, J.A.Aguirre-Ghiso, et al. Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 2012; 8:445-544; PMID:22966490; http://dx.doi.org/10.4161/auto.19496
-
(2012)
Autophagy
, vol.8
, pp. 445-544
-
-
Klionsky, D.J.1
Abdalla, F.C.2
Abeliovich, H.3
Abraham, R.T.4
Acevedo-Arozena, A.5
Adeli, K.6
Agholme, L.7
Agnello, M.8
Agostinis, P.9
Aguirre-Ghiso, J.A.10
-
2
-
-
79960878784
-
Atg8: an autophagy-related ubiquitin-like protein family
-
21867568
-
T.Shpilka, H.Weidberg, S.Pietrokovski, Z.Elazar. Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 2011; 12:226; PMID:21867568; http://dx.doi.org/10.1186/gb-2011-12-7-226
-
(2011)
Genome Biol
, vol.12
, pp. 226
-
-
Shpilka, T.1
Weidberg, H.2
Pietrokovski, S.3
Elazar, Z.4
-
3
-
-
84891461247
-
The LC3 interactome at a glance
-
24345374
-
P.Wild, D.G.McEwan, I.Dikic. The LC3 interactome at a glance. J Cell Sci 2014; 127:3-9; PMID:24345374; http://dx.doi.org/10.1242/jcs.140426
-
(2014)
J Cell Sci
, vol.127
, pp. 3-9
-
-
Wild, P.1
McEwan, D.G.2
Dikic, I.3
-
4
-
-
84902009946
-
LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes
-
24914561
-
M.-M.Fu, J.J.Nirschl, E.L.F.Holzbaur. LC3 binding to the scaffolding protein JIP1 regulates processive dynein-driven transport of autophagosomes. Dev Cell 2014; 29:577-90; PMID:24914561; http://dx.doi.org/10.1016/j.devcel.2014.04.015
-
(2014)
Dev Cell
, vol.29
, pp. 577-590
-
-
Fu, M.-M.1
Nirschl, J.J.2
Holzbaur, E.L.F.3
-
5
-
-
37549043217
-
Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis
-
18097414
-
M.A.Sanjuan, C.P.Dillon, S.W.G.Tait, S.Moshiach, F.Dorsey, S.Connell, M.Komatsu, K.Tanaka, J.L.Cleveland, S.Withoff, et al. Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis. Nature 2007; 450:1253-7; PMID:18097414; http://dx.doi.org/10.1038/nature06421
-
(2007)
Nature
, vol.450
, pp. 1253-1257
-
-
Sanjuan, M.A.1
Dillon, C.P.2
Tait, S.W.G.3
Moshiach, S.4
Dorsey, F.5
Connell, S.6
Komatsu, M.7
Tanaka, K.8
Cleveland, J.L.9
Withoff, S.10
-
6
-
-
80755175726
-
Autophagy proteins regulate the secretory component of osteoclastic bone resorption
-
22055344
-
C.J.DeSelm, B.C.Miller, W.Zou, W.L.Beatty, E.van Meel, Y.Takahata, J.Klumperman, S.A.Tooze, S.L.Teitelbaum, H.W.Virgin. Autophagy proteins regulate the secretory component of osteoclastic bone resorption. Dev Cell 2011; 21:966-74; PMID:22055344; http://dx.doi.org/10.1016/j.devcel.2011.08.016
-
(2011)
Dev Cell
, vol.21
, pp. 966-974
-
-
DeSelm, C.J.1
Miller, B.C.2
Zou, W.3
Beatty, W.L.4
van Meel, E.5
Takahata, Y.6
Klumperman, J.7
Tooze, S.A.8
Teitelbaum, S.L.9
Virgin, H.W.10
-
7
-
-
84890555657
-
Autophagy proteins control goblet cell function by potentiating reactive oxygen species production
-
24185898
-
K.K.Patel, H.Miyoshi, W.L.Beatty, R.D.Head, N.P.Malvin, K.Cadwell, J.-L.Guan, T.Saitoh, S.Akira, P.O.Seglen, et al. Autophagy proteins control goblet cell function by potentiating reactive oxygen species production. EMBO J 2013; 32:3130-44; PMID:24185898; http://dx.doi.org/10.1038/emboj.2013.233
-
(2013)
EMBO J
, vol.32
, pp. 3130-3144
-
-
Patel, K.K.1
Miyoshi, H.2
Beatty, W.L.3
Head, R.D.4
Malvin, N.P.5
Cadwell, K.6
Guan, J.-L.7
Saitoh, T.8
Akira, S.9
Seglen, P.O.10
-
8
-
-
84896906111
-
LC3-associated phagocytosis
-
24413059
-
S.Romao, C.Münz. LC3-associated phagocytosis. Autophagy 2014; 10:526-8; PMID:24413059; http://dx.doi.org/10.4161/auto.27606
-
(2014)
Autophagy
, vol.10
, pp. 526-528
-
