메뉴 건너뛰기




Volumn 13, Issue 3, 2008, Pages 182-202

A Model for Integrating Fixed-, Random-, and Mixed-Effects Meta-Analyses Into Structural Equation Modeling

Author keywords

fixed effects model; meta analysis; mixed effects model; random effects model; structural equation model

Indexed keywords

ARTICLE; HUMAN; META ANALYSIS; PSYCHOLOGICAL MODEL;

EID: 54549116275     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/a0013163     Document Type: Article
Times cited : (130)

References (120)
  • 1
    • 0030613897 scopus 로고    scopus 로고
    • Resampling tests for meta-analysis of ecological data
    • Adams D.C., Gurevitch J., and Rosenberg M.S. Resampling tests for meta-analysis of ecological data. Ecology 78 (1997) 1277-1283
    • (1997) Ecology , vol.78 , pp. 1277-1283
    • Adams, D.C.1    Gurevitch, J.2    Rosenberg, M.S.3
  • 2
    • 0002914202 scopus 로고    scopus 로고
    • Full information estimation in the presence of incomplete data
    • Marcoulides G.A., and Schumacker R.E. (Eds), Erlbaum, Mahwah, NJ
    • Arbuckle J.L. Full information estimation in the presence of incomplete data. In: Marcoulides G.A., and Schumacker R.E. (Eds). Advanced structural equation modeling: Issues and techniques (1996), Erlbaum, Mahwah, NJ 243-277
    • (1996) Advanced structural equation modeling: Issues and techniques , pp. 243-277
    • Arbuckle, J.L.1
  • 3
    • 0142169443 scopus 로고    scopus 로고
    • Estimating multilevel linear models as structural equation models
    • Bauer D.J. Estimating multilevel linear models as structural equation models. Journal of Educational and Behavioral Statistics 28 (2003) 135-167
    • (2003) Journal of Educational and Behavioral Statistics , vol.28 , pp. 135-167
    • Bauer, D.J.1
  • 5
    • 0001290468 scopus 로고
    • Using results from replicated studies to estimate linear models
    • Becker B.J. Using results from replicated studies to estimate linear models. Journal of Educational Statistics 17 (1992) 341-362
    • (1992) Journal of Educational Statistics , vol.17 , pp. 341-362
    • Becker, B.J.1
  • 6
    • 21844500783 scopus 로고
    • Corrections to "Using results from replicated studies to estimate linear models."
    • Becker B.J. Corrections to "Using results from replicated studies to estimate linear models.". Journal of Educational Statistics 20 (1995) 100-102
    • (1995) Journal of Educational Statistics , vol.20 , pp. 100-102
    • Becker, B.J.1
  • 8
    • 0003096128 scopus 로고
    • Examining explanatory models through research synthesis
    • Cooper H., and Hedges L.V. (Eds), Russell Sage Foundation, New York
    • Becker B.J., and Schram C.M. Examining explanatory models through research synthesis. In: Cooper H., and Hedges L.V. (Eds). The handbook of research synthesis (1994), Russell Sage Foundation, New York 357-381
    • (1994) The handbook of research synthesis , pp. 357-381
    • Becker, B.J.1    Schram, C.M.2
  • 11
    • 0030894843 scopus 로고    scopus 로고
    • Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis
    • Biggerstaff B.J., and Tweedie R.L. Incorporating variability in estimates of heterogeneity in the random effects model in meta-analysis. Statistics in Medicine 16 (1997) 753-768
    • (1997) Statistics in Medicine , vol.16 , pp. 753-768
    • Biggerstaff, B.J.1    Tweedie, R.L.2
  • 13
    • 16244415517 scopus 로고    scopus 로고
    • Meta-analysis: A unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality
    • Böhning D. Meta-analysis: A unifying meta-likelihood approach framing unobserved heterogeneity, study covariates, publication bias, and study quality. Methods of Information in Medicine 44 (2005) 127-136
    • (2005) Methods of Information in Medicine , vol.44 , pp. 127-136
    • Böhning, D.1
  • 16
    • 34247507990 scopus 로고    scopus 로고
    • Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models
    • Cheung M.W.L. Comparison of approaches to constructing confidence intervals for mediating effects using structural equation models. Structural Equation Modeling 14 (2007) 227-246
    • (2007) Structural Equation Modeling , vol.14 , pp. 227-246
    • Cheung, M.W.L.1
  • 17
    • 34548536810 scopus 로고    scopus 로고
