메뉴 건너뛰기




Volumn 40, Issue , 2016, Pages 23-32

The conformational plasticity of glycosyltransferases

Author keywords

[No Author keywords available]

Indexed keywords

ASPARTIC ACID; GLUTAMIC ACID; GLYCOSYLTRANSFERASE; N ACETYLGALACTOSAMINYLTRANSFERASE;

EID: 84979663038     PISSN: 0959440X     EISSN: 1879033X     Source Type: Journal    
DOI: 10.1016/j.sbi.2016.07.007     Document Type: Review
Times cited : (74)

References (62)
  • 2
    • 77953623874 scopus 로고    scopus 로고
    • Enzyme promiscuity: a mechanistic and evolutionary perspective
    • 2 Khersonsky, O., Tawfik, D.S., Enzyme promiscuity: a mechanistic and evolutionary perspective. Annu Rev Biochem 79 (2010), 471–505.
    • (2010) Annu Rev Biochem , vol.79 , pp. 471-505
    • Khersonsky, O.1    Tawfik, D.S.2
  • 3
    • 84898993517 scopus 로고    scopus 로고
    • The ensemble nature of allostery
    • 3 Motlagh, H.N., Wrabl, J.O., Li, J., Hilser, V.J., The ensemble nature of allostery. Nature 508 (2014), 331–339.
    • (2014) Nature , vol.508 , pp. 331-339
    • Motlagh, H.N.1    Wrabl, J.O.2    Li, J.3    Hilser, V.J.4
  • 4
    • 84951747918 scopus 로고    scopus 로고
    • Dynamics-driven allostery in protein kinases
    • 4 Kornev, A.P., Taylor, S.S., Dynamics-driven allostery in protein kinases. Trends Biochem Sci 40 (2015), 628–647.
    • (2015) Trends Biochem Sci , vol.40 , pp. 628-647
    • Kornev, A.P.1    Taylor, S.S.2
  • 7
    • 84867747900 scopus 로고    scopus 로고
    • Recent structures, evolution and mechanisms of glycosyltransferases
    • 7 Breton, C., Fournel-Gigleux, S., Palcic, M.M., Recent structures, evolution and mechanisms of glycosyltransferases. Curr Opin Struct Biol 22 (2012), 540–549.
    • (2012) Curr Opin Struct Biol , vol.22 , pp. 540-549
    • Breton, C.1    Fournel-Gigleux, S.2    Palcic, M.M.3
  • 8
    • 79959191882 scopus 로고    scopus 로고
    • X-ray structure of a bacterial oligosaccharyltransferase
    • This article reports the first complete structure of a GT-C glycosyltransferase, that of the oligosaccharyltransferase PglB, involved in protein N-glycosylation in bacteria.
    • 8• Lizak, C., Gerber, S., Numao, S., Aebi, M., Locher, K.P., X-ray structure of a bacterial oligosaccharyltransferase. Nature 474 (2011), 350–355 This article reports the first complete structure of a GT-C glycosyltransferase, that of the oligosaccharyltransferase PglB, involved in protein N-glycosylation in bacteria.
    • (2011) Nature , vol.474 , pp. 350-355
    • Lizak, C.1    Gerber, S.2    Numao, S.3    Aebi, M.4    Locher, K.P.5
  • 9
    • 84887060511 scopus 로고    scopus 로고
    • Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation
    • 9 Matsumoto, S., Shimada, A., Nyirenda, J., Igura, M., Kawano, Y., Kohda, D., Crystal structures of an archaeal oligosaccharyltransferase provide insights into the catalytic cycle of N-linked protein glycosylation. Proc Natl Acad Sci U S A 110 (2013), 17868–17873.
    • (2013) Proc Natl Acad Sci U S A , vol.110 , pp. 17868-17873
    • Matsumoto, S.1    Shimada, A.2    Nyirenda, J.3    Igura, M.4    Kawano, Y.5    Kohda, D.6
  • 10
    • 84957545547 scopus 로고    scopus 로고
    • Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation
    • This article reports the complete structure of a GT-C glycosyltransferase, that of the oligosaccharyltransferase ArnT, involved in lipid A glycosylation in bacteria.