-
Romao, S.1
Münz, C.2
-
9
-
-
84934287492
-
Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins
-
26098576
-
J.Martinez, R.K.S.Malireddi, Q.Lu, L.D.Cunha, S.Pelletier, S.Gingras, R.Orchard, J.-L.Guan, H.Tan, J.Peng, et al. Molecular characterization of LC3-associated phagocytosis reveals distinct roles for Rubicon, NOX2 and autophagy proteins. Nat Cell Biol 2015; 17:893-906; PMID:26098576; http://dx.doi.org/10.1038/ncb3192
-
(2015)
Nat Cell Biol
, vol.17
, pp. 893-906
-
-
Martinez, J.1
Malireddi, R.K.S.2
Lu, Q.3
Cunha, L.D.4
Pelletier, S.5
Gingras, S.6
Orchard, R.7
Guan, J.-L.8
Tan, H.9
Peng, J.10
-
10
-
-
43949143804
-
The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy
-
18321988
-
N.Fujita, T.Itoh, H.Omori, M.Fukuda, T.Noda, T.Yoshimori. The Atg16L complex specifies the site of LC3 lipidation for membrane biogenesis in autophagy. Mol Biol Cell 2008; 19(5):2092-100; PMID:18321988; http://dx.doi.org/10.1091/mbc.E07-12-1257
-
(2008)
Mol Biol Cell
, vol.19
, pp. 2092-2100
-
-
Fujita, N.1
Itoh, T.2
Omori, H.3
Fukuda, M.4
Noda, T.5
Yoshimori, T.6
-
11
-
-
84902829671
-
The parasitophorous vacuole membrane of toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy
-
24931121
-
J.Choi, S.Park, S.B.Biering, E.Selleck, C.Y.Liu, X.Zhang, N.Fujita, T.Saitoh, S.Akira, T.Yoshimori, et al. The parasitophorous vacuole membrane of toxoplasma gondii is targeted for disruption by ubiquitin-like conjugation systems of autophagy. Immunity 2014; 40:924-35; PMID:24931121; http://dx.doi.org/10.1016/j.immuni.2014.05.006
-
(2014)
Immunity
, vol.40
, pp. 924-935
-
-
Choi, J.1
Park, S.2
Biering, S.B.3
Selleck, E.4
Liu, C.Y.5
Zhang, X.6
Fujita, N.7
Saitoh, T.8
Akira, S.9
Yoshimori, T.10
-
12
-
-
0029738461
-
Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore
-
8710885
-
E.Suss-Toby, J.Zimmerberg, G.E.Ward. Toxoplasma invasion: the parasitophorous vacuole is formed from host cell plasma membrane and pinches off via a fission pore. Proc Natl Acad Sci USA 1996; 93:8413-8; PMID:8710885; http://dx.doi.org/10.1073/pnas.93.16.8413
-
(1996)
Proc Natl Acad Sci USA
, vol.93
, pp. 8413-8418
-
-
Suss-Toby, E.1
Zimmerberg, J.2
Ward, G.E.3
-
13
-
-
46249112488
-
Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane
-
18512349
-
A.P.Sinai. Biogenesis of and activities at the Toxoplasma gondii parasitophorous vacuole membrane. Subcell Biochem 2008; 47:155-64; PMID:18512349; http://dx.doi.org/10.1007/978-0-387-78267-6_12
-
(2008)
Subcell Biochem
, vol.47
, pp. 155-164
-
-
Sinai, A.P.1
-
14
-
-
84907459283
-
Toxoplasma gondii development of its replicative niche: in its host cell and beyond
-
24951442
-
I.J.Blader, A.A.Koshy. Toxoplasma gondii development of its replicative niche: in its host cell and beyond. Eukaryot Cell 2014; 13:965-76; PMID:24951442; http://dx.doi.org/10.1128/EC.00081-14
-
(2014)
Eukaryot Cell
, vol.13
, pp. 965-976
-
-
Blader, I.J.1
Koshy, A.A.2
-
15
-
-
84893115383
-
Innate immunity to Toxoplasma gondiiinfection
-
24457485
-
F.Yarovinsky. Innate immunity to Toxoplasma gondiiinfection. Nat Rev Immunol 2014; 14:109-21; PMID:24457485; http://dx.doi.org/10.1038/nri3598
-
(2014)
Nat Rev Immunol
, vol.14
, pp. 109-121
-
-
Yarovinsky, F.1
-
16
-
-
84867751254
-
Modulation of innate immunity by Toxoplasma gondii virulence effectors
-
23070557
-
C.A.Hunter, L.D.Sibley. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol 2012; 10:766-78; PMID:23070557; http://dx.doi.org/10.1038/nrmicro2858