    • Comparison of methods of handling missing time-invariant covariates in latent growth models under the assumption of missing completely at random
    • Cheung M.W.L. Comparison of methods of handling missing time-invariant covariates in latent growth models under the assumption of missing completely at random. Organizational Research Methods 10 (2007) 609-634
    • (2007) Organizational Research Methods , vol.10 , pp. 609-634
    • Cheung, M.W.L.1
  • 18
    • 54949129571 scopus 로고    scopus 로고
    • Cheung, M. W. L. (in press). Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling
    • Cheung, M. W. L. (in press). Constructing approximate confidence intervals for parameters with structural equation models. Structural Equation Modeling
  • 19
    • 17444424576 scopus 로고    scopus 로고
    • Meta-analytic structural equation modeling: A two-stage approach
    • Cheung M.W.L., and Chan W. Meta-analytic structural equation modeling: A two-stage approach. Psychological Methods 10 (2005) 40-64
    • (2005) Psychological Methods , vol.10 , pp. 40-64
    • Cheung, M.W.L.1    Chan, W.2
  • 20
    • 54949152871 scopus 로고    scopus 로고
    • Cheung, M. W. L., & Chan, W. (in press). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling
    • Cheung, M. W. L., & Chan, W. (in press). A two-stage approach to synthesizing covariance matrices in meta-analytic structural equation modeling. Structural Equation Modeling
  • 21
    • 54949134643 scopus 로고    scopus 로고
    • Cheung, S. F. (2000). Examining solutions to two practical issues in meta-analysis: Dependent correlations and missing data in correlation matrices. Unpublished doctoral dissertation, Chinese University of Hong Kong.
    • Cheung, S. F. (2000). Examining solutions to two practical issues in meta-analysis: Dependent correlations and missing data in correlation matrices. Unpublished doctoral dissertation, Chinese University of Hong Kong.
  • 22
    • 41049093347 scopus 로고
    • The combination of estimates from different experiments
    • Cochran W.G. The combination of estimates from different experiments. Biometrics 10 (1954) 101-129
    • (1954) Biometrics , vol.10 , pp. 101-129
    • Cochran, W.G.1
  • 23
    • 0000087715 scopus 로고
    • Multiple regression as a general data-analytic system
    • Cohen J. Multiple regression as a general data-analytic system. Psychological Bulletin 70 (1968) 426-443
    • (1968) Psychological Bulletin , vol.70 , pp. 426-443
    • Cohen, J.1
  • 26
    • 0842285954 scopus 로고    scopus 로고
    • Have multilevel models been structural equation models all along?
    • Curran P.J. Have multilevel models been structural equation models all along?. Multivariate Behavioral Research 38 (2002) 529-569
    • (2002) Multivariate Behavioral Research , vol.38 , pp. 529-569
    • Curran, P.J.1
  • 27
    • 34548815948 scopus 로고    scopus 로고
    • Building path diagrams for multilevel models
    • Curran P.J., and Bauer D.J. Building path diagrams for multilevel models. Psychological Methods 12 (2007) 283-297
    • (2007) Psychological Methods , vol.12 , pp. 283-297
    • Curran, P.J.1    Bauer, D.J.2
  • 31
    • 0035537304 scopus 로고    scopus 로고
    • The performance of the full information maximum likelihood estimator in multiple regression models with missing data
    • Enders C.K. The performance of the full information maximum likelihood estimator in multiple regression models with missing data. Educational and Psychological Measurement 61 (2001) 713-740
    • (2001) Educational and Psychological Measurement , vol.61 , pp. 713-740
    • Enders, C.K.1
  • 32
    • 0002543932 scopus 로고    scopus 로고
    • A primer on maximum likelihood algorithms available for use with missing data
    • Enders C.K. A primer on maximum likelihood algorithms available for use with missing data. Structural Equation Modeling 8 (2001) 128-141
    • (2001) Structural Equation Modeling , vol.8 , pp. 128-141
    • Enders, C.K.1
  • 33
    • 33746068696 scopus 로고    scopus 로고
    • A primer on the use of modern missing-data methods in psychosomatic medicine research
    • Enders C.K. A primer on the use of modern missing-data methods in psychosomatic medicine research. Psychosomatic Medicine 68 (2006) 427-436
