메뉴 건너뛰기




Volumn 51, Issue 9, 2016, Pages 1193-1203

Immobilized multienzymatic systems for catalysis of cascade reactions

Author keywords

Cascade reaction; Catalysis; Immobilization; Multienzymatic system

Indexed keywords

BIOCATALYSTS; CATALYSIS; RADIOACTIVE WASTE VITRIFICATION;

EID: 84979681325     PISSN: 13595113     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.procbio.2016.06.004     Document Type: Review
Times cited : (90)

References (77)
  • 1
    • 84907236859 scopus 로고    scopus 로고
    • Recent progress in nanobiocatalysis for enzyme immobilization and its application
    • [1] Min, K., Yoo, Y.J., Recent progress in nanobiocatalysis for enzyme immobilization and its application. Biotechnol. Bioprocess Eng. 19 (2014), 553–567.
    • (2014) Biotechnol. Bioprocess Eng. , vol.19 , pp. 553-567
    • Min, K.1    Yoo, Y.J.2
  • 2
    • 84904793107 scopus 로고    scopus 로고
    • Immobilization as a strategy for improving enzyme properties-application to oxidoreductases
    • [2] Guzik, U., Hupert-Kocurek, K., Wojcieszynska, D., Immobilization as a strategy for improving enzyme properties-application to oxidoreductases. Molecules 19 (2014), 8995–9018.
    • (2014) Molecules , vol.19 , pp. 8995-9018
    • Guzik, U.1    Hupert-Kocurek, K.2    Wojcieszynska, D.3
  • 3
    • 84880113060 scopus 로고    scopus 로고
    • Conformational changes of enzymes upon immobilisation
    • [3] Secundo, F., Conformational changes of enzymes upon immobilisation. Chem. Soc. Rev. 42 (2013), 6250–6261.
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 6250-6261
    • Secundo, F.1
  • 4
    • 84938704363 scopus 로고    scopus 로고
    • Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens
    • [4] Alonso, S., Rendueles, M., Diaz, M., Simultaneous production of lactobionic and gluconic acid in cheese whey/glucose co-fermentation by Pseudomonas taetrolens. Bioresour. Technol. 196 (2015), 314–323.
    • (2015) Bioresour. Technol. , vol.196 , pp. 314-323
    • Alonso, S.1    Rendueles, M.2    Diaz, M.3
  • 5
    • 84858079094 scopus 로고    scopus 로고
    • Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions
    • [5] Zhao, C., Lercher, J.A., Upgrading pyrolysis oil over Ni/HZSM-5 by cascade reactions. Angew. Chem. Int. Ed. 51 (2012), 5935–5940.
    • (2012) Angew. Chem. Int. Ed. , vol.51 , pp. 5935-5940
    • Zhao, C.1    Lercher, J.A.2
  • 7
    • 84872415717 scopus 로고    scopus 로고
    • Enzyme stabilization by nano/microsized hybrid materials
    • [7] Hwang, E.T., Gu, M.B., Enzyme stabilization by nano/microsized hybrid materials. Eng. Life Sci. 13 (2013), 49–61.
    • (2013) Eng. Life Sci. , vol.13 , pp. 49-61
    • Hwang, E.T.1    Gu, M.B.2
  • 11
    • 84856764807 scopus 로고    scopus 로고
    • Multi-enzyme systems: bringing enzymes together in vitro
    • [11] Schoffelen, S., van Hest, J.C.M., Multi-enzyme systems: bringing enzymes together in vitro. Soft Matter 8 (2012), 1736–1746.
    • (2012) Soft Matter , vol.8 , pp. 1736-1746
    • Schoffelen, S.1    van Hest, J.C.M.2
  • 12
    • 34247626294 scopus 로고    scopus 로고
    • Unusual sugar biosynthesis and natural product glycodiversification
    • [12] Thibodeaux, C.J., Melancon, C.E., Liu, H.W., Unusual sugar biosynthesis and natural product glycodiversification. Nature 446 (2007), 1008–1016.
    • (2007) Nature , vol.446 , pp. 1008-1016
    • Thibodeaux, C.J.1    Melancon, C.E.2    Liu, H.W.3
  • 13
    • 74549117234 scopus 로고    scopus 로고
    • Overview on reactions with multi-enzyme systems
    • [13] Findrik, Z., Vasic-Racki, D., Overview on reactions with multi-enzyme systems. Chem. Biochem. Eng. Q. 23 (2009), 545–553.