-
(2012)
Nat Rev Microbiol
, vol.10
, pp. 766-778
-
-
Hunter, C.A.1
Sibley, L.D.2
-
17
-
-
77956525570
-
Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-Derived vesicles exporting short-lived ERAD regulators, for replication
-
20542253
-
F.Reggiori, I.Monastyrska, M.H.Verheije, T.Calì, M.Ulasli, S.Bianchi, R.Bernasconi, C.A.M.de Haan, M.Molinari. Coronaviruses hijack the LC3-I-Positive EDEMosomes, ER-Derived vesicles exporting short-lived ERAD regulators, for replication. Cell Host Microbe 2010; 7:500-8; PMID:20542253; http://dx.doi.org/10.1016/j.chom.2010.05.013
-
(2010)
Cell Host Microbe
, vol.7
, pp. 500-508
-
-
Reggiori, F.1
Monastyrska, I.2
Verheije, M.H.3
Calì, T.4
Ulasli, M.5
Bianchi, S.6
Bernasconi, R.7
de Haan, C.A.M.8
Molinari, M.9
-
18
-
-
38149098485
-
Developmental expression of LC3α and β: Absence of fibronectin or autophagy phenotype in LC3β knockout mice
-
G.M.Cann, C.Guignabert, L.Ying, N.Deshpande, J.M.Bekker, L.Wang, B.Zhou, M.Rabinovitch. Developmental expression of LC3α and β: Absence of fibronectin or autophagy phenotype in LC3β knockout mice. Dev Dyn 2007; 237:187-95; http://dx.doi.org/10.1002/dvdy.21392
-
(2007)
Dev Dyn
, vol.237
, pp. 187-195
-
-
Cann, G.M.1
Guignabert, C.2
Ying, L.3
Deshpande, N.4
Bekker, J.M.5
Wang, L.6
Zhou, B.7
Rabinovitch, M.8
-
19
-
-
77953122645
-
LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis
-
20418806
-
H.Weidberg, E.Shvets, T.Shpilka, F.Shimron, V.Shinder, Z.Elazar. LC3 and GATE-16/GABARAP subfamilies are both essential yet act differently in autophagosome biogenesis. EMBO J 2010; 29:1792-802; PMID:20418806; http://dx.doi.org/10.1038/emboj.2010.74
-
(2010)
EMBO J
, vol.29
, pp. 1792-1802
-
-
Weidberg, H.1
Shvets, E.2
Shpilka, T.3
Shimron, F.4
Shinder, V.5
Elazar, Z.6
-
21
-
-
84899821545
-
Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures
-
24668264
-
A.H.Lystad, Y.Ichimura, K.Takagi, Y.Yang, S.Pankiv, Y.Kanegae, S.Kageyama, M.Suzuki, I.Saito, T.Mizushima, et al. Structural determinants in GABARAP required for the selective binding and recruitment of ALFY to LC3B-positive structures. EMBO Rep 2014; 15:557-65; PMID:24668264; http://dx.doi.org/10.1002/embr.201338003
-
(2014)
EMBO Rep
, vol.15
, pp. 557-565
-
-
Lystad, A.H.1
Ichimura, Y.2
Takagi, K.3
Yang, Y.4
Pankiv, S.5
Kanegae, Y.6
Kageyama, S.7
Suzuki, M.8
Saito, I.9
Mizushima, T.10
-
22
-
-
84949057575
-
FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy
-
26468287
-
H.L.Olsvik, T.Lamark, K.Takagi, K.B.Larsen, G.Evjen, A.Øvervatn, T.Mizushima, T.Johansen. FYCO1 contains a C-terminally extended, LC3A/B-preferring LC3-interacting region (LIR) motif required for efficient maturation of autophagosomes during basal autophagy. J Biol Chem 2015; 290:29361-74; PMID:26468287; http://dx.doi.org/10.1074/jbc.M115.686915
-
(2015)
J Biol Chem
, vol.290
, pp. 29361-29374
-
-
Olsvik, H.L.1
Lamark, T.2
Takagi, K.3
Larsen, K.B.4
Evjen, G.5
Øvervatn, A.6
Mizushima, T.7
Johansen, T.8
-
23
-
-
84926406721
-
Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs
-
25684710
-
P.Szalai, L.K.Hagen, F.Sætre, M.Luhr, M.Sponheim, A.Øverbye, I.G.Mills, P.O.Seglen, N.Engedal. Autophagic bulk sequestration of cytosolic cargo is independent of LC3, but requires GABARAPs. Exp Cell Res 2015; 333:21-38; PMID:25684710; http://dx.doi.org/10.1016/j.yexcr.2015.02.003
-
(2015)
