-
1
-
-
84874603171
-
Cellular senescence and the senescent secretory phenotype: therapeutic opportunities
-
[1] Tchkonia, T., Zhu, Y., van Deursen, J., Campisi, J., Kirkland, J.L., Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J. Clin. Invest. 123:3 (2013), 966–972.
-
(2013)
J. Clin. Invest.
, vol.123
, Issue.3
, pp. 966-972
-
-
Tchkonia, T.1
Zhu, Y.2
van Deursen, J.3
Campisi, J.4
Kirkland, J.L.5
-
2
-
-
0344622606
-
The serial cultivation of human diploid cell strains
-
[2] Hayflick, L., Moorhead, P.S., The serial cultivation of human diploid cell strains. Exp. Cell Res. 25 (1961), 585–621.
-
(1961)
Exp. Cell Res.
, vol.25
, pp. 585-621
-
-
Hayflick, L.1
Moorhead, P.S.2
-
3
-
-
84904702784
-
Cellular senescence: from physiology to pathology
-
[3] Munoz-Espin, D., Serrano, M., Cellular senescence: from physiology to pathology. Nat. Rev. Mol. Cell Biol. 15:7 (2014), 482–496.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, Issue.7
, pp. 482-496
-
-
Munoz-Espin, D.1
Serrano, M.2
-
4
-
-
84947241738
-
Cellular senescence and the biology of aging, disease, and frailty
-
[4] LeBrasseur, N.K., Tchkonia, T., Kirkland, J.L., Cellular senescence and the biology of aging, disease, and frailty. Nestle Nutr. Inst. Workshop Ser. 83 (2015), 11–18.
-
(2015)
Nestle Nutr. Inst. Workshop Ser.
, vol.83
, pp. 11-18
-
-
LeBrasseur, N.K.1
Tchkonia, T.2
Kirkland, J.L.3
-
5
-
-
84962079683
-
Cellular senescence in type 2 diabetes: a therapeutic opportunity
-
[5] Palmer, A.K., et al. Cellular senescence in type 2 diabetes: a therapeutic opportunity. Diabetes 64:7 (2015), 2289–2298.
-
(2015)
Diabetes
, vol.64
, Issue.7
, pp. 2289-2298
-
-
Palmer, A.K.1
-
6
-
-
0029047362
-
A biomarker that identifies senescent human cells in culture and in aging skin in vivo
-
[6] Dimri, G.P., et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc. Natl. Acad. Sci. U. S. A. 92:20 (1995), 9363–9367.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A.
, vol.92
, Issue.20
, pp. 9363-9367
-
-
Dimri, G.P.1
-
7
-
-
0035079864
-
Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas
-
[7] Paradis, V., et al. Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas. Hum. Pathol. 32:3 (2001), 327–332.
-
(2001)
Hum. Pathol.
, vol.32
, Issue.3
, pp. 327-332
-
-
Paradis, V.1
-
8
-
-
66149167336
-
DNA damage response and cellular senescence in tissues of aging mice
-
[8] Wang, C., et al. DNA damage response and cellular senescence in tissues of aging mice. Aging Cell 8:3 (2009), 311–323.
-
(2009)
Aging Cell
, vol.8
, Issue.3
, pp. 311-323
-
-
Wang, C.1
-
9
-
-
0037850928
-
Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening
-
[9] Melk, A., et al. Cell senescence in rat kidneys in vivo increases with growth and age despite lack of telomere shortening. Kidney Int. 63:6 (2003), 2134–2143.
-
(2003)
Kidney Int.
, vol.63
, Issue.6
, pp. 2134-2143
-
-
Melk, A.1
-
10
-
-
24644497236
-
Cellular senescence in vivo: its relevance in aging and cardiovascular disease
-
[10] Erusalimsky, J.D., Kurz, D.J., Cellular senescence in vivo: its relevance in aging and cardiovascular disease. Exp. Gerontol. 40:8–9 (2005), 634–642.
