메뉴 건너뛰기




Volumn 15, Issue , 2014, Pages

On the selection of appropriate distances for gene expression data clustering

Author keywords

[No Author keywords available]

Indexed keywords

BIOASSAY; CLUSTERING ALGORITHMS; DISEASES; GENE EXPRESSION; GENES; MICROARRAYS;

EID: 84901256826     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-15-S2-S2     Document Type: Article
Times cited : (120)

References (75)
  • 1
    • 0034714421 scopus 로고    scopus 로고
    • Gene expression data analysis
    • Brazma A, Vilo J: Gene expression data analysis. FEBS Letters 2000, 480(1):17-24.
    • (2000) FEBS Letters , vol.480 , Issue.1 , pp. 17-24
    • Brazma, A.1    Vilo, J.2
  • 8
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy S, Ross KN, Lander ES, Golub TR: A molecular signature of metastasis in primary solid tumors. Nat Genet 2003, 33(1):49-54.
    • (2003) Nat Genet , vol.33 , Issue.1 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3    Golub, T.R.4
  • 10
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression clustering work
    • D'haeseleer P: How does gene expression clustering work? Nat Biotech 2005, 23(12):1499-1501.
    • (2005) Nat Biotech , vol.23 , Issue.12 , pp. 1499-1501
    • D'haeseleer, P.1
  • 12
    • 0037667290 scopus 로고    scopus 로고
    • Clustering gene-expression data with repeated measurements
    • Yeung K, Medvedovic M, Bumgarner R: Clustering gene-expression data with repeated measurements. Genome Biologyk 2003, 4(5):34.
    • (2003) Genome Biologyk , vol.4 , Issue.5 , pp. 34
    • Yeung, K.1    Medvedovic, M.2    Bumgarner, R.3
  • 15
    • 0032729435 scopus 로고    scopus 로고
    • Exploring expression data: Identification and analysis of coexpressed genes
    • Heyer LJ, Kruglyak S, Yooseph S: Exploring expression data: Identification and analysis of coexpressed genes. Genome Research 1999, 9(11):1106-1115.
    • (1999) Genome Research , vol.9 , Issue.11 , pp. 1106-1115
    • Heyer, L.J.1    Kruglyak, S.2    Yooseph, S.3
  • 18
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan GJ, Bean RW, Peel D: A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 2002, 18(3):413-422.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 19
    • 0141506116 scopus 로고    scopus 로고
    • Click and expander: A system for clustering and visualizing gene expression data
    • Sharan R, Maron-Katz A, Shamir R: Click and expander: A system for clustering and visualizing gene expression data. Bioinformatics 2003, 19(14):1787-1799.
    • (2003) Bioinformatics , vol.19 , Issue.14 , pp. 1787-1799
    • Sharan, R.1    Maron-Katz, A.2    Shamir, R.3
  • 20
    • 19544375816 scopus 로고    scopus 로고
    • The graphical query language: a tool for analysis of gene expression time-courses
    • Costa IG, Schönhuth A, Schliep A: The graphical query language: a tool for analysis of gene expression time-courses. Bioinformatics 2005, 21(10):2544-2545.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2544-2545
    • Costa, I.G.1    Schönhuth, A.2    Schliep, A.3
  • 21
    • 28644452470 scopus 로고    scopus 로고
    • Clustering short time series gene expression data.
    • Ernst J, Nau GJ, Bar-Joseph Z: Clustering short time series gene expression data. Bioinformatics 2005, 21(suppl 1):159-168.
    • (2005) Bioinformatics , vol.21 , pp. 159-168
    • Ernst, J.1    Nau, G.J.2    Bar-Joseph, Z.3
  • 24
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations.
    • University of California Press;Cam LML, Neyman J
    • MacQueen JB: Some methods for classification and analysis of multivariate observations. In Proc of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. Volume 1. University of California Press;Cam LML, Neyman J 1967:281-297.
    • (1967) Proc of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. , vol.1 , pp. 281-297