    • (2006) Psychosomatic Medicine , vol.68 , pp. 427-436
    • Enders, C.K.1
  • 34
    • 0000173036 scopus 로고
    • Measures of effect size for categorical data
    • Cooper H., and Hedges L.V. (Eds), Russell Sage Foundation, New York
    • Fleiss J.L. Measures of effect size for categorical data. In: Cooper H., and Hedges L.V. (Eds). The handbook of research synthesis (1994), Russell Sage Foundation, New York 245-260
    • (1994) The handbook of research synthesis , pp. 245-260
    • Fleiss, J.L.1
  • 35
    • 22544480777 scopus 로고    scopus 로고
    • Meta-analytic methods of pooling correlation matrices for structural equation modeling under different patterns of missing data
    • Furlow C.F., and Beretvas S.N. Meta-analytic methods of pooling correlation matrices for structural equation modeling under different patterns of missing data. Psychological Methods 10 (2005) 227-254
    • (2005) Psychological Methods , vol.10 , pp. 227-254
    • Furlow, C.F.1    Beretvas, S.N.2
  • 36
    • 0002100348 scopus 로고
    • Primary, secondary, and meta-analysis of research
    • Glass G.V. Primary, secondary, and meta-analysis of research. Educational Researcher 5 (1976) 3-8
    • (1976) Educational Researcher , vol.5 , pp. 3-8
    • Glass, G.V.1
  • 37
    • 34548451124 scopus 로고    scopus 로고
    • How many imputations are really needed? Some practical clarifications of multiple imputation theory
    • Graham J.W., Olchowski A.E., and Gilreath T.D. How many imputations are really needed? Some practical clarifications of multiple imputation theory. Prevention Science 8 (2007) 206-213
    • (2007) Prevention Science , vol.8 , pp. 206-213
    • Graham, J.W.1    Olchowski, A.E.2    Gilreath, T.D.3
  • 38
    • 0032333396 scopus 로고    scopus 로고
    • Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primer on methods and issues
    • Haddock C.K., Rindskopf D., and Shadish W.R. Using odds ratios as effect sizes for meta-analysis of dichotomous data: A primer on methods and issues. Psychological Methods 3 (1998) 339-353
    • (1998) Psychological Methods , vol.3 , pp. 339-353
    • Haddock, C.K.1    Rindskopf, D.2    Shadish, W.R.3
  • 39
    • 54949156987 scopus 로고    scopus 로고
    • Hafdahl, A. R. (2001). Multivariate meta-analysis for exploratory factor analytic research. Unpublished doctoral dissertation, University of North Carolina at Chapel Hill.
    • Hafdahl, A. R. (2001). Multivariate meta-analysis for exploratory factor analytic research. Unpublished doctoral dissertation, University of North Carolina at Chapel Hill.
  • 40
    • 17444402056 scopus 로고    scopus 로고
    • Two-component mixtures of generalized linear mixed effects models for cluster correlated data
    • Hall D.B., and Wang L. Two-component mixtures of generalized linear mixed effects models for cluster correlated data. Statistical Modelling 5 (2005) 21-37
    • (2005) Statistical Modelling , vol.5 , pp. 21-37
    • Hall, D.B.1    Wang, L.2
  • 41
    • 0001044839 scopus 로고
    • Distribution theory for Glass's estimator of effect size and related estimators
    • Hedges L.V. Distribution theory for Glass's estimator of effect size and related estimators. Journal of Educational Statistics 6 (1981) 107-128
    • (1981) Journal of Educational Statistics , vol.6 , pp. 107-128
    • Hedges, L.V.1
  • 42
    • 0000500032 scopus 로고
    • Fitting categorical models to effect sizes from a series of experiments
    • Hedges L.V. Fitting categorical models to effect sizes from a series of experiments. Journal of Educational Statistics 7 (1982) 119-137
    • (1982) Journal of Educational Statistics , vol.7 , pp. 119-137
    • Hedges, L.V.1
  • 43
    • 0000500033 scopus 로고
    • Fitting continuous models to effect size data
    • Hedges L.V. Fitting continuous models to effect size data. Journal of Educational Statistics 7 (1982) 245-270
    • (1982) Journal of Educational Statistics , vol.7 , pp. 245-270
    • Hedges, L.V.1
  • 44
    • 0001062884 scopus 로고
    • A random effects model for effect sizes
    • Hedges L.V. A random effects model for effect sizes. Psychological Bulletin 93 (1983) 388-395
    • (1983) Psychological Bulletin , vol.93 , pp. 388-395