-
(2005)
Exp. Gerontol.
, vol.40
, Issue.8–9
, pp. 634-642
-
-
Erusalimsky, J.D.1
Kurz, D.J.2
-
11
-
-
78349299099
-
Fat tissue, aging, and cellular senescence
-
[11] Tchkonia, T., et al. Fat tissue, aging, and cellular senescence. Aging Cell 9:5 (2010), 667–684.
-
(2010)
Aging Cell
, vol.9
, Issue.5
, pp. 667-684
-
-
Tchkonia, T.1
-
12
-
-
84905705301
-
Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice
-
[12] Stout, M.B., et al. Growth hormone action predicts age-related white adipose tissue dysfunction and senescent cell burden in mice. Aging (Albany NY) 6:7 (2014), 575–586.
-
(2014)
Aging (Albany NY)
, vol.6
, Issue.7
, pp. 575-586
-
-
Stout, M.B.1
-
13
-
-
84891713034
-
Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor
-
[13] Coppe, J.P., et al. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 6:12 (2008), 2853–2868.
-
(2008)
PLoS Biol.
, vol.6
, Issue.12
, pp. 2853-2868
-
-
Coppe, J.P.1
-
14
-
-
44649101304
-
Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network
-
[14] Kuilman, T., et al. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 133:6 (2008), 1019–1031.
-
(2008)
Cell
, vol.133
, Issue.6
, pp. 1019-1031
-
-
Kuilman, T.1
-
15
-
-
80855138775
-
Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders
-
[15] Baker, D.J., et al. Clearance of p16Ink4a-positive senescent cells delays aging-associated disorders. Nature 479:7372 (2011), 232–236.
-
(2011)
Nature
, vol.479
, Issue.7372
, pp. 232-236
-
-
Baker, D.J.1
-
16
-
-
84986218395
-
Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice
-
[16] Roos, C.M., et al. Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 2016.
-
(2016)
Aging Cell
-
-
Roos, C.M.1
-
17
-
-
84928243456
-
The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs
-
[17] Zhu, Y., et al. The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell 14:4 (2015), 644–658.
-
(2015)
Aging Cell
, vol.14
, Issue.4
, pp. 644-658
-
-
Zhu, Y.1
-
18
-
-
84881399206
-
A complex secretory program orchestrated by the inflammasome controls paracrine senescence
-
[18] Acosta, J.C., et al. A complex secretory program orchestrated by the inflammasome controls paracrine senescence. Nat. Cell Biol. 15:8 (2013), 978–990.
-
(2013)
Nat. Cell Biol.
, vol.15
, Issue.8
, pp. 978-990
-
-
Acosta, J.C.1
-
19
-
-
84862794254
-
A senescent cell bystander effect: senescence-induced senescence
-
[19] Nelson, G., et al. A senescent cell bystander effect: senescence-induced senescence. Aging Cell 11:2 (2012), 345–349.
-
(2012)
Aging Cell
, vol.11
, Issue.2
, pp. 345-349
-
-
Nelson, G.1
-
20
-
-
84988603034
-
Targeting senescent cells enhances adipogenesis and metabolic function in old age
-
[20] Xu, M., et al. Targeting senescent cells enhances adipogenesis and metabolic function in old age. Elife, 4, 2015, e12997.
-
(2015)
Elife
, vol.4
, pp. e12997
-
-
Xu, M.1
-
21
-
-
84966397603
-
JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age
-
[21] Xu, M., et al. JAK inhibition alleviates the cellular senescence-associated secretory phenotype and frailty in old age. Proc. Natl. Acad. Sci. U. S. A. 112:46 (2015), E6301–6310.
-
(2015)
Proc. Natl. Acad. Sci. U. S. A.
