-
1
-
-
77952026461
-
Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures. The International Journal of Biostatistics, 6
-
* Austin, P.C. (2010). Estimating multilevel logistic regression models when the number of clusters is low: a comparison of different statistical software procedures. The International Journal of Biostatistics, 6, Article 16.
-
(2010)
Article
, pp. 16
-
-
Austin, P.C.1
-
2
-
-
84879535463
-
Bayesian methods for the analysis of small sample multilevel data with a complex variance structure
-
*Baldwin, S.A., & Fellingham, G.W. (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151–164.
-
(2013)
Psychological Methods
, vol.18
, pp. 151-164
-
-
Baldwin, S.A.1
Fellingham, G.W.2
-
3
-
-
84969591405
-
-
A multilevel primer using SAS Proc Mixed: SAS Global Forum
-
Bell, B., Ene, M., Smiley, W., & Schoeneberger, J. (2013). A multilevel primer using SAS Proc Mixed, SAS Global Forum.
-
(2013)
& Schoeneberger, J
-
-
Bell, B.1
Ene, M.2
Smiley, W.3
-
4
-
-
84969719808
-
Doubly diminishing returns: an empirical investigation on the impact of sample size and predictor prevalence on point and interval estimates in two-level linear models
-
M3, Storrs
-
Bell, Schoeneberger, Smiley, Ene, and Leighton (2013). Doubly diminishing returns: an empirical investigation on the impact of sample size and predictor prevalence on point and interval estimates in two-level linear models. Paper presented at the Modern Modeling Methods Conference (M3). Storrs.
-
(2013)
Paper presented at the Modern Modeling Methods Conference
-
-
Bell, S.1
Smiley, E.2
-
5
-
-
84894161242
-
How low can you go? An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models
-
*Bell, B.A., Morgan, G.B., Schoeneberger, J.A., Kromrey, J.D., & Ferron, J.M. (2014). How low can you go? An investigation of the influence of sample size and model complexity on point and interval estimates in two-level linear models. Methodology: European Journal of Research Methods for the Behavioral and Social Sciences, 10, 1–11.
-
(2014)
Methodology: European Journal of Research Methods for the Behavioral and Social Sciences
, vol.10
, pp. 1-11
-
-
Bell, B.A.1
Morgan, G.B.2
Schoeneberger, J.A.3
Kromrey, J.D.4
Ferron, J.M.5
-
7
-
-
33847083094
-
A comparison of Bayesian and likelihood-based methods for fitting multilevel models
-
* Browne, W.J., & Draper, D. (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 473-514
-
-
Browne, W.J.1
Draper, D.2
-
8
-
-
0037334855
-
On measures of uncertainty of empirical Bayes small-area estimators
-
Butar, F. B., & Lahiri, P. (2003). On measures of uncertainty of empirical Bayes small-area estimators. Journal of Statistical Planning and Inference, 112, 63–76.
-
(2003)
Journal of Statistical Planning and Inference
, vol.112
, pp. 63-76
-
-
Butar, F.B.1
Lahiri, P.2
-
9
-
-
47949122241
-
When can group level clustering be ignored? Multilevel models versus single level models with sparse data
-
*Clarke, P. (2008). When can group level clustering be ignored? Multilevel models versus single level models with sparse data. Journal of Epidemiology and Community Health, 62, 752–758.
-
(2008)
Journal of Epidemiology and Community Health
, vol.62
, pp. 752-758
-
-
Clarke, P.1
-
10
-
-
0000383430
-
Determining sample sizes for surveys with data analyzed by hierarchical linear models
-
*Cohen, J. (1998). Determining sample sizes for surveys with data analyzed by hierarchical linear models. Journal of Official Statistics, 14, 267–275.
-
(1998)
Journal of Official Statistics
, vol.14
, pp. 267-275
-
-
Cohen, J.1
-
11
-
-
70349584335
-
Multilevel modeling: a review of methodological issues and applications
-
Dedrick, R. F., Ferron, J. M., Hess, M. R., Hogarty, K. Y., Kromrey, J. D., & Lee, R. (2009). Multilevel modeling: a review of methodological issues and applications. Review of Educational Research, 79, 69–102.