    • 10•• Petrou, V.I., Herrera, C.M., Schultz, K.M., Clarke, O.B., Vendome, J., Tomasek, D., Banerjee, S., Rajashankar, K.R., Belcher Dufrisne, M., Kloss, B., et al. Structures of aminoarabinose transferase ArnT suggest a molecular basis for lipid A glycosylation. Science 351 (2016), 608–612 This article reports the complete structure of a GT-C glycosyltransferase, that of the oligosaccharyltransferase ArnT, involved in lipid A glycosylation in bacteria.
    • (2016) Science , vol.351 , pp. 608-612
    • Petrou, V.I.1    Herrera, C.M.2    Schultz, K.M.3    Clarke, O.B.4    Vendome, J.5    Tomasek, D.6    Banerjee, S.7    Rajashankar, K.R.8    Belcher Dufrisne, M.9    Kloss, B.10
  • 11
    • 84933073715 scopus 로고    scopus 로고
    • Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from first principles QM/MM molecular dynamics simulations
    • The most recent and comprehensive review on the catalytic mechanism of glycosyltransferases.
    • 11•• Ardevol, A., Rovira, C., Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from first principles QM/MM molecular dynamics simulations. J Am Chem Soc 137 (2015), 7528–7547 The most recent and comprehensive review on the catalytic mechanism of glycosyltransferases.
    • (2015) J Am Chem Soc , vol.137 , pp. 7528-7547
    • Ardevol, A.1    Rovira, C.2
  • 12
    • 84870347565 scopus 로고    scopus 로고
    • Structural snapshots of the reaction coordinate for O-GlcNAc transferase
    • This article reports structural snapshots of the catalytic domain of the ‘inverting’ human enzyme O-GlcNAc transferase (OGT).
    • 12• Lazarus, M.B., Jiang, J., Gloster, T.M., Zandberg, W.F., Whitworth, G.E., Vocadlo, D.J., Walker, S., Structural snapshots of the reaction coordinate for O-GlcNAc transferase. Nat Chem Biol 8 (2012), 966–968 This article reports structural snapshots of the catalytic domain of the ‘inverting’ human enzyme O-GlcNAc transferase (OGT).
    • (2012) Nat Chem Biol , vol.8 , pp. 966-968
    • Lazarus, M.B.1    Jiang, J.2    Gloster, T.M.3    Zandberg, W.F.4    Whitworth, G.E.5    Vocadlo, D.J.6    Walker, S.7
  • 13
    • 84887069059 scopus 로고    scopus 로고
    • Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding
    • 13 Tsutsui, Y., Ramakrishnan, B., Qasba, P.K., Crystal structures of β-1,4-galactosyltransferase 7 enzyme reveal conformational changes and substrate binding. J Biol Chem 288 (2013), 31963–31970.
    • (2013) J Biol Chem , vol.288 , pp. 31963-31970
    • Tsutsui, Y.1    Ramakrishnan, B.2    Qasba, P.K.3
  • 14
    • 33845584643 scopus 로고    scopus 로고
    • Chemical rescue of alpha3-galactosyltransferase. Implications in the mechanism of retaining glycosyltransferases
    • 14 Monegal, A., Planas, A., Chemical rescue of alpha3-galactosyltransferase. Implications in the mechanism of retaining glycosyltransferases. J Am Chem Soc 128 (2006), 16030–16031.
    • (2006) J Am Chem Soc , vol.128 , pp. 16030-16031
    • Monegal, A.1    Planas, A.2
  • 15
    • 79953884100 scopus 로고    scopus 로고
    • Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases
    • 15 Soya, N., Fang, Y., Palcic, M.M., Klassen, J.S., Trapping and characterization of covalent intermediates of mutant retaining glycosyltransferases. Glycobiology 21 (2011), 547–552.