    • MacQueen, J.B.1
  • 26
    • 0037342510 scopus 로고    scopus 로고
    • Comparisons and validation of statistical clustering techniques for microarray gene expression data
    • Datta S, Datta S: Comparisons and validation of statistical clustering techniques for microarray gene expression data. Bioinformatics 2003, 19(4):459-466.
    • (2003) Bioinformatics , vol.19 , Issue.4 , pp. 459-466
    • Datta, S.1    Datta, S.2
  • 27
    • 11344295027 scopus 로고    scopus 로고
    • Comparative analysis of clustering methods for gene expression time course data.
    • Costa IG, Carvalho FdATd, Souto MA-lCPd: Comparative analysis of clustering methods for gene expression time course data. Genetics and Molecular Biology 2004, 27:623-631.
    • (2004) Genetics and Molecular Biology , vol.27 , pp. 623-631
    • Costa, I.G.1    Carvalho, F.2    Souto, M.-L.3
  • 28
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis.
    • Thalamuthu A, Mukhopadhyay I, Zheng X, Tseng GC: Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics 2006, 22:2405-2412.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.C.4
  • 29
    • 44449145580 scopus 로고    scopus 로고
    • A comparative study of different machine learning methods on microarray gene expression data.
    • Pirooznia M, Yang J, Yang MQ, Deng Y: A comparative study of different machine learning methods on microarray gene expression data. BMC Genomics 2008, 9(Suppl 1):13.
    • (2008) BMC Genomics , vol.9 , pp. 13
    • Pirooznia, M.1    Yang, J.2    Yang, M.Q.3    Deng, Y.4
  • 30
    • 77957674888 scopus 로고    scopus 로고
    • Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering
    • Freyhult E, Landfors M, Onskog J, Hvidsten T, Ryden P: Challenges in microarray class discovery: a comprehensive examination of normalization, gene selection and clustering. BMC Bioinformatics 2010, 11(1):503.
    • (2010) BMC Bioinformatics , vol.11 , Issue.1 , pp. 503
    • Freyhult, E.1    Landfors, M.2    Onskog, J.3    Hvidsten, T.4    Ryden, P.5
  • 31
    • 0042526388 scopus 로고    scopus 로고
    • The mutual information: Detecting and evaluating dependencies between variables.
    • Steuer R, Kurths J, Daub CO, Weise J, Selbig J: The mutual information: Detecting and evaluating dependencies between variables. Bioinformatics 2002, 18:231-240.
    • (2002) Bioinformatics , vol.18 , pp. 231-240
    • Steuer, R.1    Kurths, J.2    Daub, C.O.3    Weise, J.4    Selbig, J.5
  • 32
    • 34247875975 scopus 로고    scopus 로고
    • Evaluation of gene-expression clustering via mutual information distance measure
    • Priness I, Maimon O, Ben-Gal I: Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics 2007, 8(1):111.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 111
    • Priness, I.1    Maimon, O.2    Ben-Gal, I.3
  • 35
    • 16344369007 scopus 로고    scopus 로고
    • Clustering of gene expression data using a local shape-based similarity measure
    • Balasubramaniyan R, Hullermeier E, Weskamp N, Kamper J: Clustering of gene expression data using a local shape-based similarity measure. Bioinformatics 2005, 21(7):1069-1077.
    • (2005) Bioinformatics , vol.21 , Issue.7 , pp. 1069-1077
    • Balasubramaniyan, R.1    Hullermeier, E.2    Weskamp, N.3    Kamper, J.4
  • 37
    • 37049029995 scopus 로고    scopus 로고
    • A modified correlation coefficient based similarity measure for clustering time-course gene expression data
    • Son YS, Baek J: A modified correlation coefficient based similarity measure for clustering time-course gene expression data. Pattern Recognition Letters 2008, 29(3):232-242.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.3 , pp. 232-242
    • Son, Y.S.1    Baek, J.2
  • 39
    • 0142056016 scopus 로고    scopus 로고
    • Comparative study on proximity indices for cluster analysis of gene expression time series.