    • (2009) Chem. Biochem. Eng. Q. , vol.23 , pp. 545-553
    • Findrik, Z.1    Vasic-Racki, D.2
  • 14
    • 0034505430 scopus 로고    scopus 로고
    • Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies
    • [14] Koeller, K.M., Wong, C.H., Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem. Rev. 100 (2000), 4465–4493.
    • (2000) Chem. Rev. , vol.100 , pp. 4465-4493
    • Koeller, K.M.1    Wong, C.H.2
  • 15
    • 0141959169 scopus 로고    scopus 로고
    • Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert
    • [15] Bruggink, A., Schoevaart, R., Kieboom, T., Concepts of nature in organic synthesis: cascade catalysis and multistep conversions in concert. Org. Process Res. Dev. 7 (2003), 622–640.
    • (2003) Org. Process Res. Dev. , vol.7 , pp. 622-640
    • Bruggink, A.1    Schoevaart, R.2    Kieboom, T.3
  • 16
    • 84891779078 scopus 로고    scopus 로고
    • Recent developments of cascade reactions involving omega-transaminases
    • [16] Simon, R.C., Richter, N., Busto, E., Kroutil, W., Recent developments of cascade reactions involving omega-transaminases. ACS Catal. 4 (2014), 129–143.
    • (2014) ACS Catal. , vol.4 , pp. 129-143
    • Simon, R.C.1    Richter, N.2    Busto, E.3    Kroutil, W.4
  • 18
    • 84861458813 scopus 로고    scopus 로고
    • Process technology for multi-enzymatic reaction systems
    • [18] Xue, R., Woodley, J.M., Process technology for multi-enzymatic reaction systems. Bioresour. Technol. 115 (2012), 183–195.
    • (2012) Bioresour. Technol. , vol.115 , pp. 183-195
    • Xue, R.1    Woodley, J.M.2
  • 19
    • 34547209337 scopus 로고    scopus 로고
    • Enzyme immobilization: the quest for optimum performance
    • [19] Sheldon, R.A., Enzyme immobilization: the quest for optimum performance. Adv. Synth. Catal. 349 (2007), 1289–1307.
    • (2007) Adv. Synth. Catal. , vol.349 , pp. 1289-1307
    • Sheldon, R.A.1
  • 20
    • 84881093666 scopus 로고    scopus 로고
    • Chemical approaches for the construction of multi-enzyme reaction systems
    • [20] Schoffelen, S., van Hest, J.C.M., Chemical approaches for the construction of multi-enzyme reaction systems. Curr. Opin. Struct. Biol. 23 (2013), 613–621.
    • (2013) Curr. Opin. Struct. Biol. , vol.23 , pp. 613-621
    • Schoffelen, S.1    van Hest, J.C.M.2
  • 21
    • 84890220459 scopus 로고    scopus 로고
    • Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor
    • [21] Sun, J., Ge, J., Liu, W., Lan, M., Zhang, H., Wang, P., Wang, Y., Niu, Z., Multi-enzyme co-embedded organic-inorganic hybrid nanoflowers: synthesis and application as a colorimetric sensor. Nanoscale 6 (2014), 255–262.
    • (2014) Nanoscale , vol.6 , pp. 255-262
    • Sun, J.1    Ge, J.2    Liu, W.3    Lan, M.4    Zhang, H.5    Wang, P.6    Wang, Y.7    Niu, Z.8
  • 22
    • 84872709394 scopus 로고    scopus 로고
    • Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs)
    • [22] Talekar, S., Desai, S., Pillai, M., Nagavekar, N., Ambarkar, S., Surnis, S., Ladole, M., Nadar, S., Mulla, M., Carrier free co-immobilization of glucoamylase and pullulanase as combi-cross linked enzyme aggregates (combi-CLEAs). RSC Adv. 3 (2013), 2265–2271.
