메뉴 건너뛰기




Volumn , Issue , 2014, Pages 37-64

Feature selection for classification: A review

Author keywords

[No Author keywords available]

Indexed keywords


EID: 85054068951     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1201/b17320     Document Type: Chapter
Times cited : (1176)

References (81)
  • 3
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group Lasso and multiple kernel learning
    • F. R. Bach. Consistency of the group Lasso and multiple kernel learning. The Journal of Machine Learning Research, 9:1179–1225, 2008.
    • (2008) The Journal of Machine Learning Research , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 4
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
    • H. D. Bondell and B. J. Reich. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics, 64(1):115–123, 2008.
    • (2008) Biometrics , vol.64 , Issue.1 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 6
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.
    • (2007) The Annals of Statistics , vol.35 , Issue.6 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 8
    • 0013326060 scopus 로고    scopus 로고
    • Feature selection for classification
    • M. Dash and H. Liu. Feature selection for classification. IntelligentData Analysis, 1(1-4):131-156, 1997.
    • (1997) Intelligentdata Analysis , vol.1 , Issue.1-4 , pp. 131-156
    • Dash, M.1    Liu, H.2
  • 12
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • Morgan Kaufmann
    • J.G. Dy and C.E. Brodley. Feature subset selection and order identification for unsupervised learning. In In Proc. 17th International Conference on Machine Learning, pages 247–254. Morgan Kaufmann, 2000.
    • (2000) In Proc. 17Th International Conference on Machine Learning , pp. 247-254
    • Dy, J.G.1    Brodley, C.E.2
  • 14
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.
    • (2001) Journal of the American Statistical Association , vol.96 , Issue.456 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 19
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389–422, 2002.
    • (2002) Machine Learning , vol.46 , Issue.1-3 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 23
    • 49949115667 scopus 로고    scopus 로고
    • Asymptotic properties of bridge estimators in sparse high-dimensional regression models
    • J. Huang, J. L. Horowitz, and S. Ma. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. The Annals of Statistics, 36(2):587–613, 2008.
    • (2008) The Annals of Statistics , vol.36 , Issue.2 , pp. 587-613
    • Huang, J.1    Horowitz, J.L.2    Ma, S.3
  • 24
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • J. Huang, S. Ma, and C. Zhang. Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica, 18(4):1603, 2008.
    • (2008) Statistica Sinica , vol.18 , Issue.4 , pp. 1603
    • Huang, J.1    Ma, S.2    Zhang, C.3
  • 31
    • 1942450651 scopus 로고    scopus 로고
    • Linkage and autocorrelation cause feature selection bias in relational learning
    • D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection bias in relational learning. In International Conference on Machine Learning, pages 259–266, 2002.
    • (2002) International Conference on Machine Learning , pp. 259-266
    • Jensen, D.1    Neville, J.2
  • 32
    • 70149098541 scopus 로고    scopus 로고
    • Statistical estimation of correlated genome associations to a quantitative trait network
    • S. Kim and E. Xing. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genetics, 5(8):e1000587, 2009.
    • (2009) Plos Genetics , vol.5 , Issue.8
    • Kim, S.1    Xing, E.2
  • 35
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for Lasso-type estimators
    • K. Knight and W. Fu. Asymptotics for Lasso-type estimators. Annals of Statistics, 78(5):1356-1378, 2000.
    • (2000) Annals of Statistics , vol.78 , Issue.5 , pp. 1356-1378
    • Knight, K.1    Fu, W.2
  • 36
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273–324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 40
    • 17044405923 scopus 로고    scopus 로고
    • Toward integrating feature selection algorithms for classification and clustering
    • H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491, 2005.
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.4 , pp. 491
    • Liu, H.1    Yu, L.2
  • 42
    • 85161968806 scopus 로고    scopus 로고
    • Moreau-Yosida regularization for grouped tree structure learning