    • Hedges, L.V.1
  • 45
    • 0002874303 scopus 로고
    • Fixed effects models
    • Cooper H., and Hedges L.V. (Eds), Russell Sage Foundation, New York
    • Hedges L.V. Fixed effects models. In: Cooper H., and Hedges L.V. (Eds). The handbook of research synthesis (1994), Russell Sage Foundation, New York 285-299
    • (1994) The handbook of research synthesis , pp. 285-299
    • Hedges, L.V.1
  • 46
    • 67649364218 scopus 로고    scopus 로고
    • Meta-analysis
    • Rao C.R., and Sinharay S. (Eds), Russell Sage Foundation, New York
    • Hedges L.V. Meta-analysis. In: Rao C.R., and Sinharay S. (Eds). Handbook of statistics: Vol. 26. Psychometrics (2007), Russell Sage Foundation, New York 919-953
    • (2007) Handbook of statistics: Vol. 26. Psychometrics , pp. 919-953
    • Hedges, L.V.1
  • 48
    • 0032271151 scopus 로고    scopus 로고
    • Fixed- and random-effects models in meta-analysis
    • Hedges L.V., and Vevea J.L. Fixed- and random-effects models in meta-analysis. Psychological Methods 3 (1998) 486-504
    • (1998) Psychological Methods , vol.3 , pp. 486-504
    • Hedges, L.V.1    Vevea, J.L.2
  • 49
    • 0037098199 scopus 로고    scopus 로고
    • Quantifying heterogeneity in a meta-analysis
    • Higgins J.P.T., and Thompson S.G. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 21 (2002) 1539-1558
    • (2002) Statistics in Medicine , vol.21 , pp. 1539-1558
    • Higgins, J.P.T.1    Thompson, S.G.2
  • 53
    • 0034559950 scopus 로고    scopus 로고
    • Fixed effects vs. random effects meta-analysis models: Implications for cumulative research knowledge
    • Hunter J.E., and Schmidt F.L. Fixed effects vs. random effects meta-analysis models: Implications for cumulative research knowledge. International Journal of Selection and Assessment 8 (2000) 275-292
    • (2000) International Journal of Selection and Assessment , vol.8 , pp. 275-292
    • Hunter, J.E.1    Schmidt, F.L.2
  • 55
    • 0033441842 scopus 로고    scopus 로고
    • ML estimation of mean and covariance structures with missing data using complete data routines
    • Jamshidian M., and Bentler P.M. ML estimation of mean and covariance structures with missing data using complete data routines. Journal of Educational and Behavioral Statistics 24 (1999) 21-41
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , pp. 21-41
    • Jamshidian, M.1    Bentler, P.M.2
  • 57
    • 0000472187 scopus 로고    scopus 로고
    • A multivariate mixed linear model for meta-analysis
    • Kalaian H.A., and Raudenbush S.W. A multivariate mixed linear model for meta-analysis. Psychological Methods 1 (1996) 227-235
    • (1996) Psychological Methods , vol.1 , pp. 227-235
    • Kalaian, H.A.1    Raudenbush, S.W.2
  • 58
    • 54949142332 scopus 로고    scopus 로고
    • An introduction to meta-analysis
    • Osborne J.W. (Ed), Sage, Thousand Oaks, CA
    • Konstantopoulos S. An introduction to meta-analysis. In: Osborne J.W. (Ed). Best practices in quantitative methods (2008), Sage, Thousand Oaks, CA 177-194
    • (2008) Best practices in quantitative methods , pp. 177-194
    • Konstantopoulos, S.1
  • 63
    • 0038183179 scopus 로고    scopus 로고
    • Testing the number of components in a normal mixture
    • Lo Y., Mendell N., and Rubin D.B. Testing the number of components in a normal mixture. Biometrika 88 (2001) 767-778
    • (2001) Biometrika , vol.88 , pp. 767-778
    • Lo, Y.1    Mendell, N.2    Rubin, D.B.3
  • 64
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • Lubke G.H., and Muthén B.O. Investigating population heterogeneity with factor mixture models. Psychological Methods 10 (2005) 21-39
    • (2005) Psychological Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.O.2
  • 65
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model, size, covariate effects, and class-specific parameters
    • Lubke G., and Muthén B.O. Performance of factor mixture models as a function of model, size, covariate effects, and class-specific parameters. Structural Equation Modeling 14 (2007) 26-47
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.1    Muthén, B.O.2
  • 66
    • 33846999872 scopus 로고    scopus 로고
    • Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?