    • (2013) RSC Adv. , vol.3 , pp. 2265-2271
    • Talekar, S.1    Desai, S.2    Pillai, M.3    Nagavekar, N.4    Ambarkar, S.5    Surnis, S.6    Ladole, M.7    Nadar, S.8    Mulla, M.9
  • 23
    • 84883305127 scopus 로고    scopus 로고
    • Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity
    • [23] Talekar, S., Pandharbale, A., Ladole, M., Nadar, S., Mulla, M., Japhalekar, K., Pattankude, K., Arage, D., Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresour. Technol. 147 (2013), 269–275.
    • (2013) Bioresour. Technol. , vol.147 , pp. 269-275
    • Talekar, S.1    Pandharbale, A.2    Ladole, M.3    Nadar, S.4    Mulla, M.5    Japhalekar, K.6    Pattankude, K.7    Arage, D.8
  • 25
    • 84941312592 scopus 로고    scopus 로고
    • Preparing tauroursodeoxycholic acid (TUDCA) using a double-enzyme-coupled system
    • [25] Ji, Q.Z., Tan, J., Zhu, L.C., Lou, D.S., Wang, B.C., Preparing tauroursodeoxycholic acid (TUDCA) using a double-enzyme-coupled system. Biochem. Eng. J. 105 (2016), 1–9.
    • (2016) Biochem. Eng. J. , vol.105 , pp. 1-9
    • Ji, Q.Z.1    Tan, J.2    Zhu, L.C.3    Lou, D.S.4    Wang, B.C.5
  • 26
    • 0036258495 scopus 로고    scopus 로고
    • Coimmobilization of gluconolactonase with glucose oxidase for improvement in kinetic property of enzymatically induced volume collapse in ionic gels
    • [26] Ogawa, K., Nakajima-Kambe, T., Nakahara, T., Kokufuta, E., Coimmobilization of gluconolactonase with glucose oxidase for improvement in kinetic property of enzymatically induced volume collapse in ionic gels. Biomacromolecules 3 (2002), 625–631.
    • (2002) Biomacromolecules , vol.3 , pp. 625-631
    • Ogawa, K.1    Nakajima-Kambe, T.2    Nakahara, T.3    Kokufuta, E.4
  • 27
    • 62449121836 scopus 로고    scopus 로고
    • Understanding enzyme immobilisation
    • [27] Hanefeld, U., Gardossi, L., Magner, E., Understanding enzyme immobilisation. Chem. Soc. Rev. 38 (2009), 453–468.
    • (2009) Chem. Soc. Rev. , vol.38 , pp. 453-468
    • Hanefeld, U.1    Gardossi, L.2    Magner, E.3
  • 28
    • 0029177466 scopus 로고    scopus 로고
    • Immobilization of beta-glucosidase from a commercial preparation 1. A comparative study of natural supports
    • [28] Martino, A., Durante, M., Pifferi, P.G., Spagna, G., Bianchi, G., Immobilization of beta-glucosidase from a commercial preparation 1. A comparative study of natural supports. Process Biochem. 31 (1996), 281–285.
    • (1996) Process Biochem. , vol.31 , pp. 281-285
    • Martino, A.1    Durante, M.2    Pifferi, P.G.3    Spagna, G.4    Bianchi, G.5
  • 29
    • 0028171029 scopus 로고
    • The separation of pectinylase from beta-glucosidase in a commercial preparation
    • [29] Martino, A., Pifferi, P.G., Spagna, G., The separation of pectinylase from beta-glucosidase in a commercial preparation. J. Chem. Technol. Biotechnol. 61 (1994), 255–260.
    • (1994) J. Chem. Technol. Biotechnol. , vol.61 , pp. 255-260
    • Martino, A.1    Pifferi, P.G.2    Spagna, G.3
  • 30
    • 33947137829 scopus 로고    scopus 로고
    • Immobilized glucose oxidase on different supports for biotransformation removal of glucose from oligosaccharide mixtures
    • [30] Mislovicova, D., Michalkova, E., Vikartovska, A., Immobilized glucose oxidase on different supports for biotransformation removal of glucose from oligosaccharide mixtures. Process Biochem. 42 (2007), 704–709.
    • (2007) Process Biochem. , vol.42 , pp. 704-709
    • Mislovicova, D.1    Michalkova, E.2    Vikartovska, A.3
  • 31
    • 4344622619 scopus 로고    scopus 로고
    • Immobilization and kinetics of catalase onto magnesium silicate
    • [31] Tukel, S.S., Alptekin, O., Immobilization and kinetics of catalase onto magnesium silicate. Process Biochem. 39 (2004), 2149–2155.