, vol.112
, Issue.46
, pp. E6301-6310
-
-
Xu, M.1
-
22
-
-
84898990827
-
Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors
-
[22] Meyer, S.C., Levine, R.L., Molecular pathways: molecular basis for sensitivity and resistance to JAK kinase inhibitors. Clin. Cancer Res. 20:8 (2014), 2051–2059.
-
(2014)
Clin. Cancer Res.
, vol.20
, Issue.8
, pp. 2051-2059
-
-
Meyer, S.C.1
Levine, R.L.2
-
23
-
-
70350500225
-
STATs in cancer inflammation and immunity: a leading role for STAT3
-
[23] Yu, H., Pardoll, D., Jove, R., STATs in cancer inflammation and immunity: a leading role for STAT3. Nat. Rev. Cancer 9:11 (2009), 798–809.
-
(2009)
Nat. Rev. Cancer
, vol.9
, Issue.11
, pp. 798-809
-
-
Yu, H.1
Pardoll, D.2
Jove, R.3
-
24
-
-
79960913754
-
Emerging roles of JAK-STAT signaling pathways in adipocytes
-
[24] Richard, A.J., Stephens, J.M., Emerging roles of JAK-STAT signaling pathways in adipocytes. Trends Endocrinol. Metab. 22:8 (2011), 325–332.
-
(2011)
Trends Endocrinol. Metab.
, vol.22
, Issue.8
, pp. 325-332
-
-
Richard, A.J.1
Stephens, J.M.2
-
25
-
-
0028206119
-
JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells
-
[25] Rane, S.G., Reddy, E.P., JAK3: a novel JAK kinase associated with terminal differentiation of hematopoietic cells. Oncogene 9:8 (1994), 2415–2423.
-
(1994)
Oncogene
, vol.9
, Issue.8
, pp. 2415-2423
-
-
Rane, S.G.1
Reddy, E.P.2
-
26
-
-
61849086101
-
Janus kinases in immune cell signaling
-
[26] Ghoreschi, K., Laurence, A., O'Shea, J.J., Janus kinases in immune cell signaling. Immunol. Rev. 228:1 (2009), 273–287.
-
(2009)
Immunol. Rev.
, vol.228
, Issue.1
, pp. 273-287
-
-
Ghoreschi, K.1
Laurence, A.2
O'Shea, J.J.3
-
27
-
-
0033696404
-
Partial impairment of cytokine responses in Tyk2-deficient mice
-
[27] Karaghiosoff, M., et al. Partial impairment of cytokine responses in Tyk2-deficient mice. Immunity 13:4 (2000), 549–560.
-
(2000)
Immunity
, vol.13
, Issue.4
, pp. 549-560
-
-
Karaghiosoff, M.1
-
28
-
-
0033711641
-
Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function
-
[28] Shimoda, K., et al. Tyk2 plays a restricted role in IFN alpha signaling, although it is required for IL-12-mediated T cell function. Immunity 13:4 (2000), 561–571.
-
(2000)
Immunity
, vol.13
, Issue.4
, pp. 561-571
-
-
Shimoda, K.1
-
29
-
-
17644424955
-
A gain-of-function mutation of JAK2 in myeloproliferative disorders
-
[29] Kralovics, R., et al. A gain-of-function mutation of JAK2 in myeloproliferative disorders. N. Engl. J. Med. 352:17 (2005), 1779–1790.
-
(2005)
N. Engl. J. Med.
, vol.352
, Issue.17
, pp. 1779-1790
-
-
Kralovics, R.1
-
30
-
-
84878951826
-
Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis
-
[30] Pardanani, A., et al. Safety and efficacy of CYT387, a JAK1 and JAK2 inhibitor, in myelofibrosis. Leukemia 27:6 (2013), 1322–1327.
-
(2013)
Leukemia
, vol.27
, Issue.6
, pp. 1322-1327
-
-
Pardanani, A.1
-
31
-
-
76949083372
-
Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside
-
[31] Shabbir, M., Stuart, R., Lestaurtinib, a multitargeted tyrosine kinase inhibitor: from bench to bedside. Expert Opin. Invest. Drugs 19:3 (2010), 427–436.