Exp Cell Res
, vol.333
, pp. 21-38
-
-
Szalai, P.1
Hagen, L.K.2
Sætre, F.3
Luhr, M.4
Sponheim, M.5
Øverbye, A.6
Mills, I.G.7
Seglen, P.O.8
Engedal, N.9
-
24
-
-
0038325675
-
Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate
-
12665549
-
N.Mizushima. Mouse Apg16L, a novel WD-repeat protein, targets to the autophagic isolation membrane with the Apg12-Apg5 conjugate. J Cell Sci 2003; 116:1679-88; PMID:12665549; http://dx.doi.org/10.1242/jcs.00381
-
(2003)
J Cell Sci
, vol.116
, pp. 1679-1688
-
-
Mizushima, N.1
-
25
-
-
50249098491
-
Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation
-
18448665
-
T.Itoh, N.Fujita, E.Kanno, A.Yamamoto, T.Yoshimori, M.Fukuda. Golgi-resident small GTPase Rab33B interacts with Atg16L and modulates autophagosome formation. Mol Biol Cell 2008; 19:2916-25; PMID:18448665; http://dx.doi.org/10.1091/mbc.E07-12-1231
-
(2008)
Mol Biol Cell
, vol.19
, pp. 2916-2925
-
-
Itoh, T.1
Fujita, N.2
Kanno, E.3
Yamamoto, A.4
Yoshimori, T.5
Fukuda, M.6
-
26
-
-
84873569898
-
Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy
-
23262492
-
N.Gammoh, O.Florey, M.Overholtzer, X.Jiang. Interaction between FIP200 and ATG16L1 distinguishes ULK1 complex-dependent and -independent autophagy. Nat Struct Mol Biol 2013; 20:144-9; PMID:23262492; http://dx.doi.org/10.1038/nsmb.2475
-
(2013)
Nat Struct Mol Biol
, vol.20
, pp. 144-149
-
-
Gammoh, N.1
Florey, O.2
Overholtzer, M.3
Jiang, X.4
-
27
-
-
84886897936
-
Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin
-
24100292
-
N.Fujita, E.Morita, T.Itoh, A.Tanaka, M.Nakaoka, Y.Osada, T.Umemoto, T.Saitoh, H.Nakatogawa, S.Kobayashi, et al. Recruitment of the autophagic machinery to endosomes during infection is mediated by ubiquitin. J Cell Biol 2013; 203:115-28; PMID:24100292; http://dx.doi.org/10.1083/jcb.201304188
-
(2013)
J Cell Biol
, vol.203
, pp. 115-128
-
-
Fujita, N.1
Morita, E.2
Itoh, T.3
Tanaka, A.4
Nakaoka, M.5
Osada, Y.6
Umemoto, T.7
Saitoh, T.8
Nakatogawa, H.9
Kobayashi, S.10
-
28
-
-
84904575441
-
WIPI2 links LC3-Conjugation with PI3P, autophagosome formation and pathogen clearance by recruiting Atg12–5-16L1
-
24954904
-
H.C.Dooley, M.Razi, H.E.J.Polson, S.E.Girardin, M.I.Wilson, S.A.Tooze. WIPI2 links LC3-Conjugation with PI3P, autophagosome formation and pathogen clearance by recruiting Atg12–5-16L1. Mol Cell 2014; 55:238-52; PMID:24954904; http://dx.doi.org/10.1016/j.molcel.2014.05.021
-
(2014)
Mol Cell
, vol.55
, pp. 238-252
-
-
Dooley, H.C.1
Razi, M.2
Polson, H.E.J.3
Girardin, S.E.4
Wilson, M.I.5
Tooze, S.A.6
-
29
-
-
54449089270
-
Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification
-
18614539
-
P.J.Roberts, N.Mitin, P.J.Keller, E.J.Chenette, J.P.Madigan, R.O.Currin, A.D.Cox, O.Wilson, P.Kirschmeier, C.J.Der. Rho family GTPase modification and dependence on CAAX motif-signaled posttranslational modification. J Biol Chem 2008; 283:25150-63; PMID:18614539; http://dx.doi.org/10.1074/jbc.M800882200
-
(2008)
J Biol Chem
, vol.283
, pp. 25150-25163
-
-
Roberts, P.J.1
Mitin, N.2
Keller, P.J.3
Chenette, E.J.4
Madigan, J.P.5
Currin, R.O.6
Cox, A.D.7
Wilson, O.8
Kirschmeier, P.9
Der, C.J.10
-
30
-
-
52049084405
-
The anchor-away technique: rapid, conditional establishment of Yeast mutant phenotypes
-
18922474
-
H.Haruki, J.Nishikawa, U.K.Laemmli. The anchor-away technique: rapid, conditional establishment of Yeast mutant phenotypes. Mol Cell 2008; 31:925-32; PMID:18922474; http://dx.doi.org/10.1016/j.molcel.2008.07.020
