메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 260-

MULTI-K: Accurate classification of microarray subtypes using ensemble k-means clustering

Author keywords

[No Author keywords available]

Indexed keywords

ENSEMBLE CLUSTERING; GEOMETRIC COMPLEXITY; HIGH-DIMENSIONAL STRUCTURES; K-MEANS CLUSTERING; MICROARRAY CLUSTERS; ORIGINAL ALGORITHMS; SAMPLE CLASSIFICATION; UNSUPERVISED CLUSTERING METHODS;

EID: 70349730070     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-10-260     Document Type: Article
Times cited : (59)

References (41)
  • 1
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • 25624, 9843569
    • Spellman P.T, Sherlock G, Zhang M.Q, Iyer V.R, Anders K, Eisen M.B, Brown P.O, Botstein D, Futcher B. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell 1998, 9(12):3273-3297. 25624, 9843569.
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.T.1    Sherlock, G.2    Zhang, M.Q.3    Iyer, V.R.4    Anders, K.5    Eisen, M.B.6    Brown, P.O.7    Botstein, D.8    Futcher, B.9
  • 2
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • 10.1073/pnas.95.25.14863, 24541, 9843981
    • Eisen M.B, Spellman P.T, Brown P.O, Botstein D. Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998, 95(25):14863-14868. 10.1073/pnas.95.25.14863, 24541, 9843981.
    • (1998) Proc Natl Acad Sci USA , vol.95 , Issue.25 , pp. 14863-14868
    • Eisen, M.B.1    Spellman, P.T.2    Brown, P.O.3    Botstein, D.4
  • 3
    • 33750541932 scopus 로고    scopus 로고
    • Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy
    • 10.1038/ncponc0636, 17080180
    • Andre F, Pusztai L. Molecular classification of breast cancer: implications for selection of adjuvant chemotherapy. Nat Clin Pract Oncol 2006, 3(11):621-632. 10.1038/ncponc0636, 17080180.
    • (2006) Nat Clin Pract Oncol , vol.3 , Issue.11 , pp. 621-632
    • Andre, F.1    Pusztai, L.2
  • 6
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • 10.1126/science.286.5439.531, 10521349
    • Golub T.R, Slonim D.K, Tamayo P, Huard C, Gaasenbeek M, Mesirov J.P, Coller H, Loh M.L, Downing J.R, Caligiuri M.A. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 1999, 286(5439):531-537. 10.1126/science.286.5439.531, 10521349.
    • (1999) Science , vol.286 , Issue.5439 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5    Mesirov, J.P.6    Coller, H.7    Loh, M.L.8    Downing, J.R.9    Caligiuri, M.A.10
  • 7
    • 25144456056 scopus 로고    scopus 로고
    • Computational cluster validation in post-genomic data analysis
    • 10.1093/bioinformatics/bti517, 15914541
    • Handl J, Knowles J, Kell D.B. Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21(15):3201-3212. 10.1093/bioinformatics/bti517, 15914541.
    • (2005) Bioinformatics , vol.21 , Issue.15 , pp. 3201-3212
    • Handl, J.1    Knowles, J.2    Kell, D.B.3
  • 9
    • 0037172724 scopus 로고    scopus 로고
    • A prediction-based resampling method for estimating the number of clusters in a dataset
    • 10.1186/gb-2002-3-7-research0036, 126241, 12184810
    • Dudoit S, Fridlyand J. A prediction-based resampling method for estimating the number of clusters in a dataset. Genome Biol 2002, 3(7):RESEARCH0036. 10.1186/gb-2002-3-7-research0036, 126241, 12184810.
    • (2002) Genome Biol , vol.3 , Issue.7
    • Dudoit, S.1    Fridlyand, J.2
  • 10
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan G, Cooper M. An examination of procedures for determining the number of clusters in a data set. Psychometrika 1985, 50:159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.1    Cooper, M.2
