메뉴 건너뛰기




Volumn 23, Issue 5, 2016, Pages 750-773

On Using Bayesian Methods to Address Small Sample Problems

Author keywords

Bayes; prior distribution; small sample

Indexed keywords

BAYESIAN NETWORKS;

EID: 84974808077     PISSN: 10705511     EISSN: 15328007     Source Type: Journal    
DOI: 10.1080/10705511.2016.1186549     Document Type: Article
Times cited : (358)

References (76)
  • 1
    • 84869815605 scopus 로고    scopus 로고
    • A review of meta-analyses in education: Methodological strengths and weaknesses
    • S.Ahn, A.J.Ames, & N.D.Myers, (2012). A review of meta-analyses in education:Methodological strengths and weaknesses. Review of Educational Research, 82, 436–476. doi:10.3102/0034654312458162
    • (2012) Review of Educational Research , vol.82 , pp. 436-476
    • Ahn, S.1    Ames, A.J.2    Myers, N.D.3
  • 3
    • 84879535463 scopus 로고    scopus 로고
    • Bayesian methods for the analysis of small sample multilevel data with a complex variance structure
    • S.A.Baldwin, & G.W.Fellingham, (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151–164. doi:10.1037/a0030642
    • (2013) Psychological Methods , vol.18 , pp. 151-164
    • Baldwin, S.A.1    Fellingham, G.W.2
  • 4
    • 84973076636 scopus 로고
    • Tests of significance in factor analysis
    • M.S.Bartlett, (1950). Tests of significance in factor analysis. British Journal of Statistical Psychology, 3, 77–85. doi:10.1111/bmsp.1950.3.issue-2
    • (1950) British Journal of Statistical Psychology , vol.3 , pp. 77-85
    • Bartlett, M.S.1
  • 5
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes
    • D.J.Bauer, & P.J.Curran, (2003). Distributional assumptions of growth mixture models:Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363. doi:10.1037/1082-989X.8.3.338
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 6
    • 0033416774 scopus 로고    scopus 로고
    • Structural equation modeling with small samples: Test statistics
    • P.M.Bentler, & K.H.Yuan, (1999). Structural equation modeling with small samples:Test statistics. Multivariate Behavioral Research, 34, 181–197. doi:10.1207/S15327906Mb340203
    • (1999) Multivariate Behavioral Research , vol.34 , pp. 181-197
    • Bentler, P.M.1    Yuan, K.H.2
  • 8
    • 33847083094 scopus 로고    scopus 로고
    • A comparison of Bayesian and likelihood-based methods for fitting multilevel models
    • W.J.Browne, & D.Draper, (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514. doi:10.1214/06-BA117
    • (2006) Bayesian Analysis , vol.1 , pp. 473-514
    • Browne, W.J.1    Draper, D.2
  • 9
    • 54549116275 scopus 로고    scopus 로고
    • A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling
    • M.W.L.Cheung, (2008). A model for integrating fixed-, random-, and mixed-effects meta-analyses into structural equation modeling. Psychological Methods, 13, 182–202. doi:10.1037/a0013163
    • (2008) Psychological Methods , vol.13 , pp. 182-202
    • Cheung, M.W.L.1
  • 10
    • 84891940182 scopus 로고    scopus 로고
    • The new statistics why and how
    • G.Cumming, (2013). The new statistics why and how. Psychological Science, 25, 7–29. doi:10.1177/0956797613504966
    • (2013) Psychological Science , vol.25 , pp. 7-29
    • Cumming, G.1
  • 11
    • 0842285954 scopus 로고    scopus 로고
    • Have multilevel models been structural equation models all along?