-
(2008)
Mol Cell
, vol.31
, pp. 925-932
-
-
Haruki, H.1
Nishikawa, J.2
Laemmli, U.K.3
-
31
-
-
84919777530
-
Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy
-
25483962
-
S.Park, S.-G.Choi, S.-M.Yoo, J.H.Son, Y.-K.Jung. Choline dehydrogenase interacts with SQSTM1/p62 to recruit LC3 and stimulate mitophagy. Autophagy 2014; 10:1906-20; PMID:25483962; http://dx.doi.org/10.4161/auto.32177
-
(2014)
Autophagy
, vol.10
, pp. 1906-1920
-
-
Park, S.1
Choi, S.-G.2
Yoo, S.-M.3
Son, J.H.4
Jung, Y.-K.5
-
32
-
-
84937431778
-
Mechanisms of autophagy
-
25747593
-
N.N.Noda, F.Inagaki. Mechanisms of autophagy. Annu Rev Biophys 2015; 44:101-22; PMID:25747593; http://dx.doi.org/10.1146/annurev-biophys-060414-034248
-
(2015)
Annu Rev Biophys
, vol.44
, pp. 101-122
-
-
Noda, N.N.1
Inagaki, F.2
-
33
-
-
84869210001
-
Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation
-
23064152
-
J.Romanov, M.Walczak, I.Ibiricu, S.Schüchner, E.Ogris, C.Kraft, S.Martens. Mechanism and functions of membrane binding by the Atg5-Atg12/Atg16 complex during autophagosome formation. EMBO J 2012; 31:4304-17; PMID:23064152; http://dx.doi.org/10.1038/emboj.2012.278
-
(2012)
EMBO J
, vol.31
, pp. 4304-4317
-
-
Romanov, J.1
Walczak, M.2
Ibiricu, I.3
Schüchner, S.4
Ogris, E.5
Kraft, C.6
Martens, S.7
-
34
-
-
84892858470
-
Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite
-
24367261
-
L.Muniz-Feliciano, J.Van Grol, J.-A.C.Portillo, L.Liew, B.Liu, C.R.Carlin, V.B.Carruthers, S.Matthews, C.S.Subauste. Toxoplasma gondii-induced activation of EGFR prevents autophagy protein-mediated killing of the parasite. PLoS Pathog 2013; 9:e1003809; PMID:24367261; http://dx.doi.org/10.1371/journal.ppat.1003809
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003809
-
-
Muniz-Feliciano, L.1
Van Grol, J.2
Portillo, J.-A.C.3
Liew, L.4
Liu, B.5
Carlin, C.R.6
Carruthers, V.B.7
Matthews, S.8
Subauste, C.S.9
-
35
-
-
84884688909
-
Self and non-self discrimination of intracellular membranes by the innate immune system
-
24068918
-
J.Coers. Self and non-self discrimination of intracellular membranes by the innate immune system. PLoS Pathog 2013; 9:e1003538; PMID:24068918; http://dx.doi.org/10.1371/journal.ppat.1003538
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003538
-
-
Coers, J.1
-
36
-
-
53549109432
-
Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii
-
18772884
-
J.P.Hunn, S.Koenen-Waisman, N.Papic, N.Schroeder, N.Pawlowski, R.Lange, F.Kaiser, J.Zerrahn, S.Martens, J.C.Howard. Regulatory interactions between IRG resistance GTPases in the cellular response to Toxoplasma gondii. EMBO J 2008; 27:2495-509; PMID:18772884; http://dx.doi.org/10.1038/emboj.2008.176
-
(2008)
EMBO J
, vol.27
, pp. 2495-2509
-
-
Hunn, J.P.1
Koenen-Waisman, S.2
Papic, N.3
Schroeder, N.4
Pawlowski, N.5
Lange, R.6
Kaiser, F.7
Zerrahn, J.8
Martens, S.9
Howard, J.C.10
-
37
-
-
84879547102
-
IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of ‘self’ IRGM proteins
-
23785284
-
A.K.Haldar, H.A.Saka, A.S.Piro, J.D.Dunn, S.C.Henry, G.A.Taylor, E.M.Frickel, R.H.Valdivia, J.Coers. IRG and GBP host resistance factors target aberrant, “non-self” vacuoles characterized by the missing of ‘self’ IRGM proteins. PLoS Pathog 2013; 9:e1003414; PMID:23785284; http://dx.doi.org/10.1371/journal.ppat.1003414
-
(2013)
PLoS Pathog
