메뉴 건너뛰기




Volumn 6073 LNCS, Issue , 2010, Pages 125-138

Distance functions, clustering algorithms and microarray data analysis

Author keywords

[No Author keywords available]

Indexed keywords

BEST CHOICE; CLASSIFICATION AND CLUSTERING; DE FACTO STANDARD; DISTANCE FUNCTIONS; EUCLIDEAN DISTANCE; EVALUATION TOOL; EXPERIMENTAL STUDIES; EXPERIMENTAL VALIDATIONS; K-MEANS CLUSTERING ALGORITHM; MICROARRAY DATA; MICROARRAY DATA ANALYSIS; MICROARRAY DATA SETS; MINKOWSKI; PEARSON CORRELATION; PREDICTIVE POWER; SEPARATION ABILITY; VALIDATION CRITERIA;

EID: 77954619865     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-13800-3_10     Document Type: Conference Paper
Times cited : (30)

References (28)
  • 2
    • 28644449917 scopus 로고    scopus 로고
    • How does gene expression cluster work?
    • D'haeseleer, P.: How does gene expression cluster work? Nature Biothecnology 23, 1499-1501 (2006)
    • (2006) Nature Biothecnology , vol.23 , pp. 1499-1501
    • D'haeseleer, P.1
  • 4
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • DOI 10.1093/bioinformatics/bti517
    • Handl, J., Knowles, J., Kell, D.B.: Computational cluster validation in postgenomic data analysis. Bioinformatics 21(15), 3201-3212 (2005) (Pubitemid 41418432)
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 5
    • 62849090487 scopus 로고    scopus 로고
    • Computational cluster validation for microarray data analysis: Experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer
    • Giancarlo, R., Scaturro, D., Utro, F.: Computational cluster validation for microarray data analysis: experimental assessment of Clest, Consensus Clustering, Figure of Merit, Gap Statistics and Model Explorer. BMC Bioinformatics 9, 462 (2008)
    • (2008) BMC Bioinformatics , vol.9 , pp. 462
    • Giancarlo, R.1    Scaturro, D.2    Utro, F.3
  • 6
    • 0141498446 scopus 로고    scopus 로고
    • Algorithmic approaches to clustering gene expression data
    • Jiang, T., Smith, T., Xu, Y., Zhang, M.Q. (eds.) MIT Press, Cambridge
    • Shamir, R., Sharan, R.: Algorithmic approaches to clustering gene expression data. In: Jiang, T., Smith, T., Xu, Y., Zhang, M.Q. (eds.) Current Topics in Computational Biology, pp. 120-161. MIT Press, Cambridge (2003)
    • (2003) Current Topics in Computational Biology , pp. 120-161
    • Shamir, R.1    Sharan, R.2
  • 7
    • 34247875975 scopus 로고    scopus 로고
    • Evaluation of gene-expression clustering via mutual information distance measure
    • Priness, I., Maimon, O., Ben-Gal, I.: Evaluation of gene-expression clustering via mutual information distance measure. BMC Bioinformatics 8(111), 1-12 (2007)
    • (2007) BMC Bioinformatics , vol.8 , Issue.111 , pp. 1-12
    • Priness, I.1    Maimon, O.2    Ben-Gal, I.3
  • 9
    • 11344295027 scopus 로고    scopus 로고
    • Comparative analysis of clustering methods for gene expression time course data
    • Costa, I., de Carvalho, F., de Souto, M.: Comparative analysis of clustering methods for gene expression time course data. Genetics and Molecular Biology 27(4), 623-631 (2004) (Pubitemid 40074370)
    • (2004) Genetics and Molecular Biology , vol.27 , Issue.4 , pp. 623-631
    • Costa, I.G.1    De Carvalho, F.D.T.2    De Souto, M.C.P.3
  • 10
    • 0036798238 scopus 로고    scopus 로고
    • Judging the quality of gene expression-based clustering methods using gene annotation
    • DOI 10.1101/gr.397002
    • Gibbons, F., Roth, F.: Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research (12), 1574-1581 (2002) (Pubitemid 35175096)
    • (2002) Genome Research , vol.12 , Issue.10 , pp. 1574-1581
    • Gibbons, F.D.1    Roth, F.P.2
  • 14
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • Dudoit, S., Fridlyand, J.: A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biology 3 (2002)
    • (2002) Genome Biology , pp. 3
    • Dudoit, S.1    Fridlyand, J.2
  • 17
    • 0035024021 scopus 로고    scopus 로고
    • Validating clustering for gene expression data
    • Yeung, K.Y., Haynor, D.R., Ruzzo, W.L.: Validating clustering for gene expression data. Bioinformatics 17, 309-318 (2001)
    • (2001) Bioinformatics , vol.17 , pp. 309-318
    • Yeung, K.Y.1    Haynor, D.R.2    Ruzzo, W.L.3
  • 21
    • 0034659448 scopus 로고    scopus 로고
    • An algorithm for clustering of cDNAs for gene expression analysis using short oligonucleotide fingerprints
    • Hartuv, E., Schmitt, A., Lange, J., Meier-Ewert, S., Lehrach, H., Shamir, R.: An algorithm for clustering of cDNAs for gene expression analysis using short oligonucleotide fingerprints. Genomics 66, 249-256 (2000)
    • (2000) Genomics , vol.66 , pp. 249-256
    • Hartuv, E.1    Schmitt, A.2    Lange, J.3    Meier-Ewert, S.4    Lehrach, H.5    Shamir, R.6
  • 24
    • 0035999974 scopus 로고    scopus 로고
    • Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning tree
    • Xu, Y., Olman, V., Xu, D.: Clustering gene expression data using a graph-theoretic approach: An application of minimum spanning tree. Bioinformatics 18(4), 526-535 (2002)
    • (2002) Bioinformatics , vol.18 , Issue.4 , pp. 526-535
    • Xu, Y.1    Olman, V.2    Xu, D.3
  • 25
    • 0018079655 scopus 로고
    • Basic principles of ROC analysis
    • Metz, C.E.: Basic principles of ROC analysis. Seminars in Nuclear Medicine 8(4), 283-298 (1978)
    • (1978) Seminars in Nuclear Medicine , vol.8 , Issue.4 , pp. 283-298
    • Metz, C.E.1
  • 26
    • 0020083498 scopus 로고
    • The meaning and use of the area under a receiver operating characteristic (ROC) curve
    • Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29-36 (1982)
    • (1982) Radiology , vol.143 , Issue.1 , pp. 29-36
    • Hanley, J.A.1    McNeil, B.J.2
  • 28
    • 13244267007 scopus 로고    scopus 로고
    • Estimating mutual information using b-spline functions - An improved similarity measure for analysing gene expression data
    • Daub, C., Steuer, R., Selbig, J., Kloska, S.: Estimating mutual information using b-spline functions - an improved similarity measure for analysing gene expression data. BMC Bioinformatics 5(1), 118 (2004)
    • (2004) BMC Bioinformatics , vol.5 , Issue.1 , pp. 118
    • Daub, C.1    Steuer, R.2    Selbig, J.3    Kloska, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.