-
(2009)
Review of Educational Research
, vol.79
, pp. 69-102
-
-
Dedrick, R.F.1
Ferron, J.M.2
Hess, M.R.3
Hogarty, K.Y.4
Kromrey, J.D.5
Lee, R.6
-
12
-
-
66149144783
-
Making treatment effect inferences from multiple-baseline data: the utility of multilevel modeling approaches
-
*Ferron, J.M., Bell, B.A., Hess, M.R., Rendina-Gobioff, G., & Hibbard, S.T. (2009). Making treatment effect inferences from multiple-baseline data: the utility of multilevel modeling approaches. Behavior Research Methods, 41, 372–384.
-
(2009)
Behavior Research Methods
, vol.41
, pp. 372-384
-
-
Ferron, J.M.1
Bell, B.A.2
Hess, M.R.3
Rendina-Gobioff, G.4
Hibbard, S.T.5
-
14
-
-
61749087965
-
Fixed effects, random effects and GEE: what are the differences?
-
Gardiner, J. C., Luo, Z., & Roman, L. A. (2009). Fixed effects, random effects and GEE: what are the differences? Statistics in Medicine, 28, 221–239.
-
(2009)
Statistics in Medicine
, vol.28
, pp. 221-239
-
-
Gardiner, J.C.1
Luo, Z.2
Roman, L.A.3
-
16
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
-
Gelman, A. (2006). Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Analysis, 1, 515–534.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 515-534
-
-
Gelman, A.1
-
17
-
-
85053970271
-
-
CRC press, Boca Raton
-
Gelman, A., Carlin, J. B., Stern, H. S., Dunson, D. B., Vehtari, A., & Rubin, D. B. (2013). Bayesian data analysis (3rd ed.). Boca Raton: CRC press.
-
(2013)
Bayesian data analysis
-
-
Gelman, A.1
Carlin, J.B.2
Stern, H.S.3
Dunson, D.B.4
Vehtari, A.5
Rubin, D.B.6
-
18
-
-
1042298109
-
Partitioning variation in multilevel models
-
Goldstein, H., Browne, W., & Rasbash, J. (2002). Partitioning variation in multilevel models. Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sciences, 1, 223–231.
-
(2002)
Understanding Statistics: Statistical Issues in Psychology, Education, and the Social Sciences
, vol.1
, pp. 223-231
-
-
Goldstein, H.1
Browne, W.2
Rasbash, J.3
-
19
-
-
33750982364
-
Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model
-
González-Manteiga, W., Lombardía, M. J., Molina, I., Morales, D., & Santamaría, L. (2007). Estimation of the mean squared error of predictors of small area linear parameters under a logistic mixed model. Computational Statistics and Data Analysis, 51, 2720–2733.
-
(2007)
Computational Statistics and Data Analysis
, vol.51
, pp. 2720-2733
-
-
González-Manteiga, W.1
Lombardía, M.J.2
Molina, I.3
Morales, D.4
Santamaría, L.5
-
21
-
-
34247269174
-
Intraclass correlation values for planning group randomized trials in education
-
Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group randomized trials in education. Educational Evaluation and Policy Analysis, 29, 60–87.
-
(2007)
Educational Evaluation and Policy Analysis
, vol.29
, pp. 60-87
-
-
Hedges, L.V.1
Hedberg, E.C.2
-
22
-
-
56049108832
-
Statistical power and sample size requirements for three level hierarchical cluster randomized trials
-
Heo, M., & Leon, A. C. (2008). Statistical power and sample size requirements for three level hierarchical cluster randomized trials. Biometrics, 64, 1256–1262.
-
(2008)
Biometrics
, vol.64
, pp. 1256-1262
-
-
Heo, M.1
Leon, A.C.2
-
23
-
-
0032330969
-
Robustness studies in covariance structure modeling. An overview and a meta-analysis
-
Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling. An overview and a meta-analysis. Sociological Methods & Research, 26, 329–367.