, vol.9
, pp. 1003414
-
-
Haldar, A.K.1
Saka, H.A.2
Piro, A.S.3
Dunn, J.D.4
Henry, S.C.5
Taylor, G.A.6
Frickel, E.M.7
Valdivia, R.H.8
Coers, J.9
-
38
-
-
33748506089
-
Human IRGM induces autophagy to eliminate intracellular mycobacteria
-
16888103
-
S.B.Singh, A.S.Davis, G.A.Taylor, V.Deretic. Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 2006; 313:1438-41; PMID:16888103; http://dx.doi.org/10.1126/science.1129577
-
(2006)
Science
, vol.313
, pp. 1438-1441
-
-
Singh, S.B.1
Davis, A.S.2
Taylor, G.A.3
Deretic, V.4
-
39
-
-
84869418270
-
Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke
-
22874556
-
S.He, C.Wang, H.Dong, F.Xia, H.Zhou, X.Jiang, C.Pei, H.Ren, H.Li, R.Li, et al. Immune-related GTPase M (IRGM1) regulates neuronal autophagy in a mouse model of stroke. Autophagy 2012; 8:1621-7; PMID:22874556; http://dx.doi.org/10.4161/auto.21561
-
(2012)
Autophagy
, vol.8
, pp. 1621-1627
-
-
He, S.1
Wang, C.2
Dong, H.3
Xia, F.4
Zhou, H.5
Jiang, X.6
Pei, C.7
Ren, H.8
Li, H.9
Li, R.10
-
40
-
-
84928926952
-
IRGM governs the core autophagy machinery to conduct antimicrobial defense
-
25891078
-
S.Chauhan, M.A.Mandell, V.Deretic. IRGM governs the core autophagy machinery to conduct antimicrobial defense. Mol Cell 2015; 58:507-21; PMID:25891078; http://dx.doi.org/10.1016/j.molcel.2015.03.020
-
(2015)
Mol Cell
, vol.58
, pp. 507-521
-
-
Chauhan, S.1
Mandell, M.A.2
Deretic, V.3
-
41
-
-
84864290306
-
IFNG-Inducible Irga6 mediates host resistance against chlamydia trachomatis via autophagy
-
19242543
-
M.A.Al-Zeer, H.M.Al-Younes, P.R.Braun, J.Zerrahn, T.F.Meyer. IFNG-Inducible Irga6 mediates host resistance against chlamydia trachomatis via autophagy. PLoS ONE 2009; 4:e4588; PMID:19242543; http://dx.doi.org/10.1371/journal.pone.0004588
-
(2009)
PLoS ONE
, vol.4
, pp. 4588
-
-
Al-Zeer, M.A.1
Al-Younes, H.M.2
Braun, P.R.3
Zerrahn, J.4
Meyer, T.F.5
-
42
-
-
80051765668
-
Innate responses to Toxoplasma gondii in mice and humans
-
21550851
-
R.Pifer, F.Yarovinsky. Innate responses to Toxoplasma gondii in mice and humans. Trends Parasitol 2011; 27:388-93; PMID:21550851; http://dx.doi.org/10.1016/j.pt.2011.03.009
-
(2011)
Trends Parasitol
, vol.27
, pp. 388-393
-
-
Pifer, R.1
Yarovinsky, F.2
-
43
-
-
84897535028
-
Role of mouse and human autophagy proteins in IFNG-induced cell-autonomous responses against Toxoplasma gondii
-
24563254
-
J.Ohshima, Y.Lee, M.Sasai, T.Saitoh, J.Su Ma, N.Kamiyama, Y.Matsuura, S.Pann-Ghill, M.Hayashi, S.Ebisu, et al. Role of mouse and human autophagy proteins in IFNG-induced cell-autonomous responses against Toxoplasma gondii. J Immunol 2014; 192:3328-35; PMID:24563254; http://dx.doi.org/10.4049/jimmunol.1302822
-
(2014)
J Immunol
, vol.192
, pp. 3328-3335
-
-
Ohshima, J.1
Lee, Y.2
Sasai, M.3
Saitoh, T.4
Su Ma, J.5
Kamiyama, N.6
Matsuura, Y.7
Pann-Ghill, S.8
Hayashi, M.9
Ebisu, S.10
-
44
-
-
84946606192
-
A noncanonical autophagy pathway restricts toxoplasma gondii growth in a strain-specific manner in IFNG-activated human cells
-
26350966
-
E.M.Selleck, R.C.Orchard, K.G.Lassen, W.L.Beatty, R.J.Xavier, B.Levine, H.W.Virgin, L.D.Sibley. A noncanonical autophagy pathway restricts toxoplasma gondii growth in a strain-specific manner in IFNG-activated human cells. mBio 2015; 6:e01157-15; PMID:26350966; http://dx.doi.org/10.1128/mBio.01157-15
-
(2015)
mBio
, vol.6
, pp. 1115-1157
-
-
Selleck, E.M.1
Orchard, R.C.2