    • Lubke G., and Neale M.C. Distinguishing between latent classes and continuous factors: Resolution by maximum likelihood?. Multivariate Behavioral Research 41 (2006) 499-532
    • (2006) Multivariate Behavioral Research , vol.41 , pp. 499-532
    • Lubke, G.1    Neale, M.C.2
  • 67
    • 0042788756 scopus 로고    scopus 로고
    • Converting MIMIC model parameters to IRT parameters in DIF analysis
    • MacIntosh R., and Hashim S. Converting MIMIC model parameters to IRT parameters in DIF analysis. Applied Psychological Measurement 27 (2003) 372-379
    • (2003) Applied Psychological Measurement , vol.27 , pp. 372-379
    • MacIntosh, R.1    Hashim, S.2
  • 69
    • 27344454846 scopus 로고    scopus 로고
    • People are variables too: Multilevel structural equation modeling
    • Mehta P.D., and Neale M.C. People are variables too: Multilevel structural equation modeling. Psychological Methods 10 (2005) 259-284
    • (2005) Psychological Methods , vol.10 , pp. 259-284
    • Mehta, P.D.1    Neale, M.C.2
  • 70
    • 85047673975 scopus 로고    scopus 로고
    • Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs
    • Morris S.B., and DeShon R.P. Combining effect size estimates in meta-analysis with repeated measures and independent-groups designs. Psychological Methods 7 (2002) 105-125
    • (2002) Psychological Methods , vol.7 , pp. 105-125
    • Morris, S.B.1    DeShon, R.P.2
  • 71
    • 0002031816 scopus 로고    scopus 로고
    • Latent variable mixture modeling
    • Marcoulides G.A., and Schumacker R.E. (Eds), Erlbaum, Mahwah, NJ
    • Muthén B. Latent variable mixture modeling. In: Marcoulides G.A., and Schumacker R.E. (Eds). New developments and techniques in structural equation modeling (2001), Erlbaum, Mahwah, NJ 1-33
    • (2001) New developments and techniques in structural equation modeling , pp. 1-33
    • Muthén, B.1
  • 72
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • Kaplan D. (Ed), Sage, Newbury Park, CA
    • Muthén B. Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In: Kaplan D. (Ed). Handbook of quantitative methodology for the social sciences (2004), Sage, Newbury Park, CA 345-368
    • (2004) Handbook of quantitative methodology for the social sciences , pp. 345-368
    • Muthén, B.1
  • 73
    • 23844436877 scopus 로고    scopus 로고
    • Retrieved from http://www.statmodel.com/download/techappen.pdf
    • Muthén B. Mplus technical appendices (2004). http://www.statmodel.com/download/techappen.pdf Retrieved from http://www.statmodel.com/download/techappen.pdf
    • (2004) Mplus technical appendices
    • Muthén, B.1
  • 74
    • 34548838136 scopus 로고    scopus 로고
    • Retrieved from http://www.statmodel.com/download/webnotes/mc3.pdf
    • Muthén B., and Asparouhov T. Modeling of heteroscedastic measurement errors (2002). http://www.statmodel.com/download/webnotes/mc3.pdf Retrieved from http://www.statmodel.com/download/webnotes/mc3.pdf
    • (2002) Modeling of heteroscedastic measurement errors
    • Muthén, B.1    Asparouhov, T.2
  • 76
    • 0001010853 scopus 로고
    • On structural equation modeling with data that are not missing completely at random
    • Muthén B., Kaplan D., and Hollis M. On structural equation modeling with data that are not missing completely at random. Psychometrika 52 (1987) 431-462
    • (1987) Psychometrika , vol.52 , pp. 431-462
    • Muthén, B.1    Kaplan, D.2    Hollis, M.3
  • 79
    • 0005762457 scopus 로고    scopus 로고
    • Individual fit, heterogeneity, and missing data in multigroup structural equation modeling
    • Little T.D., Schnabel K.U., and Baumert J. (Eds), Erlbaum, Hillsdale, NJ
    • Neale M.C. Individual fit, heterogeneity, and missing data in multigroup structural equation modeling. In: Little T.D., Schnabel K.U., and Baumert J. (Eds). Modeling longitudinal and multilevel data: Practical issues, applied approaches and specific examples (2000), Erlbaum, Hillsdale, NJ 249-267
    • (2000) Modeling longitudinal and multilevel data: Practical issues, applied approaches and specific examples , pp. 249-267
    • Neale, M.C.1
  • 80
    • 0003446270 scopus 로고    scopus 로고
    • Available from Virginia Commonwealth University, Department of Psychiatry, Box 900126, Richmond, VA 23298.