    • (2011) Glycobiology , vol.21 , pp. 547-552
    • Soya, N.1    Fang, Y.2    Palcic, M.M.3    Klassen, J.S.4
  • 16
    • 84877299428 scopus 로고    scopus 로고
    • Substrate-assisted and nucleophilically assisted catalysis in bovine α1,3-galactosyltransferase. Mechanistic implications for retaining glycosyltransferases
    • 16 Gómez, H., Lluch, J.M., Masgrau, L., Substrate-assisted and nucleophilically assisted catalysis in bovine α1,3-galactosyltransferase. Mechanistic implications for retaining glycosyltransferases. J Am Chem Soc 135 (2013), 7053–7063.
    • (2013) J Am Chem Soc , vol.135 , pp. 7053-7063
    • Gómez, H.1    Lluch, J.M.2    Masgrau, L.3
  • 17
    • 84887175860 scopus 로고    scopus 로고
    • Formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase
    • This article reports the formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase.
    • 17• Rojas-Cervellera, V., Ardèvol, A., Boero, M., Planas, A., Rovira, C., Formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase. Chemistry 19 (2013), 14018–14023 This article reports the formation of a covalent glycosyl-enzyme species in a retaining glycosyltransferase.
    • (2013) Chemistry , vol.19 , pp. 14018-14023
    • Rojas-Cervellera, V.1    Ardèvol, A.2    Boero, M.3    Planas, A.4    Rovira, C.5
  • 18
    • 0035151023 scopus 로고    scopus 로고
    • Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs
    • 18 Persson, K., Ly, H.D., Dieckelmann, M., Wakarchuk, W.W., Withers, S.G., Strynadka, N.C., Crystal structure of the retaining galactosyltransferase LgtC from Neisseria meningitidis in complex with donor and acceptor sugar analogs. Nat Struct Biol 8 (2001), 166–175.
    • (2001) Nat Struct Biol , vol.8 , pp. 166-175
    • Persson, K.1    Ly, H.D.2    Dieckelmann, M.3    Wakarchuk, W.W.4    Withers, S.G.5    Strynadka, N.C.6
  • 20
    • 84860389788 scopus 로고    scopus 로고
    • Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase
    • 20 Lee, S.S., Hong, S.Y., Errey, J.C., Izumi, A., Davies, G.J., Davis, B.G., Mechanistic evidence for a front-side, SNi-type reaction in a retaining glycosyltransferase. Nat Chem Biol 7 (2011), 631–638.
    • (2011) Nat Chem Biol , vol.7 , pp. 631-638
    • Lee, S.S.1    Hong, S.Y.2    Errey, J.C.3    Izumi, A.4    Davies, G.J.5    Davis, B.G.6
  • 21
    • 80855133537 scopus 로고    scopus 로고
    • The molecular mechanism of enzymatic glycosyl transfer with retention of configuration: evidence for a short-lived oxocarbenium-like species
    • 21 Ardèvol, A.A., Rovira, C.C., The molecular mechanism of enzymatic glycosyl transfer with retention of configuration: evidence for a short-lived oxocarbenium-like species. Angew Chem Int Ed Engl 50 (2011), 10897–10901.
    • (2011) Angew Chem Int Ed Engl , vol.50 , pp. 10897-10901
    • Ardèvol, A.A.1    Rovira, C.C.2
  • 22
    • 84858218497 scopus 로고    scopus 로고
    • Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state
    • 22 Gómez, H., Polyak, I., Thiel, W., Lluch, J.M., Masgrau, L., Retaining glycosyltransferase mechanism studied by QM/MM methods: lipopolysaccharyl-α-1,4-galactosyltransferase C transfers α-galactose via an oxocarbenium ion-like transition state. J Am Chem Soc 134 (2012), 4743–4752.
    • (2012) J Am Chem Soc , vol.134 , pp. 4743-4752
    • Gómez, H.1    Polyak, I.2    Thiel, W.3    Lluch, J.M.4    Masgrau, L.5
  • 26
    • 78049302247 scopus 로고    scopus 로고
    • Structural basis for glucose-6-phosphate activation of glycogen synthase
    • In this article a structural model for the allosteric regulation of eukaryotic glycogen synthase is proposed.