Lassen, K.G.3
Beatty, W.L.4
Xavier, R.J.5
Levine, B.6
Virgin, H.W.7
Sibley, L.D.8
-
45
-
-
84859982621
-
Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma
-
22520467
-
S.Hwang, N.S.Maloney, M.W.Bruinsma, G.Goel, E.Duan, L.Zhang, B.Shrestha, M.S.Diamond, A.Dani, S.V.Sosnovtsev, et al. Nondegradative role of Atg5-Atg12/Atg16L1 autophagy protein complex in antiviral activity of interferon gamma. Cell Host Microbe 2012; 11:397-409; PMID:22520467; http://dx.doi.org/10.1016/j.chom.2012.03.002
-
(2012)
Cell Host Microbe
, vol.11
, pp. 397-409
-
-
Hwang, S.1
Maloney, N.S.2
Bruinsma, M.W.3
Goel, G.4
Duan, E.5
Zhang, L.6
Shrestha, B.7
Diamond, M.S.8
Dani, A.9
Sosnovtsev, S.V.10
-
46
-
-
84883414890
-
The LIR motif - crucial for selective autophagy
-
23908376
-
Å.B.Birgisdottir, T.Lamark, T.Johansen. The LIR motif - crucial for selective autophagy. J Cell Sci 2013; 126:3237-47; PMID:23908376
-
(2013)
J Cell Sci
, vol.126
, pp. 3237-3247
-
-
Birgisdottir, Å.B.1
Lamark, T.2
Johansen, T.3
-
47
-
-
0035968207
-
Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells
-
11294868
-
I.J.Blader, I.D.Manger, J.C.Boothroyd. Microarray analysis reveals previously unknown changes in Toxoplasma gondii-infected human cells. J Biol Chem 2001; 276:24223-31; PMID:11294868; http://dx.doi.org/10.1074/jbc.M100951200
-
(2001)
J Biol Chem
, vol.276
, pp. 24223-24231
-
-
Blader, I.J.1
Manger, I.D.2
Boothroyd, J.C.3
-
48
-
-
84924809439
-
Deacetylation of nuclear LC3 drives autophagy initiation under starvation
-
25601754
-
R.Huang, Y.Xu, W.Wan, X.Shou, J.Qian, Z.You, B.Liu, C.Chang, T.Zhou, J.Lippincott-Schwartz, et al. Deacetylation of nuclear LC3 drives autophagy initiation under starvation. Mol Cell 2015; 57:456-66; PMID:25601754; http://dx.doi.org/10.1016/j.molcel.2014.12.013
-
(2015)
Mol Cell
, vol.57
, pp. 456-466
-
-
Huang, R.1
Xu, Y.2
Wan, W.3
Shou, X.4
Qian, J.5
You, Z.6
Liu, B.7
Chang, C.8
Zhou, T.9
Lippincott-Schwartz, J.10
-
49
-
-
0042206454
-
Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B
-
12740394
-
H.He. Post-translational modifications of three members of the human MAP1LC3 family and detection of a novel type of modification for MAP1LC3B. J Biol Chem 2003; 278:29278-87; PMID:12740394; http://dx.doi.org/10.1074/jbc.M303800200
-
(2003)
J Biol Chem
, vol.278
, pp. 29278-29287
-
-
He, H.1
-
50
-
-
84923351636
-
Posttranslational modification of autophagy-related proteins in macroautophagy
-
25484070
-
Y.Xie, R.Kang, X.Sun, M.Zhong, J.Huang, D.J.Klionsky, D.Tang. Posttranslational modification of autophagy-related proteins in macroautophagy. Autophagy 2015; 11:28-45; PMID:25484070; http://dx.doi.org/10.4161/15548627.2014.984267
-
(2015)
Autophagy
, vol.11
, pp. 28-45
-
-
Xie, Y.1
Kang, R.2
Sun, X.3
Zhong, M.4
Huang, J.5
Klionsky, D.J.6
Tang, D.7
-
51
-
-
84920418471
-
Phosphorylation of LC3 by the hippo kinases STK3/STK4 is essential for autophagy
-
25544559
-
D.S.Wilkinson, J.S.Jariwala, E.Anderson, K.Mitra, J.Meisenhelder, J.T.Chang, T.Ideker, T.Hunter, V.Nizet, A.Dillin, et al. Phosphorylation of LC3 by the hippo kinases STK3/STK4 is essential for autophagy. Mol Cell 2015; 57:55-68; PMID:25544559; http://dx.doi.org/10.1016/j.molcel.2014.11.019
-
(2015)
Mol Cell
, vol.57
, pp. 55-68
-
-
Wilkinson, D.S.1
Jariwala, J.S.2
Anderson, E.3
Mitra, K.4
Meisenhelder, J.5
Chang, J.T.6
Ideker, T.7
Hunter, T.8
Nizet, V.9
Dillin, A.10
-
52
-
-