    • Neale M.C., Boker S.M., Xie G., and Maes H.H. Mx: Statistical modeling (7th ed.) (2006) Available from Virginia Commonwealth University, Department of Psychiatry, Box 900126, Richmond, VA 23298.
    • (2006) Mx: Statistical modeling (7th ed.)
    • Neale, M.C.1    Boker, S.M.2    Xie, G.3    Maes, H.H.4
  • 81
    • 0032344154 scopus 로고    scopus 로고
    • A comparison of fixed-effects and mixed (random-effects) models for meta-analysis tests of moderator variable effects
    • Overton R.C. A comparison of fixed-effects and mixed (random-effects) models for meta-analysis tests of moderator variable effects. Psychological Methods 3 (1998) 354-379
    • (1998) Psychological Methods , vol.3 , pp. 354-379
    • Overton, R.C.1
  • 83
    • 0001968635 scopus 로고
    • Methods for handling missing data in research synthesis
    • Cooper H., and Hedges L.V. (Eds), Russell Sage Foundation, New York
    • Pigott T.D. Methods for handling missing data in research synthesis. In: Cooper H., and Hedges L.V. (Eds). The handbook of research synthesis (1994), Russell Sage Foundation, New York 163-175
    • (1994) The handbook of research synthesis , pp. 163-175
    • Pigott, T.D.1
  • 84
    • 0035189710 scopus 로고    scopus 로고
    • Missing predictors in models of effect size
    • Pigott T.D. Missing predictors in models of effect size. Evaluation & the Health Professions 24 (2001) 277-307
    • (2001) Evaluation & the Health Professions , vol.24 , pp. 277-307
    • Pigott, T.D.1
  • 85
    • 33748324384 scopus 로고    scopus 로고
    • R Development Core Team Available from http://www.r-project.org
    • R Development Core Team. R: A language and environment for statistical computing (2008). http://www.r-project.org Available from http://www.r-project.org
    • (2008) R: A language and environment for statistical computing
  • 86
    • 0002285113 scopus 로고
    • Random effects models
    • Cooper H., and Hedges L.V. (Eds), Russell Sage Foundation, New York
    • Raudenbush S.W. Random effects models. In: Cooper H., and Hedges L.V. (Eds). The handbook of research synthesis (1994), Russell Sage Foundation, New York 301-321
    • (1994) The handbook of research synthesis , pp. 301-321
    • Raudenbush, S.W.1
  • 89
    • 0001147113 scopus 로고
    • Parametric measures of effect size
    • Cooper H., and Hedges L.V. (Eds), Russell Sage Foundation, New York
    • Rosenthal R. Parametric measures of effect size. In: Cooper H., and Hedges L.V. (Eds). The handbook of research synthesis (1994), Russell Sage Foundation, New York 231-244
    • (1994) The handbook of research synthesis , pp. 231-244
    • Rosenthal, R.1
  • 91
    • 0034381708 scopus 로고    scopus 로고
    • A structural modeling approach to a multilevel random coefficients model
    • Rovine M.J., and Molenaar P.C.M. A structural modeling approach to a multilevel random coefficients model. Multivariate Behavioral Research 35 (2000) 51-88
    • (2000) Multivariate Behavioral Research , vol.35 , pp. 51-88
    • Rovine, M.J.1    Molenaar, P.C.M.2
  • 92
    • 0038134675 scopus 로고    scopus 로고
    • A structural equations modeling approach to the general linear mixed model
    • Collins L.M., and Sayer A.G. (Eds), American Psychological Association, Washington, DC
    • Rovine M.J., and Molenaar P.C.M. A structural equations modeling approach to the general linear mixed model. In: Collins L.M., and Sayer A.G. (Eds). New methods for the analysis of change (2001), American Psychological Association, Washington, DC 65-96
    • (2001) New methods for the analysis of change , pp. 65-96
    • Rovine, M.J.1    Molenaar, P.C.M.2
  • 95
    • 85047673373 scopus 로고    scopus 로고
    • Missing data: Our view of the state of the art
    • Schafer J.L., and Graham J.W. Missing data: Our view of the state of the art. Psychological Methods 7 (2002) 147-177