    • (2004) Process Biochem. , vol.39 , pp. 2149-2155
    • Tukel, S.S.1    Alptekin, O.2
  • 32
    • 84883147110 scopus 로고    scopus 로고
    • Studies on the co-immobilized GOD/CAT on cross-linked chitosan microsphere modified by lysine
    • [32] Zhang, J., Zhou, X., Wang, D., Wang, Y., Zhou, X., Wang, H., Li, Q., Tan, S., Studies on the co-immobilized GOD/CAT on cross-linked chitosan microsphere modified by lysine. J. Mol. Catal. B-Enzym. 97 (2013), 80–86.
    • (2013) J. Mol. Catal. B-Enzym. , vol.97 , pp. 80-86
    • Zhang, J.1    Zhou, X.2    Wang, D.3    Wang, Y.4    Zhou, X.5    Wang, H.6    Li, Q.7    Tan, S.8
  • 33
    • 0036347410 scopus 로고    scopus 로고
    • Immobilization, stability and esterification studies of a lipase from a Bacillus sp
    • [33] Dosanjh, N.S., Kaur, J., Immobilization, stability and esterification studies of a lipase from a Bacillus sp. Biotechnol. Appl. Biochem. 36 (2002), 7–12.
    • (2002) Biotechnol. Appl. Biochem. , vol.36 , pp. 7-12
    • Dosanjh, N.S.1    Kaur, J.2
  • 34
    • 33344471963 scopus 로고    scopus 로고
    • Esterification in organic solvents by lipase immobilized in polymer of PVA-alginate-boric acid
    • [34] Dave, R., Madamwar, D., Esterification in organic solvents by lipase immobilized in polymer of PVA-alginate-boric acid. Process Biochem. 41 (2006), 951–955.
    • (2006) Process Biochem. , vol.41 , pp. 951-955
    • Dave, R.1    Madamwar, D.2
  • 35
    • 84880105717 scopus 로고    scopus 로고
    • Evaluation of immobilized enzymes for industrial applications
    • [35] Liese, A., Hilterhaus, L., Evaluation of immobilized enzymes for industrial applications. Chem. Soc. Rev. 42 (2013), 6236–6249.
    • (2013) Chem. Soc. Rev. , vol.42 , pp. 6236-6249
    • Liese, A.1    Hilterhaus, L.2
  • 36
    • 84878616817 scopus 로고    scopus 로고
    • Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions
    • [36] Lee, J.H., Kim, S.B., Yoo, H.Y., Lee, J.H., Park, C., Han, S.O., Kim, S.W., Kinetic modeling of biodiesel production by mixed immobilized and co-immobilized lipase systems under two pressure conditions. Korean J. Chem. Eng. 30 (2013), 1272–1276.
    • (2013) Korean J. Chem. Eng. , vol.30 , pp. 1272-1276
    • Lee, J.H.1    Kim, S.B.2    Yoo, H.Y.3    Lee, J.H.4    Park, C.5    Han, S.O.6    Kim, S.W.7
  • 37
    • 84890833020 scopus 로고    scopus 로고
    • Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production
    • [37] Rocha-Martin, J., Velasco-Lozano, S., Guisan, J.M., Lopez-Gallego, F., Oxidation of phenolic compounds catalyzed by immobilized multi-enzyme systems with integrated hydrogen peroxide production. Green Chem. 16 (2014), 303–311.
    • (2014) Green Chem. , vol.16 , pp. 303-311
    • Rocha-Martin, J.1    Velasco-Lozano, S.2    Guisan, J.M.3    Lopez-Gallego, F.4
  • 38
    • 84894617872 scopus 로고    scopus 로고
    • Modular multi-enzyme cascade process using highly stabilized enzyme microbeads
    • [38] Chung, J., Hwang, E.T., Kim, J.H., Kim, B.C., Gu, M.B., Modular multi-enzyme cascade process using highly stabilized enzyme microbeads. Green Chem. 16 (2014), 1163–1167.