    • P.J.Curran, (2003). Have multilevel models been structural equation models all along? Multivariate Behavioral Research, 38, 529–569. doi:10.1207/s15327906mbr3804_5
    • (2003) Multivariate Behavioral Research , vol.38 , pp. 529-569
    • Curran, P.J.1
  • 12
    • 34548815948 scopus 로고    scopus 로고
    • Building path diagrams for multilevel models
    • P.J.Curran, & D.J.Bauer, (2007). Building path diagrams for multilevel models. Psychological Methods, 12, 283–297. doi:10.1037/1082-989X.12.3.283
    • (2007) Psychological Methods , vol.12 , pp. 283-297
    • Curran, P.J.1    Bauer, D.J.2
  • 13
    • 84879532581 scopus 로고    scopus 로고
    • Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation
    • S.Depaoli, (2013). Mixture class recovery in GMM under varying degrees of class separation:Frequentist versus Bayesian estimation. Psychological Methods, 18, 186–219. doi:10.1037/a0031609
    • (2013) Psychological Methods , vol.18 , pp. 186-219
    • Depaoli, S.1
  • 14
    • 84898064791 scopus 로고    scopus 로고
    • The impact of inaccurate “informative” priors for growth parameters in Bayesian growth mixture modeling
    • S.Depaoli, (2014). The impact of inaccurate “informative” priors for growth parameters in Bayesian growth mixture modeling. Structural Equation Modeling, 21, 239–252. doi:10.1080/10705511.2014.882686
    • (2014) Structural Equation Modeling , vol.21 , pp. 239-252
    • Depaoli, S.1
  • 15
    • 84930577404 scopus 로고    scopus 로고
    • A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes
    • S.Depaoli, & J.P.Clifton, (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling, 22, 327–351. doi:10.1080/10705511.2014.937849
    • (2015) Structural Equation Modeling , vol.22 , pp. 327-351
    • Depaoli, S.1    Clifton, J.P.2
  • 16
    • 84951310169 scopus 로고    scopus 로고
    • Improving transparency and replication in Bayesian statistics: The WAMBS-Checklist
    • Advance online publication
    • S.Depaoli, & R.van de Schoot, (2015). Improving transparency and replication in Bayesian statistics:The WAMBS-Checklist. Psychological Methods. Advance online publication. doi:10.1037/met0000065
    • (2015) Psychological Methods
    • Depaoli, S.1    van de Schoot, R.2
  • 17
    • 84894077993 scopus 로고    scopus 로고
    • A point-by-point analysis of performance in a fencing match: Psychological processes associated with winning and losing streaks
    • J.Doron, & P.Gaudreau, (2014). A point-by-point analysis of performance in a fencing match:Psychological processes associated with winning and losing streaks. Journal of Sport & Exercise Psychology, 36, 3–13. doi:10.1123/jsep.2013-0043
    • (2014) Journal of Sport & Exercise Psychology , vol.36 , pp. 3-13
    • Doron, J.1    Gaudreau, P.2
  • 18
    • 0034360861 scopus 로고    scopus 로고
    • Bayesian latent variable models for clustered mixed outcomes
    • D.B.Dunson, (2000). Bayesian latent variable models for clustered mixed outcomes. Journal of the Royal Statistical Society:Series B, 62, 355–366. doi:10.1111/1467-9868.00236
    • (2000) Journal of the Royal Statistical Society: Series B , vol.62 , pp. 355-366
    • Dunson, D.B.1
  • 19
    • 0035876009 scopus 로고    scopus 로고
    • Commentary: Practical advantages of Bayesian analysis of epidemiologic data
    • D.B.Dunson, (2001). Commentary:Practical advantages of Bayesian analysis of epidemiologic data. American Journal of Epidemiology, 153, 1222–1226. doi:10.1093/aje/153.12.1222
    • (2001) American Journal of Epidemiology , vol.153 , pp. 1222-1226
    • Dunson, D.B.1
  • 20
    • 1642368615 scopus 로고    scopus 로고
    • Lessons for cluster randomized trials in the twenty-first century: A systematic review of trials in primary care
    • S.M.Eldridge, D.Ashby, G.S.Feder, A.R.Rudnicka, & O.C.Ukoumunne, (2004). Lessons for cluster randomized trials in the twenty-first century:A systematic review of trials in primary care. Clinical Trials, 1, 80–90. doi:10.1191/1740774504cn006rr
    • (2004) Clinical Trials , vol.1 , pp. 80-90
