-
3
-
-
46249088758
-
Consistency of the group Lasso and multiple kernel learning
-
F. R. Bach. Consistency of the group Lasso and multiple kernel learning. The Journal of Machine Learning Research, 9:1179–1225, 2008.
-
(2008)
The Journal of Machine Learning Research
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
4
-
-
39849102639
-
Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar
-
H. D. Bondell and B. J. Reich. Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with oscar. Biometrics, 64(1):115–123, 2008.
-
(2008)
Biometrics
, vol.64
, Issue.1
, pp. 115-123
-
-
Bondell, H.D.1
Reich, B.J.2
-
6
-
-
34548275795
-
The Dantzig selector: Statistical estimation when p is much larger than n
-
E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. The Annals of Statistics, 35(6):2313–2351, 2007.
-
(2007)
The Annals of Statistics
, vol.35
, Issue.6
, pp. 2313-2351
-
-
Candes, E.1
Tao, T.2
-
7
-
-
35348891430
-
Network-based classification of breast cancer metastasis
-
H. Y. Chuang, E. Lee, Y.T. Liu, D. Lee, and T. Ideker. Network-based classification of breast cancer metastasis. Molecular Systems Biology, 3(1), 2007.
-
(2007)
Molecular Systems Biology
, vol.3
, Issue.1
-
-
Chuang, H.Y.1
Lee, E.2
Liu, Y.T.3
Lee, D.4
Ideker, T.5
-
8
-
-
0013326060
-
Feature selection for classification
-
M. Dash and H. Liu. Feature selection for classification. IntelligentData Analysis, 1(1-4):131-156, 1997.
-
(1997)
Intelligentdata Analysis
, vol.1
, Issue.1-4
, pp. 131-156
-
-
Dash, M.1
Liu, H.2
-
12
-
-
0002878444
-
Feature subset selection and order identification for unsupervised learning
-
Morgan Kaufmann
-
J.G. Dy and C.E. Brodley. Feature subset selection and order identification for unsupervised learning. In In Proc. 17th International Conference on Machine Learning, pages 247–254. Morgan Kaufmann, 2000.
-
(2000)
In Proc. 17Th International Conference on Machine Learning
, pp. 247-254
-
-
Dy, J.G.1
Brodley, C.E.2
-
14
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
J. Fan and R. Li. Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association, 96(456):1348–1360, 2001.
-
(2001)
Journal of the American Statistical Association
, vol.96
, Issue.456
, pp. 1348-1360
-
-
Fan, J.1
Li, R.2
-
19
-
-
0036161259
-
Gene selection for cancer classification using support vector machines
-
I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine learning, 46(1-3):389–422, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 389-422
-
-
Guyon, I.1
Weston, J.2
Barnhill, S.3
Vapnik, V.4
-
23
-
-
49949115667
-
Asymptotic properties of bridge estimators in sparse high-dimensional regression models
-
J. Huang, J. L. Horowitz, and S. Ma. Asymptotic properties of bridge estimators in sparse high-dimensional regression models. The Annals of Statistics, 36(2):587–613, 2008.
-
(2008)
The Annals of Statistics
, vol.36
, Issue.2
, pp. 587-613
-
-
Huang, J.1
Horowitz, J.L.2
Ma, S.3
-
24
-
-
51049096710
-
Adaptive Lasso for sparse high-dimensional regression models
-
J. Huang, S. Ma, and C. Zhang. Adaptive Lasso for sparse high-dimensional regression models. Statistica Sinica, 18(4):1603, 2008.
-
(2008)
Statistica Sinica
, vol.18
, Issue.4
, pp. 1603
-
-
Huang, J.1
Ma, S.2
Zhang, C.3
-
26
-
-
3042532685
-
Filter versus wrapper gene selection approaches in dna microarray domains
-
I. Inza, P. Larrañaga, R. Blanco, and A. J. Cerrolaza. Filter versus wrapper gene selection approaches in dna microarray domains. Artificial intelligence in Medicine, 31(2):91–103, 2004.
-
(2004)
Artificial Intelligence in Medicine
, vol.31
, Issue.2
, pp. 91-103
-
-
Inza, I.1
Larrañaga, P.2
Blanco, R.3
Cerrolaza, A.J.4
-
28
-
-
58149345975
-
Connections between the Dantzig selector and Lasso
-
G. James, P. Radchenko, and J. Lv. Dasso: Connections between the Dantzig selector and Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(1):127-142, 2009.