    • (2014) Green Chem. , vol.16 , pp. 1163-1167
    • Chung, J.1    Hwang, E.T.2    Kim, J.H.3    Kim, B.C.4    Gu, M.B.5
  • 39
    • 84896559182 scopus 로고    scopus 로고
    • Engineering of biocatalysts and biocatalytic processes
    • [39] Lima-Ramos, J., Neto, W., Woodley, J.M., Engineering of biocatalysts and biocatalytic processes. Top. Catal. 57 (2014), 301–320.
    • (2014) Top. Catal. , vol.57 , pp. 301-320
    • Lima-Ramos, J.1    Neto, W.2    Woodley, J.M.3
  • 42
    • 84888026247 scopus 로고    scopus 로고
    • Co-immobilization of PEGylated Aspergillus flavipes L-methioninase with glutamate dehydrogenase: a novel catalytically stable anticancer consortium
    • [42] El-Sayed, A.S.A., Ibrahim, H., Sitohy, M.Z., Co-immobilization of PEGylated Aspergillus flavipes L-methioninase with glutamate dehydrogenase: a novel catalytically stable anticancer consortium. Enzyme Microb. Technol. 54 (2014), 59–69.
    • (2014) Enzyme Microb. Technol. , vol.54 , pp. 59-69
    • El-Sayed, A.S.A.1    Ibrahim, H.2    Sitohy, M.Z.3
  • 43
    • 77949539582 scopus 로고    scopus 로고
    • Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology
    • [43] Aybastier, O., Demir, C., Optimization of immobilization conditions of Thermomyces lanuginosus lipase on styrene-divinylbenzene copolymer using response surface methodology. J. Mol. Catal. B-Enzym. 63 (2010), 170–178.
    • (2010) J. Mol. Catal. B-Enzym. , vol.63 , pp. 170-178
    • Aybastier, O.1    Demir, C.2
  • 44
    • 77955662366 scopus 로고    scopus 로고
    • Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology
    • [44] Wu, J.A., Wang, J.L., Li, M.H., Lin, J.P., Wei, D.Z., Optimization of immobilization for selective oxidation of benzyl alcohol by Gluconobacter oxydans using response surface methodology. Bioresour. Technol. 101 (2010), 8936–8941.
    • (2010) Bioresour. Technol. , vol.101 , pp. 8936-8941
    • Wu, J.A.1    Wang, J.L.2    Li, M.H.3    Lin, J.P.4    Wei, D.Z.5
  • 45
    • 63749119165 scopus 로고    scopus 로고
    • Optimal immobilization of beta-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications
    • [45] Dwevedi, A., Kayastha, A.M., Optimal immobilization of beta-galactosidase from Pea (PsBGAL) onto Sephadex and chitosan beads using response surface methodology and its applications. Bioresour. Technol. 100 (2009), 2667–2675.
    • (2009) Bioresour. Technol. , vol.100 , pp. 2667-2675
    • Dwevedi, A.1    Kayastha, A.M.2
  • 46
    • 84929377108 scopus 로고    scopus 로고
    • Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades
    • [46] Kazenwadel, F., Franzreb, M., Rapp, B.E., Synthetic enzyme supercomplexes: co-immobilization of enzyme cascades. Anal. Methods 7 (2015), 4030–4037.
    • (2015) Anal. Methods , vol.7 , pp. 4030-4037
    • Kazenwadel, F.1    Franzreb, M.2    Rapp, B.E.3
  • 49
    • 84859128218 scopus 로고    scopus 로고
    • Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures
    • [49] Fu, J., Liu, M., Liu, Y., Woodbury, N.W., Yan, H., Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J. Am. Chem. Soc. 134 (2012), 5516–5519.
    • (2012) J. Am. Chem. Soc. , vol.134 , pp. 5516-5519
    • Fu, J.1    Liu, M.2    Liu, Y.3    Woodbury, N.W.4    Yan, H.5
  • 50
    • 84893875899 scopus 로고    scopus 로고
    • Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions
    • [50] Lin, J.-L., Palomec, L., Wheeldon, I., Design and analysis of enhanced catalysis in scaffolded multienzyme cascade reactions. ACS Catal. 4 (2014), 505–511.