    • Eldridge, S.M.1    Ashby, D.2    Feder, G.S.3    Rudnicka, A.R.4    Ukoumunne, O.C.5
  • 21
    • 34548463099 scopus 로고    scopus 로고
    • Centering predictor variables in cross-sectional multilevel models: A new look at an old issue
    • C.K.Enders, & D.Tofighi, (2007). Centering predictor variables in cross-sectional multilevel models:A new look at an old issue. Psychological Methods, 12, 121–138. doi:10.1037/1082-989X.12.2.121
    • (2007) Psychological Methods , vol.12 , pp. 121-138
    • Enders, C.K.1    Tofighi, D.2
  • 22
    • 66149144783 scopus 로고    scopus 로고
    • Making treatment effect inferences from multiple-baseline data: The utility of multilevel modeling approaches
    • J.M.Ferron, B.A.Bell, M.R.Hess, G.Rendina-Gobioff, & S.T.Hibbard, (2009). Making treatment effect inferences from multiple-baseline data:The utility of multilevel modeling approaches. Behavior Research Methods, 41, 372–384. doi:10.3758/BRM.41.2.372
    • (2009) Behavior Research Methods , vol.41 , pp. 372-384
    • Ferron, J.M.1    Bell, B.A.2    Hess, M.R.3    Rendina-Gobioff, G.4    Hibbard, S.T.5
  • 23
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • A.Gelman, (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515–534. doi:10.1214/06-BA117A
    • (2006) Bayesian Analysis , vol.1 , pp. 515-534
    • Gelman, A.1
  • 24
    • 84859606223 scopus 로고    scopus 로고
    • Why we (usually) don’t have to worry about multiple comparisons
    • A.Gelman, J.Hill, & M.Yajima, (2012). Why we (usually) don’t have to worry about multiple comparisons. Journal of Research on Educational Effectiveness, 5, 189–211. doi:10.1080/19345747.2011.618213
    • (2012) Journal of Research on Educational Effectiveness , vol.5 , pp. 189-211
    • Gelman, A.1    Hill, J.2    Yajima, M.3
  • 25
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A.Gelman, & D.B.Rubin, (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472. doi:10.1214/ss/1177011136
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 26
    • 0034355170 scopus 로고    scopus 로고
    • Meta-analysis using multilevel models with an application to the study of class size effects
    • H.Goldstein, M.Yang, R.Omar, R.Turner, & S.Thompson, (2000). Meta-analysis using multilevel models with an application to the study of class size effects. Applied Statistics, 49, 399–412.
    • (2000) Applied Statistics , vol.49 , pp. 399-412
    • Goldstein, H.1    Yang, M.2    Omar, R.3    Turner, R.4    Thompson, S.5
  • 27
    • 84890913931 scopus 로고
    • Maximum likelihood approaches to variance component estimation and to related problems
    • D.A.Harville, (1977). Maximum likelihood approaches to variance component estimation and to related problems. Journal of the American Statistical Association, 72, 320–338. doi:10.1080/01621459.1977.10480998
    • (1977) Journal of the American Statistical Association , vol.72 , pp. 320-338
    • Harville, D.A.1
  • 28
    • 34247269174 scopus 로고    scopus 로고
    • Intraclass correlation values for planning group-randomized trials in education
    • L.V.Hedges, & E.C.Hedberg, (2007). Intraclass correlation values for planning group-randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60–87. doi:10.3102/0162373707299706
    • (2007) Educational Evaluation and Policy Analysis , vol.29 , pp. 60-87
    • Hedges, L.V.1    Hedberg, E.C.2
  • 29
    • 0032330969 scopus 로고    scopus 로고
    • Robustness studies in covariance structure modeling: An overview and a meta-analysis
    • J.J.Hoogland, & A.Boomsma, (1998). Robustness studies in covariance structure modeling:An overview and a meta-analysis. Sociological Methods & Research, 26, 329–367. doi:10.1177/0049124198026003003
    • (1998) Sociological Methods & Research , vol.26 , pp. 329-367
    • Hoogland, J.J.1    Boomsma, A.2
  • 31
    • 84883641307 scopus 로고    scopus 로고
    • How few countries will do? Comparative survey analysis from a Bayesian perspective
    • J.Hox, R.van de Schoot, & S.Matthijsse, (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87–93.
