메뉴 건너뛰기




Volumn 18, Issue 2, 2013, Pages 186-219

Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus bayesian estimation

Author keywords

Bayesian estimation; Growth mixture modeling; Latent class separation; Markov chain Monte Carlo; Priors

Indexed keywords

ARTICLE; BAYES THEOREM; BEHAVIORAL SCIENCE; COMPARATIVE STUDY; HUMAN; MONTE CARLO METHOD; PROBABILITY; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL BIAS; STATISTICAL DISTRIBUTION; STATISTICAL MODEL; STATISTICS; TIME;

EID: 84879532581     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/a0031609     Document Type: Article
Times cited : (101)

References (61)
  • 2
    • 54249092302 scopus 로고    scopus 로고
    • Observations on the use of growth mixture models in psychological research
    • Bauer, D. J. (2007). Observations on the use of growth mixture models in psychological research. Multivariate Behavioral Research, 42, 757-786.
    • (2007) Multivariate Behavioral Research , vol.42 , pp. 757-786
    • Bauer, D.J.1
  • 3
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes
    • Bauer, D. J., & Curran, P. J. (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338-363.
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 4
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 3, 385-402.
    • (2006) Bayesian Analysis , vol.3 , pp. 385-402
    • Berger, J.1
  • 6
    • 68649116880 scopus 로고    scopus 로고
    • In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies
    • Brown, L. D. (2008). In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies. The Annals of Applied Statistics, 2, 113-152.
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 113-152
    • Brown, L.D.1
  • 7
    • 0142200381 scopus 로고    scopus 로고
    • Performance of empirical Bayes estimators of level-2 random parameters in multilevel analysis: A Monte Carlo study for longitudinal designs
    • Candel, J. J. M., & Winkens, B. (2003). Performance of empirical Bayes estimators of level-2 random parameters in multilevel analysis: A Monte Carlo study for longitudinal designs. Journal of Educational and Behavioral Statistics, 28, 169-194.
    • (2003) Journal of Educational and Behavioral Statistics , vol.28 , pp. 169-194
    • Candel, J.J.M.1    Winkens, B.2
  • 8
    • 2242491935 scopus 로고    scopus 로고
    • Computational and inferential difficulties with mixture posterior distributions
    • Celeux, G., Hurn, M., & Robert, C. (2000). Computational and inferential difficulties with mixture posterior distributions. Journal of the American Statistical Association, 95, 957-970.
    • (2000) Journal of the American Statistical Association , vol.95 , pp. 957-970
    • Celeux, G.1    Hurn, M.2    Robert, C.3
  • 9
    • 1042276693 scopus 로고    scopus 로고
    • Adolescents' alcohol and drug use trajectories in the year following treatment
    • Chung, T., Maisto, S. A., Cornelius, J. S., & Martin, C. S. (2004). Adolescents' alcohol and drug use trajectories in the year following treatment. Journal of Studies on Alcohol, 69, 105-114.
    • (2004) Journal of Studies on Alcohol , vol.69 , pp. 105-114
    • Chung, T.1    Maisto, S.A.2    Cornelius, J.S.3    Martin, C.S.4
  • 11
    • 84879518696 scopus 로고    scopus 로고
    • The impact of "inaccurate" informative priors for growth parameters in Bayesian growth mixture modeling
    • in press
    • Depaoli, S. (in press). The impact of "inaccurate" informative priors for growth parameters in Bayesian growth mixture modeling. Structural Equation Modeling.
    • Structural Equation Modeling
    • Depaoli, S.1
  • 12
    • 0001244941 scopus 로고
    • Estimation of finite mixture distributions through Bayesian sampling
    • Diebolt, J., & Robert, C. P. (1994). Estimation of finite mixture distributions through Bayesian sampling. Journal of the Royal Statistical Society, 56, 363-375.
    • (1994) Journal of the Royal Statistical Society , vol.56 , pp. 363-375
    • Diebolt, J.1    Robert, C.P.2
  • 13
    • 41149108168 scopus 로고    scopus 로고
    • The impact of misspecifying classspecific residual variances in growth mixture models
    • Enders, C. K., & Tofighi, D. (2008). The impact of misspecifying classspecific residual variances in growth mixture models. Structural Equation Modeling, 15, 75-95.