-
(2009)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.71
, Issue.1
, pp. 127-142
-
-
James, G.1
Radchenko, P.2
Dasso, J.L.3
-
30
-
-
80052234083
-
Proximal methods for sparse hierarchical dictionary learning
-
R. Jenatton, J. Mairal, G. Obozinski, and F. Bach. Proximal methods for sparse hierarchical dictionary learning. Journal of Machine Learning Research, 12:2297–2334, 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 2297-2334
-
-
Jenatton, R.1
Mairal, J.2
Obozinski, G.3
Bach, F.4
-
31
-
-
1942450651
-
Linkage and autocorrelation cause feature selection bias in relational learning
-
D. Jensen and J. Neville. Linkage and autocorrelation cause feature selection bias in relational learning. In International Conference on Machine Learning, pages 259–266, 2002.
-
(2002)
International Conference on Machine Learning
, pp. 259-266
-
-
Jensen, D.1
Neville, J.2
-
32
-
-
70149098541
-
Statistical estimation of correlated genome associations to a quantitative trait network
-
S. Kim and E. Xing. Statistical estimation of correlated genome associations to a quantitative trait network. PLoS Genetics, 5(8):e1000587, 2009.
-
(2009)
Plos Genetics
, vol.5
, Issue.8
-
-
Kim, S.1
Xing, E.2
-
35
-
-
0034287156
-
Asymptotics for Lasso-type estimators
-
K. Knight and W. Fu. Asymptotics for Lasso-type estimators. Annals of Statistics, 78(5):1356-1378, 2000.
-
(2000)
Annals of Statistics
, vol.78
, Issue.5
, pp. 1356-1378
-
-
Knight, K.1
Fu, W.2
-
36
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G.H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273–324, 1997.
-
(1997)
Artificial Intelligence
, vol.97
, Issue.1-2
, pp. 273-324
-
-
Kohavi, R.1
John, G.H.2
-
40
-
-
17044405923
-
Toward integrating feature selection algorithms for classification and clustering
-
H. Liu and L. Yu. Toward integrating feature selection algorithms for classification and clustering. IEEE Transactions on Knowledge and Data Engineering, 17(4):491, 2005.
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.4
, pp. 491
-
-
Liu, H.1
Yu, L.2
-
41
-
-
80053145416
-
Multi-task feature learning via efficient l 2, 1-norm minimization
-
AUAI Press
-
J. Liu, S. Ji, and J. Ye. Multi-task feature learning via efficient l 2, 1-norm minimization. In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence, pages 339–348. AUAI Press, 2009.
-
(2009)
Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
, pp. 339-348
-
-
Liu, J.1
Ji, S.2
Ye, J.3
-
42
-
-
85161968806
-
Moreau-Yosida regularization for grouped tree structure learning
-
J. Liu and J. Ye. Moreau-Yosida regularization for grouped tree structure learning. Advances in Neural Information Processing Systems, 187:195–207, 2010.
-
(2010)
Advances in Neural Information Processing Systems
, vol.187
, pp. 195-207
-
-
Liu, J.1
Ye, J.2
-
43
-
-
33847007697
-
Sparse logistic regression with lp penalty for biomarker identification
-
Z. Liu, F. Jiang, G. Tian, S. Wang, F. Sato, S. Meltzer, and M. Tan. Sparse logistic regression with lp penalty for biomarker identification. Statistical Applications in Genetics and Molecular Biology, 6(1), 2007.
-
(2007)
Statistical Applications in Genetics and Molecular Biology
, vol.6
, Issue.1
-
-
Liu, Z.1
Jiang, F.2
Tian, G.3
Wang, S.4
Sato, F.5
Meltzer, S.6
Tan, M.7
-
44
-
-
34250765347
-
Spectral clustering for multi-type relational data
-
ACM
-
B. Long, Z.M. Zhang, X. Wu, and P.S. Yu. Spectral clustering for multi-type relational data. In Proceedings of the 23rd International Conference on Machine Learning, pages 585–592. ACM, 2006.
-
(2006)
Proceedings of the 23Rd International Conference on Machine Learning
, pp. 585-592
-
-
Long, B.1
Zhang, Z.M.2
Wu, X.3
Yu, P.S.4
-
46
-
-
49949090353
-
Penalized feature selection and classification in bioinformatics
-
S. Ma and J. Huang. Penalized feature selection and classification in bioinformatics. Briefings in Bioinformatics, 9(5):392–403, 2008.