-
(1998)
Sociological Methods & Research
, vol.26
, pp. 329-367
-
-
Hoogland, J.J.1
Boomsma, A.2
-
24
-
-
0002875903
-
Multilevel modeling: when and why
-
Balderjahn I, Mathar R, Schader M, (eds), Springer, Berlin
-
Hox, J. J. (1998). Multilevel modeling: when and why. In I. Balderjahn, R. Mathar, & M. Schader (Eds.), Classification, data analysis, and data highways (pp. 147–154). Berlin: Springer.
-
(1998)
Classification, data analysis, and data highways
, pp. 147-154
-
-
Hox, J.J.1
-
26
-
-
84883641307
-
How few countries will do? Comparative survey analysis from a Bayesian perspective
-
Hox, J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87–93.
-
(2012)
Survey Research Methods
, vol.6
, pp. 87-93
-
-
Hox, J.1
van de Schoot, R.2
Matthijsse, S.3
-
27
-
-
0030880605
-
Small sample inference for fixed effects from restricted maximum likelihood
-
Kenward, M. G., & Roger, J. H. (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.
-
(1997)
Biometrics
, vol.53
, pp. 983-997
-
-
Kenward, M.G.1
Roger, J.H.2
-
28
-
-
61849100484
-
An improved approximation to the precision of fixed effects from restricted maximum likelihood
-
Kenward, M. G., & Roger, J. H. (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics and Data Analysis, 53, 2583–2595.
-
(2009)
Computational Statistics and Data Analysis
, vol.53
, pp. 2583-2595
-
-
Kenward, M.G.1
Roger, J.H.2
-
29
-
-
84890205776
-
Logistic regression with multiple random effects: a simulation study of estimation methods and statistical packages
-
Kim, Y., Choi, Y. K., & Emery, S. (2013). Logistic regression with multiple random effects: a simulation study of estimation methods and statistical packages. The American Statistician, 67, 171–182.
-
(2013)
The American Statistician
, vol.67
, pp. 171-182
-
-
Kim, Y.1
Choi, Y.K.2
Emery, S.3
-
31
-
-
1842484314
-
The analysis of repeated measurements with mixed-model adjusted F tests
-
Kowalchuk, R. K., Keselman, H. J., Algina, J., & Wolfinger, R. D. (2004). The analysis of repeated measurements with mixed-model adjusted F tests. Educational and Psychological Measurement, 64, 224–242.
-
(2004)
Educational and Psychological Measurement
, vol.64
, pp. 224-242
-
-
Kowalchuk, R.K.1
Keselman, H.J.2
Algina, J.3
Wolfinger, R.D.4
-
32
-
-
0003538388
-
Are multilevel techniques necessary? An overview, including simulation studies
-
California State University, Los Angeles
-
*Kreft, I. G. G. (1996). Are multilevel techniques necessary? An overview, including simulation studies. Unpublished manuscript, California State University, Los Angeles.
-
(1996)
Unpublished manuscript
-
-
Kreft, I.G.G.1
-
33
-
-
1842783963
-
Robustness issues in multilevel regression analysis
-
*Maas, C., & Hox, J. (2004). Robustness issues in multilevel regression analysis. Statistica Neerlandica.,58,127-137.
-
(2004)
Statistica Neerlandica.
, vol.58
, pp. 127-137
-
-
Maas, C.1
Hox, J.2
-
35
-
-
84925614904
-
Modeling sparsely clustered data: design-based, model based, and single-level methods. Psychological Methods
-
*McNeish, D.M. (2014). Modeling sparsely clustered data: design-based, model based, and single-level methods. Psychological Methods. DOI: 10.1037/met0000024.
-
(2014)
DOI: 10.1037/met0000024
-
-
McNeish, D.M.1
-
36
-
-
77956841670
-
A Monte Carlo sample size study: how many countries are needed for accurate multilevel SEM?
-
*Meuleman, B., & Billiet, J. (2009). A Monte Carlo sample size study: how many countries are needed for accurate multilevel SEM? Survey Research Methods, 3, 45–58.
-
(2009)
Survey Research Methods
, vol.3
, pp. 45-58
-
-
Meuleman, B.1
Billiet, J.2
-
37
-
-
34548301106
-
A simulation study of sample size for multilevel logistic regression models
-
*Moineddin, R., Matheson, F.I., & Glazier, R.H. (2007). A simulation study of sample size for multilevel logistic regression models. BMC Medical Research Methodology, 7, 34.