    • (2008) Structural Equation Modeling , vol.15 , pp. 75-95
    • Enders, C.K.1    Tofighi, D.2
  • 15
    • 1842815959 scopus 로고    scopus 로고
    • Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models
    • Frühwirth-Schnatter, S. (2001). Markov chain Monte Carlo estimation of classical and dynamic switching and mixture models. Journal of the American Statistical Association, 96, 194-209.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 194-209
    • Frühwirth-Schnatter, S.1
  • 16
    • 0001582213 scopus 로고    scopus 로고
    • Inference and monitoring convergence
    • W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.),New York, NY: Chapman & Hall
    • Gelman, A. (1996). Inference and monitoring convergence. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 131-143). New York, NY: Chapman & Hall.
    • (1996) Markov chain Monte Carlo in practice , pp. 131-143
    • Gelman, A.1
  • 18
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., & Rubin, D. B. (1992a). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-511.
    • (1992) Statistical Science , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 19
    • 0001032162 scopus 로고
    • A single series from the Gibbs sampler provides a false sense of security
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.),Oxford, England: Oxford University Press
    • Gelman, A., & Rubin, D. B. (1992b). A single series from the Gibbs sampler provides a false sense of security. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 625-631). Oxford, England: Oxford University Press.
    • (1992) Bayesian statistics , vol.4 , pp. 625-631
    • Gelman, A.1    Rubin, D.B.2
  • 20
    • 0001218443 scopus 로고
    • Non-informative priors (with discussion)
    • J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.),Oxford, England: Oxford University Press
    • Ghosh, J. K., & Mukerjee, R. (1992). Non-informative priors (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 4 (p. 195-210). Oxford, England: Oxford University Press.
    • (1992) Bayesian statistics , vol.4 , pp. 195-210
    • Ghosh, J.K.1    Mukerjee, R.2
  • 21
  • 22
    • 34247529815 scopus 로고    scopus 로고
    • Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics
    • Henson, J. M., Reise, S. P., & Kim, K. H. (2007). Detecting mixtures from structural model differences using latent variable mixture modeling: A comparison of relative model fit statistics. Structural Equation Modeling, 14, 202-226.
    • (2007) Structural Equation Modeling , vol.14 , pp. 202-226
    • Henson, J.M.1    Reise, S.P.2    Kim, K.H.3
  • 23
    • 33745601740 scopus 로고    scopus 로고
    • Local solutions in the estimation of growth mixture models
    • Hipp, J. R., & Bauer, D. J. (2006). Local solutions in the estimation of growth mixture models. Psychological Methods, 11, 36-53.
    • (2006) Psychological Methods , vol.11 , pp. 36-53
    • Hipp, J.R.1    Bauer, D.J.2
  • 24
    • 22544479764 scopus 로고    scopus 로고
    • Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling
    • Jasra, A., Holmes, C. C., & Stephens, D. A. (2005). Markov chain Monte Carlo methods and the label switching problem in Bayesian mixture modeling. Statistical Science, 20, 50-67.
    • (2005) Statistical Science , vol.20 , pp. 50-67
    • Jasra, A.1    Holmes, C.C.2    Stephens, D.A.3
  • 25
    • 0031287762 scopus 로고    scopus 로고
    • Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity
    • Jedidi, K., Jagpal, H. S., & DeSarbo, W. S. (1997). Finite-mixture structural equation models for response-based segmentation and unobserved heterogeneity. Marketing Science, 16, 39-59.
    • (1997) Marketing Science , vol.16 , pp. 39-59
    • Jedidi, K.1    Jagpal, H.S.2    DeSarbo, W.S.3
  • 26
    • 32844456565 scopus 로고    scopus 로고
    • Methodological advances in the analysis of individual growth with relevance to education policy
    • Kaplan, D. (2002). Methodological advances in the analysis of individual growth with relevance to education policy. Peabody Journal of Education, 77, 189-215.
    • (2002) Peabody Journal of Education , vol.77 , pp. 189-215
    • Kaplan, D.1
  • 29
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., & Jones, D. R. (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401-2428.