    • (2012) Survey Research Methods , vol.6 , pp. 87-93
    • Hox, J.1    van de Schoot, R.2    Matthijsse, S.3
  • 33
    • 84884957611 scopus 로고    scopus 로고
    • What are the open problems in Bayesian statistics
    • M.Jordan, (2011). What are the open problems in Bayesian statistics. The ISBA Bulletin, 18, 1–4.
    • (2011) The ISBA Bulletin , vol.18 , pp. 1-4
    • Jordan, M.1
  • 34
    • 84942506156 scopus 로고    scopus 로고
    • Bayesian methods for prevention research
    • J.B.Kadane, (2015). Bayesian methods for prevention research. Prevention Science, 16, 1017–1025. doi:10.1007/s11121-014-0531-x
    • (2015) Prevention Science , vol.16 , pp. 1017-1025
    • Kadane, J.B.1
  • 35
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • M.G.Kenward, & J.H.Roger, (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997. doi:10.2307/2533558
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 36
    • 61849100484 scopus 로고    scopus 로고
    • An improved approximation to the precision of fixed effects from restricted maximum likelihood
    • M.G.Kenward, & J.H.Roger, (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 2583–2595. doi:10.1016/j.csda.2008.12.013
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 2583-2595
    • Kenward, M.G.1    Roger, J.H.2
  • 37
    • 78650112867 scopus 로고    scopus 로고
    • Dialectical behavior therapy for borderline personality disorder: A meta-analysis using mixed-effects modeling
    • S.Kliem, C.Kröger, & J.Kosfelder, (2010). Dialectical behavior therapy for borderline personality disorder:A meta-analysis using mixed-effects modeling. Journal of Consulting and Clinical Psychology, 78, 936–951. doi:10.1037/a0021015
    • (2010) Journal of Consulting and Clinical Psychology , vol.78 , pp. 936-951
    • Kliem, S.1    Kröger, C.2    Kosfelder, J.3
  • 39
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • P.C.Lambert, A.J.Sutton, P.R.Burton, K.R.Abrams, & D.R.Jones, (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401–2428. doi:10.1002/(ISSN)1097-0258
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 40
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • S.Y.Lee, & X.Y.Song, (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653–686. doi:10.1207/s15327906mbr3904_4
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.Y.1    Song, X.Y.2
  • 41
    • 79961194222 scopus 로고    scopus 로고
    • The rise of Markov chain Monte Carlo estimation for psychometric modeling
    • R.Levy, (2009). The rise of Markov chain Monte Carlo estimation for psychometric modeling. Journal of Probability and Statistics, 2009, 1–18. doi:10.1155/2009/537139
    • (2009) Journal of Probability and Statistics , vol.2009 , pp. 1-18
    • Levy, R.1
  • 42
    • 84940515599 scopus 로고    scopus 로고
    • Bayesian structural equation modeling
    • Hancock G.R., Mueller R.O., (eds), 2nd ed., Charlotte, NC: Information Age
    • R.Levy, & J.Choi, (2013). Bayesian structural equation modeling. In G.R.Hancock & R.O.Mueller (Eds.), Structural equation modeling:A second course (2nd ed., pp. 563–623). Charlotte, NC:Information Age.