-
(2008)
Briefings in Bioinformatics
, vol.9
, Issue.5
, pp. 392-403
-
-
Ma, S.1
Huang, J.2
-
47
-
-
34249102504
-
Classification in networked data: A toolkit and a univariate case study
-
S.A. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate case study. The Journal of Machine Learning Research, 8:935–983, 2007.
-
(2007)
The Journal of Machine Learning Research
, vol.8
, pp. 935-983
-
-
Macskassy, S.A.1
Provost, F.2
-
49
-
-
27644569147
-
Subband correlation and robust speech recognition
-
J. McAuley, J Ming, D. Stewart, and P. Hanna. Subband correlation and robust speech recognition. IEEE Transactions on Speech and Audio Processing, 13(5):956–964, 2005.
-
(2005)
IEEE Transactions on Speech and Audio Processing
, vol.13
, Issue.5
, pp. 956-964
-
-
McAuley, J.1
Ming, J.2
Stewart, D.3
Hanna, P.4
-
50
-
-
37849035696
-
The group Lasso for logistic regression
-
L. Meier, S. De Geer, and P. Bühlmann. The group Lasso for logistic regression. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 70(1):53–71, 2008.
-
(2008)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.70
, Issue.1
, pp. 53-71
-
-
Meier, L.1
De Geer, S.2
Bühlmann, P.3
-
52
-
-
24344458137
-
Feature selection based on mutual information:Criteria ofmaxdependency, max-relevance, and min-redundancy
-
H. Peng, F. Long, and C. Ding. Feature selection based on mutual information:Criteria ofmaxdependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1226–1238, 2005.
-
(2005)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, pp. 1226-1238
-
-
Peng, H.1
Long, F.2
Ding, C.3
-
55
-
-
33744584654
-
Induction of decision trees
-
J. R. Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.
-
(1986)
Machine Learning
, vol.1
, Issue.1
, pp. 81-106
-
-
Quinlan, J.R.1
-
56
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. Robnik Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53(1-2):23–69, 2003.
-
(2003)
Machine Learning
, vol.53
, Issue.1-2
, pp. 23-69
-
-
Robnik Sikonja, M.1
Kononenko, I.2
-
57
-
-
35748932917
-
A review of feature selection techniques in bioinformatics
-
Y. Saeys, I. Inza, and P. Larrañaga. A review of feature selection techniques in bioinformatics. Bioinformatics, 23(19):2507–2517, 2007.
-
(2007)
Bioinformatics
, vol.23
, Issue.19
, pp. 2507-2517
-
-
Saeys, Y.1
Inza, I.2
Larrañaga, P.3
-
59
-
-
53749083869
-
Collective classification in network data
-
P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and T. Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):93, 2008.
-
(2008)
AI Magazine
, vol.29
, Issue.3
, pp. 93
-
-
Sen, P.1
Namata, G.2
Bilgic, M.3
Getoor, L.4
Galligher, B.5
Eliassi-Rad, T.6
-
60
-
-
0141990695
-
Theoretical and empirical analysis of ReliefF and RReliefF
-
M. R. Sikonja and I. Kononenko. Theoretical and empirical analysis of ReliefF and RReliefF. Machine Learning, 53:23–69, 2003.
-
(2003)
Machine Learning
, vol.53
, pp. 23-69
-
-
Sikonja, M.R.1
Kononenko, I.2
-
61
-
-
34547964410
-
Supervised feature selection via dependence estimation
-
L. Song, A. Smola, A. Gretton, K. Borgwardt, and J. Bedo. Supervised feature selection via dependence estimation. In Proceedings of the 24th International Conference on Machine Learning, pages 823–830, 2007.
-
(2007)
Proceedings of the 24Th International Conference on Machine Learning
, pp. 823-830
-
-
Song, L.1
Smola, A.2
Gretton, A.3
Borgwardt, K.4
Bedo, J.5
-
62
-
-
84880191846
-
Feature selection with linked data in socialmedia
-
J. Tang and H. Liu. Feature selection with linked data in socialmedia. In SDM, pages 118–128, 2012.
-
(2012)
SDM
, pp. 118-128
-
-
Tang, J.1
Liu, H.2
-
65
-
-
12844266177
-
Sparsity and smoothness via the fused Lasso
-
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smoothness via the fused Lasso. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 67(1):91–108, 2005.