    • 26• Baskaran, S., Roach, P.J., DePaoli-Roach, A.A., Hurley, T.D., Structural basis for glucose-6-phosphate activation of glycogen synthase. Proc Natl Acad Sci U S A 107 (2010), 17563–17568 In this article a structural model for the allosteric regulation of eukaryotic glycogen synthase is proposed.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , pp. 17563-17568
    • Baskaran, S.1    Roach, P.J.2    DePaoli-Roach, A.A.3    Hurley, T.D.4
  • 29
  • 30
    • 84929208855 scopus 로고    scopus 로고
    • Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation
    • This article describes the mechanical properties of a flexible linker between a GT-A and CBM domains that defines/modulates the glycosylation activity of GalNAc-T GTs.
    • 30•• Lira-Navarrete, E., de Las Rivas, M., Compañón, I., Pallarés, M.C., Kong, Y., Iglesias-Fernández, J., Bernardes, G.J., Peregrina, J.M., Rovira, C., Bernadó, P., et al. Dynamic interplay between catalytic and lectin domains of GalNAc-transferases modulates protein O-glycosylation. Nat Commun, 6, 2015, 6937 This article describes the mechanical properties of a flexible linker between a GT-A and CBM domains that defines/modulates the glycosylation activity of GalNAc-T GTs.
    • (2015) Nat Commun , vol.6 , pp. 6937
    • Lira-Navarrete, E.1    de Las Rivas, M.2    Compañón, I.3    Pallarés, M.C.4    Kong, Y.5    Iglesias-Fernández, J.6    Bernardes, G.J.7    Peregrina, J.M.8    Rovira, C.9    Bernadó, P.10
  • 31
    • 84953277720 scopus 로고    scopus 로고
    • Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis
    • This article reports the first crystal structure of a polyisoprenol-glycosyltransferase, that of the dolichol-phosphate mannose synthase.
    • 31•• Ardiccioni, C., Clarke, O.B., Tomasek, D., Issa, H.A., von Alpen, D.C., Pond, H.L., Banerjee, S., Rajashankar, K.R., Liu, Q., Guan, Z., et al. Structure of the polyisoprenyl-phosphate glycosyltransferase GtrB and insights into the mechanism of catalysis. Nat Commun, 7, 2016, 10175 This article reports the first crystal structure of a polyisoprenol-glycosyltransferase, that of the dolichol-phosphate mannose synthase.
    • (2016) Nat Commun , vol.7 , pp. 10175
    • Ardiccioni, C.1    Clarke, O.B.2    Tomasek, D.3    Issa, H.A.4    von Alpen, D.C.5    Pond, H.L.6    Banerjee, S.7    Rajashankar, K.R.8    Liu, Q.9    Guan, Z.10
  • 34
    • 78049437295 scopus 로고    scopus 로고
    • Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase
    • 34 Ramakrishnan, B., Qasba, P.K., Structure-based evolutionary relationship of glycosyltransferases: a case study of vertebrate β1,4-galactosyltransferase, invertebrate β1,4-N-acetylgalactosaminyltransferase and α-polypeptidyl-N-acetylgalactosaminyltransferase. Curr Opin Struct Biol 20 (2010), 536–542.
    • (2010) Curr Opin Struct Biol , vol.20 , pp. 536-542
    • Ramakrishnan, B.1    Qasba, P.K.2
  • 37
    • 33750083329 scopus 로고    scopus 로고
    • Blood group B galactosyltransferase: insights into substrate binding from NMR experiments
    • On the basis of NMR experiments, this important article propose a ‘molecular tweezers mechanism’ that accounts for the exquisite stereoselectivity of donor substrate selection.
    • 37• Angulo, J., Langpap, B., Blume, A., Biet, T., Meyer, B., Krishna, N.R., Peters, H., Palcic, M.M., Peters, T., Blood group B galactosyltransferase: insights into substrate binding from NMR experiments. J Am Chem Soc 128 (2006), 13529–13538 On the basis of NMR experiments, this important article propose a ‘molecular tweezers mechanism’ that accounts for the exquisite stereoselectivity of donor substrate selection.