    • (2002) Psychological Methods , vol.7 , pp. 147-177
    • Schafer, J.L.1    Graham, J.W.2
  • 96
    • 0032219074 scopus 로고    scopus 로고
    • Multiple imputation for multivariate missing data problems: A data analyst's perspective
    • Schafer J.L., and Olsen M.K. Multiple imputation for multivariate missing data problems: A data analyst's perspective. Multivariate Behavioral Research 33 (1998) 545-571
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 545-571
    • Schafer, J.L.1    Olsen, M.K.2
  • 97
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwartz G. Estimating the dimension of a model. The Annals of Statistics 6 (1978) 461-464
    • (1978) The Annals of Statistics , vol.6 , pp. 461-464
    • Schwartz, G.1
  • 98
    • 0002323898 scopus 로고    scopus 로고
    • Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues
    • Shadish W.R. Meta-analysis and the exploration of causal mediating processes: A primer of examples, methods, and issues. Psychological Methods 1 (1996) 47-65
    • (1996) Psychological Methods , vol.1 , pp. 47-65
    • Shadish, W.R.1
  • 99
    • 33646897928 scopus 로고    scopus 로고
    • Robust variance estimation for random effects meta-analysis
    • Sidik K., and Jonkman J.N. Robust variance estimation for random effects meta-analysis. Computational Statistics & Data Analysis 50 (2006) 3681-3701
    • (2006) Computational Statistics & Data Analysis , vol.50 , pp. 3681-3701
    • Sidik, K.1    Jonkman, J.N.2
  • 101
    • 32944478435 scopus 로고    scopus 로고
    • A review of syllabi for a sample of structural equation modeling courses
    • Stapleton L.M., and Leite W.L. A review of syllabi for a sample of structural equation modeling courses. Structural Equation Modeling 12 (2005) 642-664
    • (2005) Structural Equation Modeling , vol.12 , pp. 642-664
    • Stapleton, L.M.1    Leite, W.L.2
  • 102
    • 33845670403 scopus 로고    scopus 로고
    • On the likelihood ratio test in structural equation modeling when parameters are subject to boundary constraints
    • Stoel R.D., Galindo-Garre F., Dolan C., and van den Wittenboer G. On the likelihood ratio test in structural equation modeling when parameters are subject to boundary constraints. Psychological Methods 11 (2006) 439-455
    • (2006) Psychological Methods , vol.11 , pp. 439-455
    • Stoel, R.D.1    Galindo-Garre, F.2    Dolan, C.3    van den Wittenboer, G.4
  • 104
    • 84889377761 scopus 로고    scopus 로고
    • Bias in meta-analysis: Induced by incompletely reported studies
    • Rothstein H.R., Sutton A.J., and Borenstein M. (Eds), Wiley, Chichester, United Kingdom
    • Sutton A.J., and Pigott T.D. Bias in meta-analysis: Induced by incompletely reported studies. In: Rothstein H.R., Sutton A.J., and Borenstein M. (Eds). Publication bias in meta-analysis: Prevention, assessment and adjustments (2005), Wiley, Chichester, United Kingdom 223-239
    • (2005) Publication bias in meta-analysis: Prevention, assessment and adjustments , pp. 223-239
    • Sutton, A.J.1    Pigott, T.D.2
  • 105
    • 0000563849 scopus 로고
    • On the relationship between item response theory and factor analysis of discretized variables
    • Takane Y., and de Leeuw J. On the relationship between item response theory and factor analysis of discretized variables. Psychometrika 52 (1987) 393-408
    • (1987) Psychometrika , vol.52 , pp. 393-408
    • Takane, Y.1    de Leeuw, J.2
  • 106
  • 107
    • 0040564126 scopus 로고
    • A mixture model for distributions of correlation coefficients
    • Thomas H. A mixture model for distributions of correlation coefficients. Psychometrika 54 (1989) 523-530
    • (1989) Psychometrika , vol.54 , pp. 523-530
    • Thomas, H.1
  • 108
    • 0037098178 scopus 로고    scopus 로고
    • How should meta-regression analyses be undertaken and interpreted?