-
(2010)
Expert Opin. Invest. Drugs
, vol.19
, Issue.3
, pp. 427-436
-
-
Shabbir, M.1
Stuart, R.2
-
32
-
-
80755140046
-
SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies
-
[32] Hart, S., et al. SB1518, a novel macrocyclic pyrimidine-based JAK2 inhibitor for the treatment of myeloid and lymphoid malignancies. Leukemia 25:11 (2011), 1751–1759.
-
(2011)
Leukemia
, vol.25
, Issue.11
, pp. 1751-1759
-
-
Hart, S.1
-
33
-
-
77954531991
-
Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050
-
[33] Fridman, J.S., et al. Selective inhibition of JAK1 and JAK2 is efficacious in rodent models of arthritis: preclinical characterization of INCB028050. J. Immunol. 184:9 (2010), 5298–5307.
-
(2010)
J. Immunol.
, vol.184
, Issue.9
, pp. 5298-5307
-
-
Fridman, J.S.1
-
34
-
-
79955027327
-
Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550)
-
[34] Ghoreschi, K., et al. Modulation of innate and adaptive immune responses by tofacitinib (CP-690,550). J. Immunol. 186:7 (2011), 4234–4243.
-
(2011)
J. Immunol.
, vol.186
, Issue.7
, pp. 4234-4243
-
-
Ghoreschi, K.1
-
35
-
-
84907998102
-
Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity
-
[35] Toso, A., et al. Enhancing chemotherapy efficacy in Pten-deficient prostate tumors by activating the senescence-associated antitumor immunity. Cell Rep. 9:1 (2014), 75–89.
-
(2014)
Cell Rep.
, vol.9
, Issue.1
, pp. 75-89
-
-
Toso, A.1
-
36
-
-
85042055496
-
Pharmacologic inhibition of JAK-STAT signaling promotes hair growth
-
[36] Harel, S., et al. Pharmacologic inhibition of JAK-STAT signaling promotes hair growth. Sci. Adv., 1(9), 2015, e1500973.
-
(2015)
Sci. Adv.
, vol.1
, Issue.9
, pp. e1500973
-
-
Harel, S.1
-
37
-
-
84912099331
-
Inhibition of JAK-STAT signaling stimulates adult satellite cell function
-
[37] Price, F.D., et al. Inhibition of JAK-STAT signaling stimulates adult satellite cell function. Nat. Med. 20:10 (2014), 1174–1181.
-
(2014)
Nat. Med.
, vol.20
, Issue.10
, pp. 1174-1181
-
-
Price, F.D.1
-
38
-
-
77950684805
-
Preclinical characterization of the selective JAK1/2 inhibitor INCB04: therapeutic implications for the treatment of myeloproliferative neoplasms
-
[38] Quintas-Cardama, A., Preclinical characterization of the selective JAK1/2 inhibitor INCB04: therapeutic implications for the treatment of myeloproliferative neoplasms. Blood 115:15 (2010), 3109–3117.
-
(2010)
Blood
, vol.115
, Issue.15
, pp. 3109-3117
-
-
Quintas-Cardama, A.1
-
39
-
-
84958093401
-
Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan
-
[39] Baker, D.J., et al. Naturally occurring p16(Ink4a)-positive cells shorten healthy lifespan. Nature 530:7589 (2016), 184–189.
-
(2016)
Nature
, vol.530
, Issue.7589
, pp. 184-189
-
-
Baker, D.J.1
-
40
-
-
84877822086
-
Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation
-
[40] Moiseeva, O., et al. Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-kappaB activation. Aging Cell 12:3 (2013), 489–498.