    • (2006) J Am Chem Soc , vol.128 , pp. 13529-13538
    • Angulo, J.1    Langpap, B.2    Blume, A.3    Biet, T.4    Meyer, B.5    Krishna, N.R.6    Peters, H.7    Palcic, M.M.8    Peters, T.9
  • 40
    • 84865045770 scopus 로고    scopus 로고
    • Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial arabinogalactan
    • 40 Wheatley, R.W., Zheng, R.B., Richards, M.R., Lowary, T.L., Ng, K.K.S., Tetrameric structure of the GlfT2 galactofuranosyltransferase reveals a scaffold for the assembly of mycobacterial arabinogalactan. J Biol Chem 287 (2012), 28132–28143.
    • (2012) J Biol Chem , vol.287 , pp. 28132-28143
    • Wheatley, R.W.1    Zheng, R.B.2    Richards, M.R.3    Lowary, T.L.4    Ng, K.K.S.5
  • 41
    • 84867756236 scopus 로고    scopus 로고
    • The structural basis for a coordinated reaction catalyzed by a bifunctional glycosyltransferase in chondroitin biosynthesis
    • 41 Sobhany M1, Kakuta, Y., Sugiura, N., Kimata, K., Negishi, M., The structural basis for a coordinated reaction catalyzed by a bifunctional glycosyltransferase in chondroitin biosynthesis. J Biol Chem 287 (2012), 36022–36028.
    • (2012) J Biol Chem , vol.287 , pp. 36022-36028
    • Sobhany M11    Kakuta, Y.2    Sugiura, N.3    Kimata, K.4    Negishi, M.5
  • 42
    • 84855502662 scopus 로고    scopus 로고
    • Conformational plasticity of glycogenin and its maltosaccharide substrate during glycogen biogenesis
    • In this article the authors captured crystallographic snapshots of the human glycogenin during its reaction cycle, revealing a dynamic conformational switch between ground and active states mediated by the sugar donor UDP-Glc.
    • 42• Chaikuad, A., Froese, D.S., Berridge, G., von Delft, F., Oppermann, U., Yue, W.W., Conformational plasticity of glycogenin and its maltosaccharide substrate during glycogen biogenesis. Proc Natl Acad Sci U S A 108 (2011), 21028–21033 In this article the authors captured crystallographic snapshots of the human glycogenin during its reaction cycle, revealing a dynamic conformational switch between ground and active states mediated by the sugar donor UDP-Glc.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 21028-21033
    • Chaikuad, A.1    Froese, D.S.2    Berridge, G.3    von Delft, F.4    Oppermann, U.5    Yue, W.W.6
  • 43
    • 84957894741 scopus 로고    scopus 로고
    • Recent structural and mechanistic insights into protein O-GalNAc glycosylation
    • 43 Hurtado-Guerrero, R., Recent structural and mechanistic insights into protein O-GalNAc glycosylation. Biochem Soc Trans 44 (2016), 61–67.
    • (2016) Biochem Soc Trans , vol.44 , pp. 61-67
    • Hurtado-Guerrero, R.1
  • 44
    • 84971444217 scopus 로고    scopus 로고
    • Observing cellulose biosynthesis and membrane translocation in crystallo
    • This article reports a structural snapshots of the cellulose synthase along the catalytic cycle.
    • 44•• Morgan, J.L., McNamara, J.T., Fischer, M., Rich, J., Chen, H.M., Withers, S.G., Zimmer, J., Observing cellulose biosynthesis and membrane translocation in crystallo. Nature 531 (2016), 329–334 This article reports a structural snapshots of the cellulose synthase along the catalytic cycle.