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 31
    • 17444413035 scopus 로고    scopus 로고
    • Investigating population heterogeneity with factor mixture models
    • Lubke, G. H., & Muthén, B. O. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21-39.
    • (2005) Psychological Methods , vol.10 , pp. 21-39
    • Lubke, G.H.1    Muthén, B.O.2
  • 32
    • 33846951724 scopus 로고    scopus 로고
    • Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters
    • Lubke, G. H., & Muthén, B. O. (2007). Performance of factor mixture models as a function of model size, covariate effects, and class-specific parameters. Structural Equation Modeling, 14, 26-47.
    • (2007) Structural Equation Modeling , vol.14 , pp. 26-47
    • Lubke, G.H.1    Muthén, B.O.2
  • 34
    • 84855810530 scopus 로고    scopus 로고
    • General growth mixture analysis of adolescents' developmental trajectories of anxiety: The impact of untested invariance assumptions on substantive interpretations
    • Morin, A., Mainano, C., Nagengast, B., Marsh, H., Morizot, J., & Janosc, M. (2011). General growth mixture analysis of adolescents' developmental trajectories of anxiety: The impact of untested invariance assumptions on substantive interpretations. Structural Equation Modeling, 18, 613-648.
    • (2011) Structural Equation Modeling , vol.18 , pp. 613-648
    • Morin, A.1    Mainano, C.2    Nagengast, B.3    Marsh, H.4    Morizot, J.5    Janosc, M.6
  • 35
    • 0142136682 scopus 로고    scopus 로고
    • Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003)
    • Muthén, B. O. (2003). Statistical and substantive checking in growth mixture modeling: Comment on Bauer and Curran (2003). Psychological Methods, 8, 369-377.
    • (2003) Psychological Methods , vol.8 , pp. 369-377
    • Muthén, B.O.1
  • 36
    • 8544268508 scopus 로고    scopus 로고
    • Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data
    • D. Kaplan (Ed.), Newbury Park, CA: Sage
    • Muthén, B. O. (2004). Latent variable analysis: Growth mixture modeling and related techniques for longitudinal data. In D. Kaplan (Ed.), Handbook of quantitative methodology for the social sciences (pp. 345-368). Newbury Park, CA: Sage.
    • (2004) Handbook of quantitative methodology for the social sciences , pp. 345-368
    • Muthén, B.O.1
  • 37
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén, B. O., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335.
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.O.1    Asparouhov, T.2
  • 38
    • 0033917955 scopus 로고    scopus 로고
    • Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes
    • Muthén, B. O., & Muthén, L. K. (2000). Integrating person-centered and variable-centered analyses: Growth mixture modeling with latent trajectory classes. Alcoholism: Clinical and Experimental Research, 24, 882- 891.
    • (2000) Alcoholism: Clinical and Experimental Research , vol.24 , pp. 882-891
    • Muthén, B.O.1    Muthén, L.K.2
  • 39
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • Muthén, B., & Shedden, K. (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463-469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 41
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing developmental trajectories: A semiparametric, group-based approach
    • Nagin, D. S. (1999). Analyzing developmental trajectories: A semiparametric, group-based approach. Psychological Methods, 4, 139-157.
    • (1999) Psychological Methods , vol.4 , pp. 139-157
    • Nagin, D.S.1
  • 42
    • 0032392354 scopus 로고    scopus 로고
    • Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference?
    • Natarajan, R., & McCulloch, C. E. (1998). Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference? Journal of Computational and Graphical Statistics, 7, 267-277.
    • (1998) Journal of Computational and Graphical Statistics , vol.7 , pp. 267-277
    • Natarajan, R.1    McCulloch, C.E.2
  • 43
    • 36849091981 scopus 로고    scopus 로고
    • Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study
    • Nylund, K., Asparouhov, T, & Muthén, B. (2007). Deciding on the number of classes in latent class analysis and growth mixture modeling: A Monte Carlo simulation study. Structural Equation Modeling, 14, 535-569.