    • (2014) ACS Catal. , vol.4 , pp. 505-511
    • Lin, J.-L.1    Palomec, L.2    Wheeldon, I.3
  • 51
    • 84904068531 scopus 로고    scopus 로고
    • Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm
    • [51] Fu, J.L., Yang, Y.R., Johnson-Buck, A., Liu, M.H., Liu, Y., Walter, N.G., Woodbury, N.W., Yan, H., Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat. Nanotechnol. 9 (2014), 531–536.
    • (2014) Nat. Nanotechnol. , vol.9 , pp. 531-536
    • Fu, J.L.1    Yang, Y.R.2    Johnson-Buck, A.3    Liu, M.H.4    Liu, Y.5    Walter, N.G.6    Woodbury, N.W.7    Yan, H.8
  • 53
    • 77955168936 scopus 로고    scopus 로고
    • Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA
    • [53] Hirakawa, H., Nagamune, T., Molecular assembly of P450 with ferredoxin and ferredoxin reductase by fusion to PCNA. Chembiochem 11 (2010), 1517–1520.
    • (2010) Chembiochem , vol.11 , pp. 1517-1520
    • Hirakawa, H.1    Nagamune, T.2
  • 54
    • 84903161298 scopus 로고    scopus 로고
    • Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling
    • [54] You, C., Zhang, Y.H.P., Annexation of a high-activity enzyme in a synthetic three-enzyme complex greatly decreases the degree of substrate channeling. ACS Synth. Biol. 3 (2014), 380–386.
    • (2014) ACS Synth. Biol. , vol.3 , pp. 380-386
    • You, C.1    Zhang, Y.H.P.2
  • 55
    • 84874095104 scopus 로고    scopus 로고
    • Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling
    • [55] You, C., Zhang, Y.H.P., Self-assembly of synthetic metabolons through synthetic protein scaffolds: one-step purification, co-immobilization, and substrate channeling. ACS Synth. Biol. 2 (2013), 102–110.
    • (2013) ACS Synth. Biol. , vol.2 , pp. 102-110
    • You, C.1    Zhang, Y.H.P.2
  • 56
    • 84910091442 scopus 로고    scopus 로고
    • Co-immobilised aspartase and transaminase for high-yield synthesis of L-phenylalanine
    • [56] Cardenas-Fernandez, M., Khalikova, E., Korpela, T., Lopez, C., Alvaro, G., Co-immobilised aspartase and transaminase for high-yield synthesis of L-phenylalanine. Biochem. Eng. J. 93 (2015), 173–178.
    • (2015) Biochem. Eng. J. , vol.93 , pp. 173-178
    • Cardenas-Fernandez, M.1    Khalikova, E.2    Korpela, T.3    Lopez, C.4    Alvaro, G.5
  • 57
    • 84055182856 scopus 로고    scopus 로고
    • Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose
    • [57] Cho, E.J., Jung, S., Kim, H.J., Lee, Y.G., Nam, K.C., Lee, H.J., Bae, H.J., Co-immobilization of three cellulases on Au-doped magnetic silica nanoparticles for the degradation of cellulose. Chem. Commun. 48 (2012), 886–888.
    • (2012) Chem. Commun. , vol.48 , pp. 886-888
    • Cho, E.J.1    Jung, S.2    Kim, H.J.3    Lee, Y.G.4    Nam, K.C.5    Lee, H.J.6    Bae, H.J.7
  • 58
    • 84899443582 scopus 로고    scopus 로고
    • Co-immobilization of multi-enzyme on control-reduced graphene oxide by non-covalent bonds: an artificial biocatalytic system for the one-pot production of gluconic acid from starch
    • [58] Zhao, F., Li, H., Jiang, Y., Wang, X., Mu, X., Co-immobilization of multi-enzyme on control-reduced graphene oxide by non-covalent bonds: an artificial biocatalytic system for the one-pot production of gluconic acid from starch. Green Chem. 16 (2014), 2558–2565.
    • (2014) Green Chem. , vol.16 , pp. 2558-2565
    • Zhao, F.1    Li, H.2    Jiang, Y.3    Wang, X.4    Mu, X.5
  • 59
    • 84878531615 scopus 로고    scopus 로고
    • Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production
    • [59] Lee, J.H., Kim, S.B., Yoo, H.Y., Lee, J.H., Han, S.O., Park, C., Kim, S.W., Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean J. Chem. Eng. 30 (2013), 1335–1338.