    • J. Liu and J. Ye. Moreau-Yosida regularization for grouped tree structure learning. Advances in Neural Information Processing Systems, 187:195–207, 2010.
    • (2010) Advances in Neural Information Processing Systems , vol.187 , pp. 195-207
    • Liu, J.1    Ye, J.2
  • 46
    • 49949090353 scopus 로고    scopus 로고
    • Penalized feature selection and classification in bioinformatics
    • S. Ma and J. Huang. Penalized feature selection and classification in bioinformatics. Briefings in Bioinformatics, 9(5):392–403, 2008.
    • (2008) Briefings in Bioinformatics , vol.9 , Issue.5 , pp. 392-403
    • Ma, S.1    Huang, J.2
  • 47
    • 34249102504 scopus 로고    scopus 로고
    • Classification in networked data: A toolkit and a univariate case study
    • S.A. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate case study. The Journal of Machine Learning Research, 8:935–983, 2007.
    • (2007) The Journal of Machine Learning Research , vol.8 , pp. 935-983
    • Macskassy, S.A.1    Provost, F.2
  • 52
    • 24344458137 scopus 로고    scopus 로고
    • Feature selection based on mutual information:Criteria ofmaxdependency, max-relevance, and min-redundancy
    • H. Peng, F. Long, and C. Ding. Feature selection based on mutual information:Criteria ofmaxdependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1226–1238, 2005.
    • (2005) IEEE Transactions on Pattern Analysis and Machine Intelligence , pp. 1226-1238
    • Peng, H.1    Long, F.2    Ding, C.3
  • 55
    • 33744584654 scopus 로고
    • Induction of decision trees
    • J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
    • (1986) Machine Learning , vol.1 , Issue.1 , pp. 81-106
    • Quinlan, J.R.1
  • 56
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. Robnik Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53(1-2):23–69, 2003.
    • (2003) Machine Learning , vol.53 , Issue.1-2 , pp. 23-69
    • Robnik Sikonja, M.1    Kononenko, I.2
  • 57
    • 35748932917 scopus 로고    scopus 로고
    • A review of feature selection techniques in bioinformatics
    • Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.
    • (2007) Bioinformatics , vol.23 , Issue.19 , pp. 2507-2517
    • Saeys, Y.1    Inza, I.2    Larrañaga, P.3
  • 60
    • 0141990695 scopus 로고    scopus 로고
    • Theoretical and empirical analysis of ReliefF and RReliefF
    • M. R. Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53:23–69, 2003.
    • (2003) Machine Learning , vol.53 , pp. 23-69
    • Sikonja, M.R.1    Kononenko, I.2
  • 62
    • 84880191846 scopus 로고    scopus 로고
    • Feature selection with linked data in socialmedia
    • J. Tang and H. Liu. Feature selection with linked data in socialmedia. In SDM, pages 118–128, 2012.
    • (2012) SDM , pp. 118-128
    • Tang, J.1    Liu, H.2
  • 66
    • 37249032736 scopus 로고    scopus 로고
    • Spatial smoothing and hot spot detection for cgh data using the fused Lasso
    • R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for cgh data using the fused Lasso. Biostatistics, 9(1):18–29, 2008.
    • (2008) Biostatistics , vol.9 , Issue.1 , pp. 18-29
    • Tibshirani, R.1    Wang, P.2
  • 69
    • 0031073477 scopus 로고    scopus 로고
    • A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
    • D. Wettschereck, D. Aha, and T. Mohri. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11:273–314, 1997.
    • (1997) Artificial Intelligence Review , vol.11 , pp. 273-314
    • Wettschereck, D.1    Aha, D.2    Mohri, T.3
  • 73
    • 84880544524 scopus 로고    scopus 로고
    • Sparse methods for biomedical data
    • J. Ye and J. Liu. Sparse methods for biomedical data. ACM SIGKDD Explorations Newsletter, 14(1):4–15, 2012.
    • (2012) ACM SIGKDD Explorations Newsletter , vol.14 , Issue.1 , pp. 4-15
    • Ye, J.1    Liu, J.2
  • 74
    • 1942451938 scopus 로고    scopus 로고
    • Feature selection for high-dimensional data: A fast correlation-based filter solution
    • L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter solution. In International Conference on Machine Learning, 20:856, 2003.
    • (2003) International Conference on Machine Learning , vol.20 , pp. 856
    • Yu, L.1    Liu, H.2
  • 76
  • 80
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418–1429, 2006.
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.476 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.