    • (2016) Nature , vol.531 , pp. 329-334
    • Morgan, J.L.1    McNamara, J.T.2    Fischer, M.3    Rich, J.4    Chen, H.M.5    Withers, S.G.6    Zimmer, J.7
  • 45
    • 84940762735 scopus 로고    scopus 로고
    • Insights into the structure and function of membrane integrated processive glycosyltransferases
    • 45 Bi, Y., Hubbard, C., Purushotham, P., Zimmer, J., Insights into the structure and function of membrane integrated processive glycosyltransferases. Curr Opin Struct Biol 34 (2015), 78–86.
    • (2015) Curr Opin Struct Biol , vol.34 , pp. 78-86
    • Bi, Y.1    Hubbard, C.2    Purushotham, P.3    Zimmer, J.4
  • 46
    • 84930751196 scopus 로고    scopus 로고
    • A molecular description of cellulose biosynthesis
    • 46 McNamara, J.T., Morgan, J.L., Zimmer, J., A molecular description of cellulose biosynthesis. Annu Rev Biochem 84 (2015), 895–921.
    • (2015) Annu Rev Biochem , vol.84 , pp. 895-921
    • McNamara, J.T.1    Morgan, J.L.2    Zimmer, J.3
  • 47
    • 84902080356 scopus 로고    scopus 로고
    • Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP
    • This article reports the mechanism of activation of the bacterial cellulose synthase.
    • 47•• Morgan, J.L., McNamara, J.T., Zimmer, J., Mechanism of activation of bacterial cellulose synthase by cyclic di-GMP. Nat Struct Mol Biol 21 (2014), 489–496 This article reports the mechanism of activation of the bacterial cellulose synthase.
    • (2014) Nat Struct Mol Biol , vol.21 , pp. 489-496
    • Morgan, J.L.1    McNamara, J.T.2    Zimmer, J.3
  • 48
    • 84872141928 scopus 로고    scopus 로고
    • Crystallographic snapshot of cellulose synthesis and membrane translocation
    • This article reports the first crystal structure of the cellulose synthase.
    • 48•• Morgan, J.L., Strumillo, J., Zimmer, J., Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493 (2013), 181–186 This article reports the first crystal structure of the cellulose synthase.
    • (2013) Nature , vol.493 , pp. 181-186
    • Morgan, J.L.1    Strumillo, J.2    Zimmer, J.3
  • 49
    • 69249148625 scopus 로고    scopus 로고
    • Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis
    • This article reports the essentiality of the β-phosphate of GDP-Man to trigger the open-to-closed motion in PimA, a GT-B GT.
    • 49• Guerin, M.E., Schaeffer, F., Chaffotte, A., Gest, P., Giganti, D., Korduláková, J., van der Woerd, M., Jackson, M., Alzari, P.M., Substrate-induced conformational changes in the essential peripheral membrane-associated mannosyltransferase PimA from mycobacteria: implications for catalysis. J Biol Chem 284 (2009), 21613–21625 This article reports the essentiality of the β-phosphate of GDP-Man to trigger the open-to-closed motion in PimA, a GT-B GT.
    • (2009) J Biol Chem , vol.284 , pp. 21613-21625
    • Guerin, M.E.1    Schaeffer, F.2    Chaffotte, A.3    Gest, P.4    Giganti, D.5    Korduláková, J.6    van der Woerd, M.7    Jackson, M.8    Alzari, P.M.9
  • 50
    • 84893108227 scopus 로고    scopus 로고
    • Structure-function relationships of membrane-associated GT-B glycosyltransferases
    • 50 Albesa-Jove, D., Giganti, D., Jackson, M., Alzari, P.M., Guerin, M.E., Structure-function relationships of membrane-associated GT-B glycosyltransferases. Glycobiology 24 (2014), 108–124.
    • (2014) Glycobiology , vol.24 , pp. 108-124
    • Albesa-Jove, D.1    Giganti, D.2    Jackson, M.3    Alzari, P.M.4    Guerin, M.E.5
  • 51
    • 4444373841 scopus 로고    scopus 로고
    • Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation
    • 51 Buschiazzo, A., Ugalde, J.E., Guerin, M.E., Shepard, W., Ugalde, R.A., Alzari, P.M., Crystal structure of glycogen synthase: homologous enzymes catalyze glycogen synthesis and degradation. EMBO J 23 (2004), 3196–3205.