    • (2013) Korean J. Chem. Eng. , vol.30 , pp. 1335-1338
    • Lee, J.H.1    Kim, S.B.2    Yoo, H.Y.3    Lee, J.H.4    Han, S.O.5    Park, C.6    Kim, S.W.7
  • 60
    • 84881500436 scopus 로고    scopus 로고
    • Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases
    • [60] Gonzalez-Pombo, P., Farina, L., Carrau, F., Batista-Viera, F., Brena, B.M., Aroma enhancement in wines using co-immobilized Aspergillus niger glycosidases. Food Chem. 143 (2014), 185–191.
    • (2014) Food Chem. , vol.143 , pp. 185-191
    • Gonzalez-Pombo, P.1    Farina, L.2    Carrau, F.3    Batista-Viera, F.4    Brena, B.M.5
  • 61
    • 15344344385 scopus 로고    scopus 로고
    • Development of alcohol/O-2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes
    • [61] Akers, N.L., Moore, C.M., Minteer, S.D., Development of alcohol/O-2 biofuel cells using salt-extracted tetrabutylammonium bromide/Nafion membranes to immobilize dehydrogenase enzymes. Electrochim. Acta 50 (2005), 2521–2525.
    • (2005) Electrochim. Acta , vol.50 , pp. 2521-2525
    • Akers, N.L.1    Moore, C.M.2    Minteer, S.D.3
  • 62
    • 0031104963 scopus 로고    scopus 로고
    • Potential applications of NAD(P)-dependent oxidoreductases in synthesis: a survey
    • [62] DevauxBasseguy, R., Bergel, A., Comtat, M., Potential applications of NAD(P)-dependent oxidoreductases in synthesis: a survey. Enzyme Microb. Technol. 20 (1997), 248–258.
    • (1997) Enzyme Microb. Technol. , vol.20 , pp. 248-258
    • DevauxBasseguy, R.1    Bergel, A.2    Comtat, M.3
  • 63
    • 0033485581 scopus 로고    scopus 로고
    • Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments
    • [63] Hummel, W., Large-scale applications of NAD(P)-dependent oxidoreductases: recent developments. Trends Biotechnol. 17 (1999), 487–492.
    • (1999) Trends Biotechnol. , vol.17 , pp. 487-492
    • Hummel, W.1
  • 64
    • 0026816759 scopus 로고
    • Reduction of nitrate and nitrite in water by immobilized enzymes
    • [64] Mellor, R.B., Ronnenberg, J., Campbell, W.H., Diekmann, S., Reduction of nitrate and nitrite in water by immobilized enzymes. Nature 355 (1992), 717–719.
    • (1992) Nature , vol.355 , pp. 717-719
    • Mellor, R.B.1    Ronnenberg, J.2    Campbell, W.H.3    Diekmann, S.4
  • 66
    • 78650681129 scopus 로고    scopus 로고
    • Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration
    • [66] Zhang, Y., Gao, F., Zhang, S.P., Su, Z.G., Ma, G.-H., Wang, P., Simultaneous production of 1,3-dihydroxyacetone and xylitol from glycerol and xylose using a nanoparticle-supported multi-enzyme system with in situ cofactor regeneration. Bioresour. Technol. 102 (2011), 1837–1843.
    • (2011) Bioresour. Technol. , vol.102 , pp. 1837-1843
    • Zhang, Y.1    Gao, F.2    Zhang, S.P.3    Su, Z.G.4    Ma, G.-H.5    Wang, P.6
  • 67
    • 84890081307 scopus 로고    scopus 로고
    • Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells
    • [67] Ji, X., Wang, P., Su, Z., Ma, G., Zhang, S., Enabling multi-enzyme biocatalysis using coaxial-electrospun hollow nanofibers: redesign of artificial cells. J. Mater. Chem. B 2 (2014), 181–190.
    • (2014) J. Mater. Chem. B , vol.2 , pp. 181-190
    • Ji, X.1    Wang, P.2    Su, Z.3    Ma, G.4    Zhang, S.5
  • 68
    • 84937411261 scopus 로고    scopus 로고
    • Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles
    • [68] Gustafsson, H., Kuechler, A., Holmberg, K., Walde, P., Co-immobilization of enzymes with the help of a dendronized polymer and mesoporous silica nanoparticles. J. Mater. Chem. B 3 (2015), 6174–6184.