    • Costa IG, de Carvalho FAT, de Souto MCP: Comparative study on proximity indices for cluster analysis of gene expression time series. Journal of Intelligent & Fuzzy Systems 2002, 13(2-4):133-142.
    • (2002) Journal of Intelligent & Fuzzy Systems , vol.13 , Issue.2-4 , pp. 133-142
    • Costa, I.G.1    de Carvalho, F.A.T.2    de Souto, M.C.P.3
  • 40
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • Gibbons FD, Roth FP: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research 2002, 12(10):1574-1581.
    • (2002) Genome Research , vol.12 , Issue.10 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 48
    • 0034069495 scopus 로고    scopus 로고
    • Gene ontology: tool for the unification of biology
    • Ashburner M, et al: Gene ontology: tool for the unification of biology. Nat Genet 2000, 25(1):25-29.
    • (2000) Nat Genet , vol.25 , Issue.1 , pp. 25-29
    • Ashburner, M.1
  • 51
    • 46249116676 scopus 로고    scopus 로고
    • Inferring differentiation pathways from gene expression
    • Costa IG, Roepcke S, Hafemeister C, Schliep A: Inferring differentiation pathways from gene expression. Bioinformatics 2008, 24(13):156-164.
    • (2008) Bioinformatics , vol.24 , Issue.13 , pp. 156-164
    • Costa, I.G.1    Roepcke, S.2    Hafemeister, C.3    Schliep, A.4
  • 52
    • 3142665525 scopus 로고    scopus 로고
    • Gostat: find statistically overrepresented gene ontologies within a group of genes
    • Beißbarth T, Speed TP: Gostat: find statistically overrepresented gene ontologies within a group of genes. Bioinformatics 2004, 20(9):1464-1465.
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1464-1465
    • Beißbarth, T.1    Speed, T.P.2
  • 53
    • 33646344978 scopus 로고    scopus 로고
    • Stem: a tool for the analysis of short time series gene expression data
    • Ernst J, Bar-Joseph Z: Stem: a tool for the analysis of short time series gene expression data. BMC Bioinformatics 2006, 7(1):191.
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 191
    • Ernst, J.1    Bar-Joseph, Z.2
  • 54
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz G: Estimating the dimension of a model. The Annals of Statistics 1978, 6(2):461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 57
    • 33947326847 scopus 로고    scopus 로고
    • Metric for measuring the effectiveness of clustering of dna microarray expression.
    • Loganantharaj R, Cheepala S, Clifford J: Metric for measuring the effectiveness of clustering of dna microarray expression. BMC Bioinformatics 2006, 7(Suppl 2):5.
    • (2006) BMC Bioinformatics , vol.7 , pp. 5
    • Loganantharaj, R.1    Cheepala, S.2    Clifford, J.3
  • 58
    • 84865589869 scopus 로고
    • iii. regression, heredity, and panmixia. Proceedings of the Royal Society of London
    • Pearson K: Contributions to the mathematical theory of evolution. iii. regression, heredity, and panmixia. Proceedings of the Royal Society of London 1895, 59:69-71.
    • (1895) Contributions to the mathematical theory of evolution. , vol.59 , pp. 69-71
    • Pearson, K.1
  • 60
    • 59349105139 scopus 로고    scopus 로고
    • On comparing two sequences of numbers and its applications to clustering analysis
    • Campello RJGB, Hruschka ER: On comparing two sequences of numbers and its applications to clustering analysis. Information Sciences 2009, 179(8):1025-1039.
    • (2009) Information Sciences , vol.179 , Issue.8 , pp. 1025-1039
    • Campello, R.J.G.B.1    Hruschka, E.R.2
  • 62
    • 84865583276 scopus 로고    scopus 로고
    • Comparing correlation coefficients as dissimilarity measures for cancer classification in gene expression data.
    • Brazil, August 7-12, 2011.
    • Jaskowiak PA, Campello RJGB: Comparing correlation coefficients as dissimilarity measures for cancer classification in gene expression data. Proceedings of the Brazilian Symposium on Bioinformatics Brasília, Brazil; 2011, 1-8, August 7-12, 2011.