    • (2013) Structural equation modeling: A second course
    • Levy, R.1    Choi, J.2
  • 43
    • 84945232029 scopus 로고    scopus 로고
    • Comparison of inverse Wishart and separation-strategy priors for Bayesian estimation of covariance parameter matrix in growth curve analysis
    • H.Liu, Z.Zhang, & K.J.Grimm, (2016). Comparison of inverse Wishart and separation-strategy priors for Bayesian estimation of covariance parameter matrix in growth curve analysis. Structural Equation Modeling, 23, 354–367. doi:10.1080/10705511.2015.1057285
    • (2016) Structural Equation Modeling , vol.23 , pp. 354-367
    • Liu, H.1    Zhang, Z.2    Grimm, K.J.3
  • 44
    • 0033658169 scopus 로고    scopus 로고
    • Applications of structural equation modeling in psychological research
    • R.C.MacCallum, & J.T.Austin, (2000). Applications of structural equation modeling in psychological research. Annual Review of Psychology, 51, 201–226. doi:10.1146/annurev.psych.51.1.201
    • (2000) Annual Review of Psychology , vol.51 , pp. 201-226
    • MacCallum, R.C.1    Austin, J.T.2
  • 46
    • 84955483682 scopus 로고    scopus 로고
    • Using data-dependent priors to mitigate small sample bias in latent growth models: A discussion and illustration using Mplus
    • D.M.McNeish, (2016). Using data-dependent priors to mitigate small sample bias in latent growth models:A discussion and illustration using Mplus. Journal of Educational and Behavioral Statistics, 41, 27–56. doi:10.3102/1076998615621299
    • (2016) Journal of Educational and Behavioral Statistics , vol.41 , pp. 27-56
    • McNeish, D.M.1
  • 47
    • 84908298355 scopus 로고    scopus 로고
    • The effect of small sample size on two level model estimates: A review and illustration
    • D.McNeish, & L.M.Stapleton, (2014). The effect of small sample size on two level model estimates:A review and illustration. Educational Psychology Review, 28, 295–314. doi:10.1007/s10648-014-9287-x
    • (2014) Educational Psychology Review, 28, 295–314
    • McNeish, D.1    Stapleton, L.M.2
  • 48
    • 84973596359 scopus 로고    scopus 로고
    • Modeling clustered data with very few clusters
    • Advance online publication
    • D.McNeish, & L.M.Stapleton, (2016). Modeling clustered data with very few clusters. Multivariate Behavioral Research. Advance online publication. doi:10.1080/00273171.2016.1167008
    • (2016) Multivariate Behavioral Research
    • McNeish, D.1    Stapleton, L.M.2
  • 49
    • 84928229444 scopus 로고    scopus 로고
    • Iteration of partially specified target matrices: Applications in exploratory and Bayesian confirmatory factor analysis
    • T.M.Moore, S.P.Reise, S.Depaoli, & M.G.Haviland, (2015). Iteration of partially specified target matrices:Applications in exploratory and Bayesian confirmatory factor analysis. Multivariate Behavioral Research, 50, 149–161. doi:10.1080/00273171.2014.973990
    • (2015) Multivariate Behavioral Research , vol.50 , pp. 149-161
    • Moore, T.M.1    Reise, S.P.2    Depaoli, S.3    Haviland, M.G.4
  • 51
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • B.Muthén, & T.Asparouhov, (2012). Bayesian structural equation modeling:A more flexible representation of substantive theory. Psychological Methods, 17, 313–335. doi:10.1037/a0026802
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.1    Asparouhov, T.2
  • 52
    • 33947405554 scopus 로고    scopus 로고
    • Variance-covariance functions for domain means of ordinal survey items
    • A.J.O’Malley, & A.M.Zaslavsky, (2005). Variance-covariance functions for domain means of ordinal survey items. Survey Methodology, 31, 169–182.