  • 11
    • 0035532141 scopus 로고    scopus 로고
    • Estimating the number of clusters in a data set via the gap statistic
    • Tibshirani R, Walther G, Hastie T. Estimating the number of clusters in a data set via the gap statistic. J R Stat Soc B 2001, 63:411-423.
    • (2001) J R Stat Soc B , vol.63 , pp. 411-423
    • Tibshirani, R.1    Walther, G.2    Hastie, T.3
  • 12
    • 0036359730 scopus 로고    scopus 로고
    • A stability based method for discovering structure in clustered data
    • Ben-Hur A, Elisseeff A, Guyon I. A stability based method for discovering structure in clustered data. Pac Symp Biocomput 2002, 7:6-17.
    • (2002) Pac Symp Biocomput , vol.7 , pp. 6-17
    • Ben-Hur, A.1    Elisseeff, A.2    Guyon, I.3
  • 13
    • 0041965980 scopus 로고    scopus 로고
    • Cluster ensembles - a knowledge reuse framework for combining multiple partitions
    • Strehl A, Ghosh J. Cluster ensembles - a knowledge reuse framework for combining multiple partitions. J Mach Learn Res 2002, 3:583-617.
    • (2002) J Mach Learn Res , vol.3 , pp. 583-617
    • Strehl, A.1    Ghosh, J.2
  • 15
    • 0036856374 scopus 로고    scopus 로고
    • Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data
    • 10.1093/bioinformatics/18.11.1462, 12424117
    • Mc Shane L.M. Methods for assessing reproducibility of clustering patterns observed in analyses of microarray data. Bioinformatics 2002, 18:1462-1469. 10.1093/bioinformatics/18.11.1462, 12424117.
    • (2002) Bioinformatics , vol.18 , pp. 1462-1469
    • Mc Shane, L.M.1
  • 16
    • 0038724494 scopus 로고    scopus 로고
    • Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data
    • Monti S, Tamayo P, Mesirov J, Golub T. Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach Learn 2003, 52:91-118.
    • (2003) Mach Learn , vol.52 , pp. 91-118
    • Monti, S.1    Tamayo, P.2    Mesirov, J.3    Golub, T.4
  • 17
    • 0642367624 scopus 로고    scopus 로고
    • Cluster stability scores for microarray data in cancer studies
    • 10.1186/1471-2105-4-36, 200969, 12959646
    • Smolkin M, Ghosh D. Cluster stability scores for microarray data in cancer studies. BMC Bioinformatics 2003, 4:36. 10.1186/1471-2105-4-36, 200969, 12959646.
    • (2003) BMC Bioinformatics , vol.4 , pp. 36
    • Smolkin, M.1    Ghosh, D.2
  • 18
    • 33745804068 scopus 로고    scopus 로고
    • Ensembles based on random projections to improve the accuracy of clustering algorithms
    • Bertoni A, Valentini G. Ensembles based on random projections to improve the accuracy of clustering algorithms. Neural Nets, (WIRN 2005), LNCS 2005, 3931:31-37.
    • (2005) Neural Nets, (WIRN 2005), LNCS , vol.3931 , pp. 31-37
    • Bertoni, A.1    Valentini, G.2
  • 19
    • 36448947175 scopus 로고    scopus 로고
    • Graph-based consensus clustering for class discovery from gene expression data
    • 10.1093/bioinformatics/btm463, 17872912
    • Yu Z, Wong H-S, Wang H. Graph-based consensus clustering for class discovery from gene expression data. Bioinformatics 2007, 23(21):2888-2896. 10.1093/bioinformatics/btm463, 17872912.
    • (2007) Bioinformatics , vol.23 , Issue.21 , pp. 2888-2896
    • Yu, Z.1    Wong H-S2    Wang, H.3
  • 20
    • 33846467743 scopus 로고    scopus 로고
    • Multi-clustering: avoiding the natural shape of underlying metrics
    • Ashlock D.A, Kim E.Y, Guo L. Multi-clustering: avoiding the natural shape of underlying metrics. ANNIE: 2005 2005, 15:453-461.