    • (2011) Proceedings of the Brazilian Symposium on Bioinformatics Brasília , pp. 1-8
    • Jaskowiak, P.A.1    Campello, R.J.G.B.2
  • 64
    • 0029360028 scopus 로고
    • On cluster validity for the fuzzy c-means model
    • Pal NR, Bezdek JC: On cluster validity for the fuzzy c-means model. IEEE Trans on Fuzzy Systems 1995, 3(3):370-379.
    • (1995) IEEE Trans on Fuzzy Systems , vol.3 , Issue.3 , pp. 370-379
    • Pal, N.R.1    Bezdek, J.C.2
  • 65
    • 23844498540 scopus 로고    scopus 로고
    • A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification
    • Pakhira MK, Bandyopadhyay S, Maulik U: A study of some fuzzy cluster validity indices, genetic clustering and application to pixel classification. Fuzzy Sets and Systems 2005, 155(2):191-214.
    • (2005) Fuzzy Sets and Systems , vol.155 , Issue.2 , pp. 191-214
    • Pakhira, M.K.1    Bandyopadhyay, S.2    Maulik, U.3
  • 66
    • 84948872101 scopus 로고
    • A study of the comparability of external criteria for hierarchical cluster analysis
    • Milligan GW, Cooper MC: A study of the comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research 1986, 21(4):441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , Issue.4 , pp. 441-458
    • Milligan, G.W.1    Cooper, M.C.2
  • 67
    • 0037399775 scopus 로고    scopus 로고
    • Cluster validation techniques for genome expression data
    • Bolshakova N, Azuaje F: Cluster validation techniques for genome expression data. Signal Processing 2003, 83(4):825-833.
    • (2003) Signal Processing , vol.83 , Issue.4 , pp. 825-833
    • Bolshakova, N.1    Azuaje, F.2
  • 68
    • 34547398094 scopus 로고    scopus 로고
    • Effectivity of internal validation techniques for gene clustering.
    • Springer;Maglaveras N, Chouvarda I, Koutkias V, Brause R
    • Yang C, Wan B, Gao X: Effectivity of internal validation techniques for gene clustering. In Biological and Medical Data Analysis. Volume 4345. Springer;Maglaveras N, Chouvarda I, Koutkias V, Brause R 2006:49-59.
    • (2006) Biological and Medical Data Analysis , vol.4345 , pp. 49-59
    • Yang, C.1    Wan, B.2    Gao, X.3
  • 69
    • 33847177636 scopus 로고    scopus 로고
    • Functional distances for genes based on go feature maps and their application to clustering.
    • Speer N, Fröhlich H, Spieth C, Zell A: Functional distances for genes based on go feature maps and their application to clustering. CIBCB 2005, 142-149.
    • (2005) CIBCB , pp. 142-149
    • Speer, N.1    Fröhlich, H.2    Spieth, C.3    Zell, A.4
  • 70
    • 33745786698 scopus 로고    scopus 로고
    • Functional grouping of genes using spectral clustering and gene ontology.
    • Speer N, Frohlich H, Spieth C, Zell A: Functional grouping of genes using spectral clustering and gene ontology. IJCNN 2005, 1:298-3031.
    • (2005) IJCNN , vol.1 , pp. 298-3031
    • Speer, N.1    Frohlich, H.2    Spieth, C.3    Zell, A.4
  • 72
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in postgenomic data analysis
    • Handl J, Knowles J, Kell DB: Computational cluster validation in postgenomic data analysis. Bioinformatics 2005, 21(15):3201-3212.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 73
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets.
    • Demšar J: Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research 2006, 7:1-30.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 74
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M: The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the American Statistical Association 1937, 32(200):675-701.
    • (1937) Journal of the American Statistical Association , vol.32 , Issue.200 , pp. 675-701
    • Friedman, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.