    • (2007) Structural Equation Modeling , vol.14 , pp. 535-569
    • Nylund, K.1    Asparouhov, T.2    Muthén, B.3
  • 44
    • 0346856880 scopus 로고    scopus 로고
    • Eliciting expert beliefs in substantial practical applications
    • O'Hagan, A. (1998). Eliciting expert beliefs in substantial practical applications. The Statistician, 47, 21-35.
    • (1998) The Statistician , vol.47 , pp. 21-35
    • O'Hagan, A.1
  • 46
    • 0003030680 scopus 로고    scopus 로고
    • Implementing MCMC
    • W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.),New York, NY: Chapman & Hall
    • Raftery, A. E., & Lewis, S. M. (1996). Implementing MCMC. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 115-130). New York, NY: Chapman & Hall.
    • (1996) Markov chain Monte Carlo in practice , pp. 115-130
    • Raftery, A.E.1    Lewis, S.M.2
  • 47
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S., & Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society, 59, 731-792.
    • (1997) Journal of the Royal Statistical Society , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 48
    • 0142041439 scopus 로고    scopus 로고
    • Mixture or homogeneous? Comment on Bauer and Curran (2003)
    • Rindskopf, D. (2003). Mixture or homogeneous? Comment on Bauer and Curran (2003). Psychological Methods, 8, 364-368.
    • (2003) Psychological Methods , vol.8 , pp. 364-368
    • Rindskopf, D.1
  • 50
    • 33746437553 scopus 로고    scopus 로고
    • A comparison of girl's and boy's aggressive-disruptive behavior trajectories across elementary school: Prediction to young adult antisocial outcomes
    • Schaeffer, C., Petras, H., Ialongo, N., Masyn, K., Hubbard, S., Poduska, J., & Kellan, S. (2006). A comparison of girl's and boy's aggressive-disruptive behavior trajectories across elementary school: Prediction to young adult antisocial outcomes. Journal of Consulting and Clinical Psychology, 74, 500-510.
    • (2006) Journal of Consulting and Clinical Psychology , vol.74 , pp. 500-510
    • Schaeffer, C.1    Petras, H.2    Ialongo, N.3    Masyn, K.4    Hubbard, S.5    Poduska, J.6    Kellan, S.7
  • 51
    • 11844261472 scopus 로고    scopus 로고
    • Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples
    • Sinharay, S. (2004). Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples. Journal of Educational and Behavioral Statistics, 29, 461-488.
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 461-488
    • Sinharay, S.1
  • 53
  • 55
    • 41149175664 scopus 로고    scopus 로고
    • Identifying the correct number of classes in growth mixture models
    • G. R. Hancock & K. M. Samuelson (Eds.),Charlotte, NC: Information Age
    • Tofighi, D., & Enders, C. K. (2008). Identifying the correct number of classes in growth mixture models. In G. R. Hancock & K. M. Samuelson (Eds.), Advances in latent variable mixture models (pp. 317-341). Charlotte, NC: Information Age.
    • (2008) Advances in latent variable mixture models , pp. 317-341
    • Tofighi, D.1    Enders, C.K.2
  • 57
    • 77951655116 scopus 로고    scopus 로고
    • Evaluation of structural equation mixture models: Parameter estimates and correct class assignment
    • Tueller, S., & Lubke, G. (2010). Evaluation of structural equation mixture models: Parameter estimates and correct class assignment. Structural Equation Modeling, 17, 165-192.
    • (2010) Structural Equation Modeling , vol.17 , pp. 165-192
    • Tueller, S.1    Lubke, G.2
  • 59
    • 0034360396 scopus 로고    scopus 로고
    • Asymptotic inference for mixture models using data-dependent priors
    • Wasserman, L. (2000). Asymptotic inference for mixture models using data-dependent priors. Journal of the Royal Statistical Society, 62, 159-180.
    • (2000) Journal of the Royal Statistical Society , vol.62 , pp. 159-180
    • Wasserman, L.1
  • 60
    • 78649524562 scopus 로고    scopus 로고
    • Bayesian semiparametric structural equation models with latent variables
    • Yang, M., & Dunson, D. B. (2010). Bayesian semiparametric structural equation models with latent variables. Psychometrika, 75, 675-693.
    • (2010) Psychometrika , vol.75 , pp. 675-693
    • Yang, M.1    Dunson, D.B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.