84880918899
-
Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators
-
23445716
-
S.Jiang, N.Dupont, E.F.Castillo, V.Deretic. Secretory versus degradative autophagy: unconventional secretion of inflammatory mediators. J Innate Immun 2013; 5(5):471-9; PMID:23445716; http://dx.doi.org/10.1159/000346707
-
(2013)
J Innate Immun
, vol.5
, Issue.5
, pp. 471-479
-
-
Jiang, S.1
Dupont, N.2
Castillo, E.F.3
Deretic, V.4
-
53
-
-
27344451113
-
The discovery of ubiquitin-dependent proteolysis
-
16230621
-
K.D.Wilkinson. The discovery of ubiquitin-dependent proteolysis. Proc Natl Acad Sci USA 2005; 102:15280-2; PMID:16230621; http://dx.doi.org/10.1073/pnas.0504842102
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 15280-15282
-
-
Wilkinson, K.D.1
-
54
-
-
54249104026
-
The ubiquitin system, disease, and drug discovery
-
19007437
-
M.D.Petroski. The ubiquitin system, disease, and drug discovery. BMC Biochem 2008; 9(Suppl 1):S7-S7; PMID:19007437; http://dx.doi.org/10.1186/1471-2091-9-S1-S7
-
(2008)
BMC Biochem
, vol.9
, pp. S7-S7
-
-
Petroski, M.D.1
-
55
-
-
78751672975
-
Autophagy in immunity and inflammation
-
21248839
-
B.Levine, N.Mizushima, H.W.Virgin. Autophagy in immunity and inflammation. Nature 2011; 469:323-35; PMID:21248839; http://dx.doi.org/10.1038/nature09782
-
(2011)
Nature
, vol.469
, pp. 323-335
-
-
Levine, B.1
Mizushima, N.2
Virgin, H.W.3
-
56
-
-
77954237882
-
Network organization of the human autophagy system
-
20562859
-
C.Behrends, M.E.Sowa, S.P.Gygi, J.W.Harper. Network organization of the human autophagy system. Nature 2010; 466:68-76; PMID:20562859; http://dx.doi.org/10.1038/nature09204
-
(2010)
Nature
, vol.466
, pp. 68-76
-
-
Behrends, C.1
Sowa, M.E.2
Gygi, S.P.3
Harper, J.W.4
-
57
-
-
80055070330
-
An integrated approach to elucidate the intra-viral and viral-cellular protein interaction networks of a gamma-herpesvirus
-
22028648
-
S.Lee, L.Salwinski, C.Zhang, D.Chu, C.Sampankanpanich, N.A.Reyes, A.Vangeloff, F.Xing, X.Li, T.-T.Wu, et al. An integrated approach to elucidate the intra-viral and viral-cellular protein interaction networks of a gamma-herpesvirus. PLoS Pathog 2011; 7:e1002297-7; PMID:22028648; http://dx.doi.org/10.1371/journal.ppat.1002297
-
(2011)
PLoS Pathog
, vol.7
, pp. 1002297
-
-
Lee, S.1
Salwinski, L.2
Zhang, C.3
Chu, D.4
Sampankanpanich, C.5
Reyes, N.A.6
Vangeloff, A.7
Xing, F.8
Li, X.9
Wu, T.-T.10
-
58
-
-
2942558951
-
Synchronous invasion of host cells by Toxoplasma gondii
-
15478810
-
B.F.C.Kafsack, C.Beckers, V.B.Carruthers. Synchronous invasion of host cells by Toxoplasma gondii. Mol Biochem Parasitol 2004; 136:309-11; PMID:15478810; http://dx.doi.org/10.1016/j.molbiopara.2004.04.004
-
(2004)
Mol Biochem Parasitol
, vol.136
, pp. 309-311
-
-
Kafsack, B.F.C.1
Beckers, C.2
Carruthers, V.B.3
-
59
-
-
55249109400
-
Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens
-
18996346
-
Z.Zhao, B.Fux, M.Goodwin, I.R.Dunay, D.Strong, B.C.Miller, K.Cadwell, M.A.Delgado, M.Ponpuak, K.G.Green, et al. Autophagosome-independent essential function for the autophagy protein Atg5 in cellular immunity to intracellular pathogens. Cell Host Microbe 2008; 4:458-69; PMID:18996346; http://dx.doi.org/10.1016/j.chom.2008.10.003
-
(2008)
Cell Host Microbe
, vol.4
, pp. 458-469
-
-
Zhao, Z.1
Fux, B.2
Goodwin, M.3
Dunay, I.R.4
Strong, D.5
Miller, B.C.6
Cadwell, K.7
Delgado, M.A.8
Ponpuak, M.9
Green, K.G.10
|