    • (2015) J. Mater. Chem. B , vol.3 , pp. 6174-6184
    • Gustafsson, H.1    Kuechler, A.2    Holmberg, K.3    Walde, P.4
  • 69
    • 84876122645 scopus 로고    scopus 로고
    • Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production
    • [69] Liu, F., Banta, S., Chen, W., Functional assembly of a multi-enzyme methanol oxidation cascade on a surface-displayed trifunctional scaffold for enhanced NADH production. Chem. Commun. 49 (2013), 3766–3768.
    • (2013) Chem. Commun. , vol.49 , pp. 3766-3768
    • Liu, F.1    Banta, S.2    Chen, W.3
  • 71
    • 84896768632 scopus 로고    scopus 로고
    • Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction
    • [71] Wang, X., Li, Z., Shi, J., Wu, H., Jiang, Z., Zhang, W., Song, X., Ai, Q., Bioinspired approach to multienzyme cascade system construction for efficient carbon dioxide reduction. ACS Catal. 4 (2014), 962–972.
    • (2014) ACS Catal. , vol.4 , pp. 962-972
    • Wang, X.1    Li, Z.2    Shi, J.3    Wu, H.4    Jiang, Z.5    Zhang, W.6    Song, X.7    Ai, Q.8
  • 72
    • 84900510661 scopus 로고    scopus 로고
    • 2 for removal of dissolved oxygen in water: corrosion controlling of boilers
    • 2 for removal of dissolved oxygen in water: corrosion controlling of boilers. J. Ind. Eng. Chem. 20 (2014), 2378–2383.
    • (2014) J. Ind. Eng. Chem. , vol.20 , pp. 2378-2383
    • Mandizadeh, F.1    Eskandarian, M.2
  • 73
    • 77954457574 scopus 로고    scopus 로고
    • Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field
    • [73] Yang, K., Xu, N.S., Su, W.W., Co-immobilized enzymes in magnetic chitosan beads for improved hydrolysis of macromolecular substrates under a time-varying magnetic field. J. Biotechnol. 148 (2010), 119–127.
    • (2010) J. Biotechnol. , vol.148 , pp. 119-127
    • Yang, K.1    Xu, N.S.2    Su, W.W.3
  • 74
    • 77956180776 scopus 로고    scopus 로고
    • Co-immobilization of dextransucrase and dextranase in alginate
    • [74] Olcer, Z., Tanriseven, A., Co-immobilization of dextransucrase and dextranase in alginate. Process Biochem. 45 (2010), 1645–1651.
    • (2010) Process Biochem. , vol.45 , pp. 1645-1651
    • Olcer, Z.1    Tanriseven, A.2
  • 75
    • 79959756376 scopus 로고    scopus 로고
    • Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase on PVC strip for serum cholesterol determination
    • [75] Chauhan, N., Pundir, C.S., Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase on PVC strip for serum cholesterol determination. Anal. Methods 3 (2011), 1360–1365.
    • (2011) Anal. Methods , vol.3 , pp. 1360-1365
    • Chauhan, N.1    Pundir, C.S.2
  • 76
    • 34548558873 scopus 로고    scopus 로고
    • Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions
    • [76] Logan, T.C., Clark, D.S., Stachowiak, T.B., Svec, F., Frechet, J.M.J., Photopatterning enzymes on polymer monoliths in microfluidic devices for steady-state kinetic analysis and spatially separated multi-enzyme reactions. Anal. Chem. 79 (2007), 6592–6598.
    • (2007) Anal. Chem. , vol.79 , pp. 6592-6598
    • Logan, T.C.1    Clark, D.S.2    Stachowiak, T.B.3    Svec, F.4    Frechet, J.M.J.5
  • 77
    • 79952990668 scopus 로고    scopus 로고
    • Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid
    • [77] Chen, H., Teramura, Y., Iwata, H., Co-immobilization of urokinase and thrombomodulin on islet surfaces by poly(ethylene glycol)-conjugated phospholipid. J. Control. Release 150 (2011), 229–234.
    • (2011) J. Control. Release , vol.150 , pp. 229-234
    • Chen, H.1    Teramura, Y.2    Iwata, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.