-
(2013)
Aging Cell
, vol.12
, Issue.3
, pp. 489-498
-
-
Moiseeva, O.1
-
41
-
-
84938751873
-
MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation
-
[41] Laberge, R.M., et al. MTOR regulates the pro-tumorigenic senescence-associated secretory phenotype by promoting IL1A translation. Nat. Cell Biol. 17:8 (2015), 1049–1061.
-
(2015)
Nat. Cell Biol.
, vol.17
, Issue.8
, pp. 1049-1061
-
-
Laberge, R.M.1
-
42
-
-
84864010194
-
Glucocorticoids suppress selected components of the senescence-associated secretory phenotype
-
[42] Laberge, R.M., et al. Glucocorticoids suppress selected components of the senescence-associated secretory phenotype. Aging Cell 11:4 (2012), 569–578.
-
(2012)
Aging Cell
, vol.11
, Issue.4
, pp. 569-578
-
-
Laberge, R.M.1
-
43
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
[43] Harrison, D.E., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 460:7253 (2009), 392–395.
-
(2009)
Nature
, vol.460
, Issue.7253
, pp. 392-395
-
-
Harrison, D.E.1
-
44
-
-
84881247539
-
Rapamycin extends murine lifespan but has limited effects on aging
-
[44] Neff, F., et al. Rapamycin extends murine lifespan but has limited effects on aging. J. Clin. Invest. 123:8 (2013), 3272–3291.
-
(2013)
J. Clin. Invest.
, vol.123
, Issue.8
, pp. 3272-3291
-
-
Neff, F.1
-
45
-
-
84881347302
-
Metformin improves healthspan and lifespan in mice
-
[45] Martin-Montalvo, A., et al. Metformin improves healthspan and lifespan in mice. Nat. Commun., 4, 2013, 2192.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2192
-
-
Martin-Montalvo, A.1
-
46
-
-
84863393110
-
A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis
-
[46] Verstovsek, S., et al. A double-blind, placebo-controlled trial of ruxolitinib for myelofibrosis. N. Engl. J. Med. 366:9 (2012), 799–807.
-
(2012)
N. Engl. J. Med.
, vol.366
, Issue.9
, pp. 799-807
-
-
Verstovsek, S.1
-
47
-
-
84896985687
-
Proinflammatory cytokines, aging, and age-related diseases
-
[47] Michaud, M., et al. Proinflammatory cytokines, aging, and age-related diseases. J. Am. Med. Dir. Assoc. 14:12 (2013), 877–882.
-
(2013)
J. Am. Med. Dir. Assoc.
, vol.14
, Issue.12
, pp. 877-882
-
-
Michaud, M.1
-
48
-
-
77956696835
-
Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis
-
[48] Verstovsek, S., et al. Safety and efficacy of INCB018424, a JAK1 and JAK2 inhibitor, in myelofibrosis. N. Engl. J. Med. 363:12 (2010), 1117–1127.
-
(2010)
N. Engl. J. Med.
, vol.363
, Issue.12
, pp. 1117-1127
-
-
Verstovsek, S.1
-
49
-
-
84941264776
-
Clinical strategies and animal models for developing senolytic agents
-
[49] Kirkland, J.L., Tchkonia, T., Clinical strategies and animal models for developing senolytic agents. Exp. Gerontol. 68 (2015), 19–25.
-
(2015)
Exp. Gerontol.
, vol.68
, pp. 19-25
-
-
Kirkland, J.L.1
Tchkonia, T.2
-
50
-
-
84919480323
-
An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA
-
[50] Demaria, M., et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Dev. Cell 31:6 (2014), 722–733.
-
(2014)
Dev. Cell
, vol.31
, Issue.6
, pp. 722-733
-
-
Demaria, M.1
-
51
-
-
84960156528
-
p16-induced senescence of pancreatic beta cells enhances insulin secretion
-
[51] Helman, A., et al. p16-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med., 2016.
-
(2016)
Nat. Med.
-
-
Helman, A.1
|