    • (2005) Survey Methodology , vol.31 , pp. 169-182
    • O’Malley, A.J.1    Zaslavsky, A.M.2
  • 53
    • 84872515955 scopus 로고    scopus 로고
    • On the half-Cauchy prior for a global scale parameter
    • N.G.Polson, & J.G.Scott, (2012). On the half-Cauchy prior for a global scale parameter. Bayesian Analysis, 7, 887–902. doi:10.1214/12-BA730
    • (2012) Bayesian Analysis , vol.7 , pp. 887-902
    • Polson, N.G.1    Scott, J.G.2
  • 54
    • 0000661332 scopus 로고
    • A generalized multivariate analysis of variance model useful especially for growth curve problems
    • R.F.Potthoff, & S.N.Roy, (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313–326. doi:10.1093/biomet/51.3-4.313
    • (1964) Biometrika , vol.51 , pp. 313-326
    • Potthoff, R.F.1    Roy, S.N.2
  • 55
    • 84865617049 scopus 로고    scopus 로고
    • Small sample properties of Bayesian multivariate autoregressive time series models
    • L.R.Price, (2012). Small sample properties of Bayesian multivariate autoregressive time series models. Structural Equation Modeling, 19, 51–64. doi:10.1080/10705511.2012.634712
    • (2012) Structural Equation Modeling , vol.19 , pp. 51-64
    • Price, L.R.1
  • 57
    • 24644458231 scopus 로고    scopus 로고
    • In search of underlying dimensions: The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin
    • D.W.Russell, (2002). In search of underlying dimensions:The use (and abuse) of factor analysis in Personality and Social Psychology Bulletin. Personality and Social Psychology Bulletin, 28, 1629–1646. doi:10.1177/014616702237645
    • (2002) Personality and Social Psychology Bulletin , vol.28 , pp. 1629-1646
    • Russell, D.W.1
  • 58
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • R.Scheines, H.Hoijtink, & A.Boomsma, (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37–52. doi:10.1007/BF02294318
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 59
    • 84985008659 scopus 로고    scopus 로고
    • The impact of sample size and other factors when estimating multilevel logistic models
    • J.A.Schoeneberger, (2015). The impact of sample size and other factors when estimating multilevel logistic models. The Journal of Experimental Education, 84, 3.
    • (2015) The Journal of Experimental Education , vol.84 , pp. 3
    • Schoeneberger, J.A.1
  • 60
    • 78349291530 scopus 로고    scopus 로고
    • The analysis of very small samples of repeated measurements I: An adjusted sandwich estimator
    • S.S.Skene, & M.G.Kenward, (2010a). The analysis of very small samples of repeated measurements I:An adjusted sandwich estimator. Statistics in Medicine, 29, 2825–2837. doi:10.1002/sim.v29:27
    • (2010) Statistics in Medicine , vol.29 , pp. 2825-2837
    • Skene, S.S.1    Kenward, M.G.2
  • 61
    • 78349238542 scopus 로고    scopus 로고
    • The analysis of very small samples of repeated measurements II: A modified Box correction
    • S.S.Skene, & M.G.Kenward, (2010b). The analysis of very small samples of repeated measurements II:A modified Box correction. Statistics in Medicine, 29, 2838–2856. doi:10.1002/sim.v29:27
    • (2010) Statistics in Medicine , vol.29 , pp. 2838-2856
    • Skene, S.S.1    Kenward, M.G.2
  • 63
    • 84996618875 scopus 로고    scopus 로고
    • Comparison of naïve, Kenward–Roger, and parametric bootstrap interval approaches to small-sample inference in linear mixed models
    • Advance online publication
    • V.S.Staggs, (2015). Comparison of naïve, Kenward–Roger, and parametric bootstrap interval approaches to small-sample inference in linear mixed models. Communications in Statistics:Simulation and Computation. Advance online publication. doi:10.1080/03610918.2015.1019002
    • (2015) Communications in Statistics: Simulation and Computation
    • Staggs, V.S.1
  • 64
    • 84879841014 scopus 로고    scopus 로고
    • How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches
    • D.Stegmueller, (2013). How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. American Journal of Political Science, 57, 748–761. doi:10.1111/ajps.2013.57.issue-3
    • (2013) American Journal of Political Science , vol.57 , pp. 748-761
    • Stegmueller, D.1
  • 66
    • 0038525498 scopus 로고
    • Unpublished doctoral dissertation, Department of Statistics, University of Adelaide, Adelaide, Australia:
    • A.J.Swain, (1975). Analysis of parametric structures for variance matrices (Unpublished doctoral dissertation). Department of Statistics, University of Adelaide, Adelaide, Australia.