    • (2005) ANNIE: 2005 , vol.15 , pp. 453-461
    • Ashlock, D.A.1    Kim, E.Y.2    Guo, L.3
  • 22
    • 33947159574 scopus 로고    scopus 로고
    • Evaluation of stability of k-means cluster ensembles with respect to random initialization
    • 10.1109/TPAMI.2006.226, 17063684
    • Kuncheva L.I, Vetrov D.P. Evaluation of stability of k-means cluster ensembles with respect to random initialization. IEEE Trans Pattern Anal Mach Intell 2006, 28(11):1798-1808. 10.1109/TPAMI.2006.226, 17063684.
    • (2006) IEEE Trans Pattern Anal Mach Intell , vol.28 , Issue.11 , pp. 1798-1808
    • Kuncheva, L.I.1    Vetrov, D.P.2
  • 23
    • 84856043672 scopus 로고
    • A mathematical theory of communication
    • Shannon C.E. A mathematical theory of communication. Bell Syst Tech J 1948, 27:379-413.
    • (1948) Bell Syst Tech J , vol.27 , pp. 379-413
    • Shannon, C.E.1
  • 24
    • 0036739286 scopus 로고    scopus 로고
    • Bayesian infinite mixture model based clustering of gene expression data
    • 10.1093/bioinformatics/18.9.1194, 12217911
    • Medvedovic M, Sivaganesan S. Bayesian infinite mixture model based clustering of gene expression data. Bioinformatics 2002, 18(9):1194-1206. 10.1093/bioinformatics/18.9.1194, 12217911.
    • (2002) Bioinformatics , vol.18 , Issue.9 , pp. 1194-1206
    • Medvedovic, M.1    Sivaganesan, S.2
  • 25
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • 10.1093/bioinformatics/18.3.413, 11934740
    • McLachlan G.J, Bean R.W, Peel D. A mixture model-based approach to the clustering of microarray expression data. Bioinformatics 2002, 18(3):413-422. 10.1093/bioinformatics/18.3.413, 11934740.
    • (2002) Bioinformatics , vol.18 , Issue.3 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 26
    • 33747830882 scopus 로고    scopus 로고
    • Clustering microarray gene expression data using weighted Chinese restaurant process
    • 10.1093/bioinformatics/btl284, 16766561
    • Qin Z.S. Clustering microarray gene expression data using weighted Chinese restaurant process. Bioinformatics 2006, 22(16):1988-1997. 10.1093/bioinformatics/btl284, 16766561.
    • (2006) Bioinformatics , vol.22 , Issue.16 , pp. 1988-1997
    • Qin, Z.S.1
  • 28
    • 84948872101 scopus 로고
    • A study of comparability of external criteria for hierarchical cluster analysis
    • Milligan G, Cooper M. A study of comparability of external criteria for hierarchical cluster analysis. Multivariate Behavioral Research 1986, 21:441-458.
    • (1986) Multivariate Behavioral Research , vol.21 , pp. 441-458
    • Milligan, G.1    Cooper, M.2
  • 29
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • 10.1126/science.290.5500.2319, 11125149
    • Tenenbaum J.B, de Silva V, Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290:2319-2322. 10.1126/science.290.5500.2319, 11125149.
    • (2000) Science , vol.290 , pp. 2319-2322
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 31
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • 10.1016/S1535-6108(02)00032-6, 12086872
    • Yeoh E.J, Ross M.E, Shurtleff S.A, Williams W.K, Patel D, Mahfouz R, Behm F.G, Raimondi S.C, Relling M.V, Patel A. Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell 2002, 1(2):133-143. 10.1016/S1535-6108(02)00032-6, 12086872.
    • (2002) Cancer Cell , vol.1 , Issue.2 , pp. 133-143
    • Yeoh, E.J.1    Ross, M.E.2    Shurtleff, S.A.3    Williams, W.K.4    Patel, D.5    Mahfouz, R.6    Behm, F.G.7    Raimondi, S.C.8    Relling, M.V.9    Patel, A.10