-
(2005)
Journal of the Royal Statistical Society: Series B (Statistical Methodology)
, vol.67
, Issue.1
, pp. 91-108
-
-
Tibshirani, R.1
Saunders, M.2
Rosset, S.3
Zhu, J.4
Knight, K.5
-
66
-
-
37249032736
-
Spatial smoothing and hot spot detection for cgh data using the fused Lasso
-
R. Tibshirani and P. Wang. Spatial smoothing and hot spot detection for cgh data using the fused Lasso. Biostatistics, 9(1):18–29, 2008.
-
(2008)
Biostatistics
, vol.9
, Issue.1
, pp. 18-29
-
-
Tibshirani, R.1
Wang, P.2
-
67
-
-
84888147222
-
Online feature selection and its applications
-
J. Wang, P. Zhao, S. Hoi, and R. Jin. Online feature selection and its applications. IEEE Transactions on Knowledge and Data Engineering, pages 1–14, 2013.
-
(2013)
IEEE Transactions on Knowledge and Data Engineering
, pp. 1-14
-
-
Wang, J.1
Zhao, P.2
Hoi, S.3
Jin, R.4
-
68
-
-
84890520049
-
Use of the zero norm with linear models and kernel methods
-
J. Weston, A. Elisseff, B. Schoelkopf, and M. Tipping. Use of the zero norm with linear models and kernel methods. Journal of Machine Learning Research, 3:1439–1461, 2003.
-
(2003)
Journal of Machine Learning Research
, vol.3
, pp. 1439-1461
-
-
Weston, J.1
Elisseff, A.2
Schoelkopf, B.3
Tipping, M.4
-
69
-
-
0031073477
-
A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms
-
D. Wettschereck, D. Aha, and T. Mohri. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review, 11:273–314, 1997.
-
(1997)
Artificial Intelligence Review
, vol.11
, pp. 273-314
-
-
Wettschereck, D.1
Aha, D.2
Mohri, T.3
-
70
-
-
77956517464
-
Online streaming feature selection
-
X. Wu, K. Yu, H. Wang, and W. Ding. Online streaming feature selection. In Proceedings of the 27th International Conference on Machine Learning, pages 1159–1166, 2010.
-
(2010)
Proceedings of the 27Th International Conference on Machine Learning
, pp. 1159-1166
-
-
Wu, X.1
Yu, K.2
Wang, H.3
Ding, W.4
-
71
-
-
77954563692
-
Discriminative semi-supervised feature selection via manifold regularization
-
Z. Xu, R. Jin, J. Ye, M. Lyu, and I. King. Discriminative semi-supervised feature selection via manifold regularization. In IJCAI’09: Proceedings of the 21th International Joint Conference on Artificial Intelligence, 2009.
-
(2009)
IJCAI’09: Proceedings of the 21Th International Joint Conference on Artificial Intelligence
-
-
Xu, Z.1
Jin, R.2
Ye, J.3
Lyu, M.4
King, I.5
-
72
-
-
84866045483
-
Feature grouping and selection over an undirected graph
-
ACM
-
S. Yang, L. Yuan, Y. Lai, X. Shen, P. Wonka, and J. Ye. Feature grouping and selection over an undirected graph. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 922–930. ACM, 2012.
-
(2012)
Proceedings of the 18Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 922-930
-
-
Yang, S.1
Yuan, L.2
Lai, Y.3
Shen, X.4
Wonka, P.5
Ye, J.6
-
74
-
-
1942451938
-
Feature selection for high-dimensional data: A fast correlation-based filter solution
-
L. Yu and H. Liu. Feature selection for high-dimensional data: A fast correlation-based filter solution. In International Conference on Machine Learning, 20:856, 2003.
-
(2003)
International Conference on Machine Learning
, vol.20
, pp. 856
-
-
Yu, L.1
Liu, H.2
-
79
-
-
84866037290
-
Modeling disease progression via fused sparse group Lasso
-
ACM
-
J. Zhou, J. Liu, V. Narayan, and J. Ye. Modeling disease progression via fused sparse group Lasso. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1095–1103. ACM, 2012.
-
(2012)
Proceedings of the 18Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 1095-1103
-
-
Zhou, J.1
Liu, J.2
Narayan, V.3
Ye, J.4
-
80
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
H. Zou. The adaptive lasso and its oracle properties. Journal of the American Statistical Association, 101(476):1418–1429, 2006.
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.476
, pp. 1418-1429
-
-
Zou, H.1
|