    • (2004) EMBO J , vol.23 , pp. 3196-3205
    • Buschiazzo, A.1    Ugalde, J.E.2    Guerin, M.E.3    Shepard, W.4    Ugalde, R.A.5    Alzari, P.M.6
  • 54
    • 77958535834 scopus 로고    scopus 로고
    • Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria
    • 54 Guerin, M.E., Korduláková, J., Alzari, P.M., Brennan, P.J., Jackson, M., Molecular basis of phosphatidyl-myo-inositol mannoside biosynthesis and regulation in mycobacteria. J Biol Chem 285 (2010), 33577–33583.
    • (2010) J Biol Chem , vol.285 , pp. 33577-33583
    • Guerin, M.E.1    Korduláková, J.2    Alzari, P.M.3    Brennan, P.J.4    Jackson, M.5
  • 55
    • 84924927827 scopus 로고    scopus 로고
    • Secondary structure reshuffling modulates glycosyltransferase function at the membrane
    • This article reports the unprecedented conformational changes in the membrane-associated PimA, including α-to-β and β-to-α transitions that seems to be essential for catalysis.
    • 55•• Giganti, D., Albesa-Jové, D., Urresti, S., Rodrigo-Unzueta, A., Martínez, M.A., Comino, N., Barilone, N., Bellinzoni, M., Chenal, A., Guerin, M.E., et al. Secondary structure reshuffling modulates glycosyltransferase function at the membrane. Nat Chem Biol 11 (2014), 16–18 This article reports the unprecedented conformational changes in the membrane-associated PimA, including α-to-β and β-to-α transitions that seems to be essential for catalysis.
    • (2014) Nat Chem Biol , vol.11 , pp. 16-18
    • Giganti, D.1    Albesa-Jové, D.2    Urresti, S.3    Rodrigo-Unzueta, A.4    Martínez, M.A.5    Comino, N.6    Barilone, N.7    Bellinzoni, M.8    Chenal, A.9    Guerin, M.E.10
  • 59
    • 79953219450 scopus 로고    scopus 로고
    • Tryptophan residues promote membrane association for a plant lipid glycosyltransferase involved in phosphate stress
    • 59 Ge, C., Georgiev, A., Öhman, A., Wieslander, Å., Kelly, A.A., Tryptophan residues promote membrane association for a plant lipid glycosyltransferase involved in phosphate stress. J Biol Chem 286 (2011), 6669–6684.
    • (2011) J Biol Chem , vol.286 , pp. 6669-6684
    • Ge, C.1    Georgiev, A.2    Öhman, A.3    Wieslander, Å.4    Kelly, A.A.5
  • 61
    • 0033199576 scopus 로고    scopus 로고
    • Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question
    • 61 Watson, K.A., McCleverty, C., Geremia, S., Cottaz, S., Driguez, H., Johnson, L.N., Phosphorylase recognition and phosphorolysis of its oligosaccharide substrate: answers to a long outstanding question. EMBO J 18 (1999), 4619–4632.
    • (1999) EMBO J , vol.18 , pp. 4619-4632
    • Watson, K.A.1    McCleverty, C.2    Geremia, S.3    Cottaz, S.4    Driguez, H.5    Johnson, L.N.6
  • 62
    • 79952211396 scopus 로고    scopus 로고
    • The C-terminal domain of the arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module
    • 62 Alderwick, L.J., Lloyd, G.S., Ghadbane, H., May, J.W., Bhatt, A., Eggeling, L., Fütterer, K., Besra, G.S., The C-terminal domain of the arabinosyltransferase Mycobacterium tuberculosis EmbC is a lectin-like carbohydrate binding module. PLoS Pathog, 7, 2011, e1001299.
    • (2011) PLoS Pathog , vol.7 , pp. e1001299
    • Alderwick, L.J.1    Lloyd, G.S.2    Ghadbane, H.3    May, J.W.4    Bhatt, A.5    Eggeling, L.6    Fütterer, K.7    Besra, G.S.8


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.