-
(2007)
BMC Medical Research Methodology
, vol.7
, pp. 34
-
-
Moineddin, R.1
Matheson, F.I.2
Glazier, R.H.3
-
38
-
-
0141864209
-
Sample size requirements for 2-level designs in educational research
-
*Mok, M. (1995). Sample size requirements for 2-level designs in educational research. Multilevel Modelling Newsletter, 7, 11–15.
-
(1995)
Multilevel Modelling Newsletter
, vol.7
, pp. 11-15
-
-
Mok, M.1
-
39
-
-
8644282112
-
Meaningful statistical model formulations for repeated measures
-
Molenberghs, G., & Verbeke, G. (2004). Meaningful statistical model formulations for repeated measures. Statistica Sinica, 14, 989–1020.
-
(2004)
Statistica Sinica
, vol.14
, pp. 989-1020
-
-
Molenberghs, G.1
Verbeke, G.2
-
42
-
-
84872636119
-
An approximate distribution of the estimates of variance components
-
Satterthwaite, F. E. (1946). An approximate distribution of the estimates of variance components. Biometrics, 2, 110–114.
-
(1946)
Biometrics
, vol.2
, pp. 110-114
-
-
Satterthwaite, F.E.1
-
43
-
-
45449111368
-
Constrained versus unconstrained estimation in structural equation modeling
-
Savalei, V., & Kolenikov, S. (2008). Constrained versus unconstrained estimation in structural equation modeling. Psychological Methods, 13, 150–170.
-
(2008)
Psychological Methods
, vol.13
, pp. 150-170
-
-
Savalei, V.1
Kolenikov, S.2
-
44
-
-
61449179166
-
Estimating statistical power and required sample size for organizational research using multilevel modeling
-
*Scherbaum, C. A., & Ferreter, J. M. (2009). Estimating statistical power and required sample size for organizational research using multilevel modeling. Organizational Research Methods, 12, 347–367.
-
(2009)
Organizational Research Methods
, vol.12
, pp. 347-367
-
-
Scherbaum, C.A.1
Ferreter, J.M.2
-
46
-
-
0000935535
-
Standard errors and sample sizes for two-level research
-
*Snijders, T., & Bosker, R. (1993). Standard errors and sample sizes for two-level research. Journal of Educational Statistics, 18, 237–259.
-
(1993)
Journal of Educational Statistics
, vol.18
, pp. 237-259
-
-
*Snijders, T.1
Bosker, R.2
-
48
-
-
25444520271
-
A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data
-
Spilke, J., Piepho, H. P., & Hu, X. (2005). A simulation study on tests of hypotheses and confidence intervals for fixed effects in mixed models for blocked experiments with missing data. Journal of Agricultural, Biological, and Environmental Statistics, 10, 374–389.
-
(2005)
Journal of Agricultural, Biological, and Environmental Statistics
, vol.10
, pp. 374-389
-
-
Spilke, J.1
Piepho, H.P.2
Hu, X.3
-
49
-
-
84879841014
-
How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches
-
*Stegmueller, D. (2013). How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. American Journal of Political Science, 57, 748–761.
-
(2013)
American Journal of Political Science
, vol.57
, pp. 748-761
-
-
Stegmueller, D.1
-
50
-
-
0028641810
-
Variance components testing in the longitudinal mixed effects model
-
Stram, D. O., & Lee, J. W. (1994). Variance components testing in the longitudinal mixed effects model. Biometrics, 50, 1171–1177.
-
(1994)
Biometrics
, vol.50
, pp. 1171-1177
-
-
Stram, D.O.1
Lee, J.W.2
-
51
-
-
84969690778
-
April)
-
Paper presented at the Multilevel Conference, Amsterdam
-
Van der Leeden, R., Busing, F., & Meijer, E. (1997, April). Applications of bootstrap methods for two-level models. Paper presented at the Multilevel Conference. Amsterdam.
-
(1997)
Applications of bootstrap methods for two-level models
-
-
Van der Leeden, R.1
Busing, F.2
Meijer, E.3
|