    • (1975) Analysis of parametric structures for variance matrices
    • Swain, A.J.1
  • 67
    • 84984981013 scopus 로고    scopus 로고
    • Paper presented at the 7th Mplus Users’ Meeting, Utrecht, The Netherlands, Retrieved from
    • R.van de Schoot, (2016). 25 years of Bayes in psychology. Paper presented at the 7th Mplus Users’ Meeting, Utrecht, The Netherlands. Retrieved from http://mplus.fss.uu.nl/wp-content/uploads/sites/24/2012/07/opening-review-short.pptx
    • (2016) 25 years of Bayes in psychology
    • van de Schoot, R.1
  • 68
    • 84977106631 scopus 로고    scopus 로고
    • Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors
    • R.van de Schoot, J.J.Broere, K.H.Perryck, M.Zondervan-Zwijnenburg, & N.E.van Loey, (2015). Analyzing small data sets using Bayesian estimation:The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6. doi:10.3402/ejpt.v6.25216
    • (2015) European Journal of Psychotraumatology , vol.6
    • van de Schoot, R.1    Broere, J.J.2    Perryck, K.H.3    Zondervan-Zwijnenburg, M.4    van Loey, N.E.5
  • 71
    • 0141480843 scopus 로고    scopus 로고
    • Multilevel meta-analysis: A comparison with traditional meta-analytical procedures
    • W.van den Noortgate, & P.Onghena, (2003). Multilevel meta-analysis:A comparison with traditional meta-analytical procedures. Educational and Psychological Measurement, 63, 765–790. doi:10.1177/0013164403251027
    • (2003) Educational and Psychological Measurement , vol.63 , pp. 765-790
    • van den Noortgate, W.1    Onghena, P.2
  • 72
    • 84945445636 scopus 로고    scopus 로고
    • Engagement in training as a mechanism to understanding fidelity of implementation of the responsive classroom approach
    • S.B.Wanless, S.E.Rimm-Kaufman, T.Abry, R.A.Larsen, & C.L.Patton, (2015). Engagement in training as a mechanism to understanding fidelity of implementation of the responsive classroom approach. Prevention Science, 16, 1107–1116. doi:10.1007/s11121-014-0519-6
    • (2015) Prevention Science , vol.16 , pp. 1107-1116
    • Wanless, S.B.1    Rimm-Kaufman, S.E.2    Abry, T.3    Larsen, R.A.4    Patton, C.L.5
  • 73
    • 25444473930 scopus 로고    scopus 로고
    • Fit indices versus test statistics
    • K.H.Yuan, (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40, 115–148. doi:10.1207/s15327906mbr4001_5
    • (2005) Multivariate Behavioral Research , vol.40 , pp. 115-148
    • Yuan, K.H.1
  • 74
    • 0031531563 scopus 로고    scopus 로고
    • Mean and covariance structure analysis: Theoretical and practical improvements
    • K.H.Yuan, & P.M.Bentler, (1997). Mean and covariance structure analysis:Theoretical and practical improvements. Journal of the American Statistical Association, 92, 767–774. doi:10.1080/01621459.1997.10474029
    • (1997) Journal of the American Statistical Association , vol.92 , pp. 767-774
    • Yuan, K.H.1    Bentler, P.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.