    • Thompson S.G., and Higgins J.P.T. How should meta-regression analyses be undertaken and interpreted?. Statistics in Medicine 21 (2002) 1559-1573
    • (2002) Statistics in Medicine , vol.21 , pp. 1559-1573
    • Thompson, S.G.1    Higgins, J.P.T.2
  • 109
    • 0033619529 scopus 로고    scopus 로고
    • Explaining heterogeneity in meta-analysis: A comparison of methods
    • Thompson S.G., and Sharp S.J. Explaining heterogeneity in meta-analysis: A comparison of methods. Statistics in Medicine 18 (1999) 2693-2708
    • (1999) Statistics in Medicine , vol.18 , pp. 2693-2708
    • Thompson, S.G.1    Sharp, S.J.2
  • 110
    • 25144458639 scopus 로고    scopus 로고
    • Parametric and nonparametric bootstrap methods for meta-analysis
    • Van den Noortgate W., and Onghena P. Parametric and nonparametric bootstrap methods for meta-analysis. Behavior Research Methods 37 (2005) 11-22
    • (2005) Behavior Research Methods , vol.37 , pp. 11-22
    • Van den Noortgate, W.1    Onghena, P.2
  • 111
    • 0000569928 scopus 로고    scopus 로고
    • A linear mixed-effects model with heterogeneity in the random-effects population
    • Verbeke G., and Lesaffre E. A linear mixed-effects model with heterogeneity in the random-effects population. Journal of the American Statistical Association 91 (1996) 217-221
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 217-221
    • Verbeke, G.1    Lesaffre, E.2
  • 112
    • 27544512687 scopus 로고    scopus 로고
    • Bias and efficiency of meta-analytic variance estimators in the random-effects model
    • Viechtbauer W. Bias and efficiency of meta-analytic variance estimators in the random-effects model. Journal of Educational and Behavioral Statistics 30 (2005) 261-293
    • (2005) Journal of Educational and Behavioral Statistics , vol.30 , pp. 261-293
    • Viechtbauer, W.1
  • 114
    • 33846253999 scopus 로고    scopus 로고
    • Confidence intervals for the amount of heterogeneity in meta-analysis
    • Viechtbauer W. Confidence intervals for the amount of heterogeneity in meta-analysis. Statistics in Medicine 26 (2007) 37-52
    • (2007) Statistics in Medicine , vol.26 , pp. 37-52
    • Viechtbauer, W.1
  • 116
    • 21844483681 scopus 로고
    • Theory testing: Combining psychometric meta-analysis and structural equations modeling
    • Viswesvaran C., and Ones D.S. Theory testing: Combining psychometric meta-analysis and structural equations modeling. Personnel Psychology 48 (1995) 865-885
    • (1995) Personnel Psychology , vol.48 , pp. 865-885
    • Viswesvaran, C.1    Ones, D.S.2
  • 117
    • 34547188255 scopus 로고    scopus 로고
    • Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm
    • Wang X., Schumitzky A., and D'Argenio D.Z. Nonlinear random effects mixture models: Maximum likelihood estimation via the EM algorithm. Computational Statistics & Data Analysis 51 (2007) 6614-6623
    • (2007) Computational Statistics & Data Analysis , vol.51 , pp. 6614-6623
    • Wang, X.1    Schumitzky, A.2    D'Argenio, D.Z.3
  • 118
    • 26944496007 scopus 로고    scopus 로고
    • Mixture random effect model based meta-analysis for medical data mining
    • Perner P., and Imiya A. (Eds), Springer, Berlin
    • Xia Y., Weng S., Zhang C., and Li S. Mixture random effect model based meta-analysis for medical data mining. In: Perner P., and Imiya A. (Eds). Machine learning and data mining in pattern recognition (2005), Springer, Berlin 630-640
    • (2005) Machine learning and data mining in pattern recognition , pp. 630-640
    • Xia, Y.1    Weng, S.2    Zhang, C.3    Li, S.4
  • 119
    • 44349089208 scopus 로고    scopus 로고
    • Robust procedures in structural equation modeling
    • Lee S.-Y. (Ed), Elsevier/North-Holland, Amsterdam
    • Yuan K.-H., and Bentler P.M. Robust procedures in structural equation modeling. In: Lee S.-Y. (Ed). Handbook of latent variable and related models (2007), Elsevier/North-Holland, Amsterdam 367-397
    • (2007) Handbook of latent variable and related models , pp. 367-397
    • Yuan, K.-H.1    Bentler, P.M.2
  • 120
    • 0031488140 scopus 로고    scopus 로고
    • Finite mixtures in confirmatory factor-analysis models
    • Yung Y.-F. Finite mixtures in confirmatory factor-analysis models. Psychometrika 62 (1997) 297-330
    • (1997) Psychometrika , vol.62 , pp. 297-330
    • Yung, Y.-F.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.