  • 34
    • 20144376345 scopus 로고    scopus 로고
    • Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification
    • 10.1093/bioinformatics/bti042, 15388519
    • Yanai I, Benjamin H, Shmoish M, Chalifa-Caspi V, Shklar M, Ophir R, Bar-Even A, Horn-Saban S, Safran M, Domany E. Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification. Bioinformatics 2005, 21(5):650-659. 10.1093/bioinformatics/bti042, 15388519.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 650-659
    • Yanai, I.1    Benjamin, H.2    Shmoish, M.3    Chalifa-Caspi, V.4    Shklar, M.5    Ophir, R.6    Bar-Even, A.7    Horn-Saban, S.8    Safran, M.9    Domany, E.10
  • 36
    • 0038391443 scopus 로고    scopus 로고
    • Bagging to improve the accuracy of a clustering procedure
    • 10.1093/bioinformatics/btg038, 12801869
    • Dudoit S, Fridlyand J. Bagging to improve the accuracy of a clustering procedure. Bioinformatics 2003, 19:1090-1099. 10.1093/bioinformatics/btg038, 12801869.
    • (2003) Bioinformatics , vol.19 , pp. 1090-1099
    • Dudoit, S.1    Fridlyand, J.2
  • 37
    • 4944242989 scopus 로고    scopus 로고
    • An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins
    • 10.1093/bioinformatics/btg1027, 12855459
    • Martelli P.L, Fariselli P, Casadio R. An ENSEMBLE machine learning approach for the prediction of all-alpha membrane proteins. Bioinformatics 2003, 19:i205-i211. 10.1093/bioinformatics/btg1027, 12855459.
    • (2003) Bioinformatics , vol.19
    • Martelli, P.L.1    Fariselli, P.2    Casadio, R.3
  • 38
    • 33747880465 scopus 로고    scopus 로고
    • Ensemble classifier for protein fold recognition
    • 10.1093/bioinformatics/btl170, 16672258
    • Shen H-B, Chou K-C. Ensemble classifier for protein fold recognition. Bioinformatics 2006, 22:1717-1722. 10.1093/bioinformatics/btl170, 16672258.
    • (2006) Bioinformatics , vol.22 , pp. 1717-1722
    • Shen H-B1    Chou K-C2
  • 39
    • 36549040919 scopus 로고    scopus 로고
    • Ensemble learning of genetic networks from time-series expression data
    • 10.1093/bioinformatics/btm514, 17977884
    • Nam D, Yoon S.H, Kim J.F. Ensemble learning of genetic networks from time-series expression data. Bioinformatics 2007, 23:3225-3231. 10.1093/bioinformatics/btm514, 17977884.
    • (2007) Bioinformatics , vol.23 , pp. 3225-3231
    • Nam, D.1    Yoon, S.H.2    Kim, J.F.3
  • 40
    • 25144474549 scopus 로고    scopus 로고
    • Ensemble dependence model for classification and prediction of cancer and normal gene expression data
    • 10.1093/bioinformatics/bti483, 15879455
    • Qiu P, Wang Z.J, Liu K.J.R. Ensemble dependence model for classification and prediction of cancer and normal gene expression data. Bioinformatics 2005, 21:3114-3121. 10.1093/bioinformatics/bti483, 15879455.
    • (2005) Bioinformatics , vol.21 , pp. 3114-3121
    • Qiu, P.1    Wang, Z.J.2    Liu, K.J.R.3
  • 41
    • 18744364197 scopus 로고    scopus 로고
    • Detecting clusters of different geometrical shapes in microarray gene expression data
    • 10.1093/bioinformatics/bti251, 15647300
    • Kim D.W, Lee K.H, Lee D. Detecting clusters of different geometrical shapes in microarray gene expression data. Bioinformatics 2005, 21(9):1927-1934. 10.1093/bioinformatics/bti251, 15647300.
    • (2005) Bioinformatics , vol.21 , Issue.9 , pp. 1927-1934
    • Kim, D.W.1    Lee, K.H.2    Lee, D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.