메뉴 건너뛰기




Volumn 41, Issue 1, 2016, Pages 27-56

Using Data-Dependent Priors to Mitigate Small Sample Bias in Latent Growth Models: A Discussion and Illustration Using Mplus

Author keywords

data dependent prior; latent basis model; latent growth models; Mplus; second order growth model; small samples

Indexed keywords

COMPUTER PROGRAM; COVARIANCE; MAXIMUM LIKELIHOOD METHOD; MODEL; NOMENCLATURE; SAMPLE SIZE; SAMPLING BIAS;

EID: 84955483682     PISSN: 10769986     EISSN: 19351054     Source Type: Journal    
DOI: 10.3102/1076998615621299     Document Type: Article
Times cited : (58)

References (80)
  • 1
    • 84885025235 scopus 로고    scopus 로고
    • 4, Statistics and Data Analysis Keynote Presentation at the SAS Global Forum, Orlando, FL:
    • P.D.Allison (2012, 4). Handling Missing data by maximum likelihood. Statistics and Data Analysis Keynote Presentation at the SAS Global Forum, Orlando, FL.
    • (2012) Handling Missing data by maximum likelihood
    • Allison, P.D.1
  • 3
    • 84879535463 scopus 로고    scopus 로고
    • Bayesian methods for the analysis of small sample multilevel data with a complex variance structure
    • S.A.BaldwinG.W.Fellingham (2013). Bayesian methods for the analysis of small sample multilevel data with a complex variance structure. Psychological Methods, 18, 151–164.
    • (2013) Psychological Methods , vol.18 , pp. 151-164
    • Baldwin, S.A.1    Fellingham, G.W.2
  • 4
    • 0034557223 scopus 로고    scopus 로고
    • Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage
    • J.BarnardR.McCullochX.L.Meng (2000). Modeling covariance matrices in terms of standard deviations and correlations, with application to shrinkage. Statistica Sinica, 10, 1281–1312.
    • (2000) Statistica Sinica , vol.10 , pp. 1281-1312
    • Barnard, J.1    McCulloch, R.2    Meng, X.L.3
  • 6
    • 0142041441 scopus 로고    scopus 로고
    • Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes
    • D.J.BauerP.J.Curran (2003). Distributional assumptions of growth mixture models: Implications for overextraction of latent trajectory classes. Psychological Methods, 8, 338–363.
    • (2003) Psychological Methods , vol.8 , pp. 338-363
    • Bauer, D.J.1    Curran, P.J.2
  • 7
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • J.Berger (2006). The case for objective Bayesian analysis. Bayesian Analysis, 1, 385–402.
    • (2006) Bayesian Analysis , vol.1 , pp. 385-402
    • Berger, J.1
  • 9
  • 10
    • 33847083094 scopus 로고    scopus 로고
    • A comparison of Bayesian and likelihood-based methods for fitting multilevel models
    • W.J.BrowneD.Draper (2006). A comparison of Bayesian and likelihood-based methods for fitting multilevel models. Bayesian Analysis, 1, 473–514.
    • (2006) Bayesian Analysis , vol.1 , pp. 473-514
    • Browne, W.J.1    Draper, D.2
  • 12
    • 0001294318 scopus 로고
    • A sample reuse method for accurate parametric empirical Bayes confidence intervals
    • B.P.CarlinA.E.Gelfand (1991). A sample reuse method for accurate parametric empirical Bayes confidence intervals. Journal of the Royal Statistical Society. Series B, 53, 189–200.
    • (1991) Journal of the Royal Statistical Society. Series B , vol.53 , pp. 189-200
    • Carlin, B.P.1    Gelfand, A.E.2
  • 14
    • 12344299021 scopus 로고    scopus 로고
    • Empirical Bayes Gibbs sampling
    • G.Casella (2001). Empirical Bayes Gibbs sampling. Biostatistics, 2, 485–500.
    • (2001) Biostatistics , vol.2 , pp. 485-500
    • Casella, G.1
  • 15
    • 84879777257 scopus 로고    scopus 로고
    • The RANDOM statement and more: Moving on with PROC MCMC
    • Cary, NC: SAS Institute, Inc,,. In
    • F.Chen (2011). The RANDOM statement and more: Moving on with PROC MCMC. In Proceedings of the SAS Global Forum 2011 Conference. Cary, NC: SAS Institute, Inc.
    • (2011) Proceedings of the SAS Global Forum 2011 Conference
    • Chen, F.1
  • 16
    • 84873347427 scopus 로고    scopus 로고
    • Implementing restricted maximum likelihood estimation in structural equation models
    • M.W.L.Cheung (2013). Implementing restricted maximum likelihood estimation in structural equation models. Structural Equation Modeling: A Multidisciplinary Journal, 20, 157–167.
    • (2013) Structural Equation Modeling: A Multidisciplinary Journal , vol.20 , pp. 157-167
    • Cheung, M.W.L.1
  • 17
    • 0842285954 scopus 로고    scopus 로고
    • Have multilevel models been structural equation models all along?
    • P.J.Curran (2003). Have multilevel models been structural equation models all along?Multivariate Behavioral Research, 38, 529–569.
    • (2003) Multivariate Behavioral Research , vol.38 , pp. 529-569
    • Curran, P.J.1
  • 19
    • 84898064791 scopus 로고    scopus 로고
    • The impact of inaccurate “informative” priors for growth parameters in Bayesian growth mixture modeling
    • S.Depaoli (2014). The impact of inaccurate “informative” priors for growth parameters in Bayesian growth mixture modeling. Structural Equation Modeling: A Multidisciplinary Journal, 21, 239–252.
    • (2014) Structural Equation Modeling: A Multidisciplinary Journal , vol.21 , pp. 239-252
    • Depaoli, S.1
  • 22
  • 24
    • 84955448298 scopus 로고    scopus 로고
    • xtmixed and denominator degrees of freedom: Myth or magic
    • 7, Chicago, IL:
    • P.Ender (2011, 7). xtmixed and denominator degrees of freedom: Myth or magic. Stata Conference, Chicago, IL.
    • (2011) Stata Conference
    • Ender, P.1
  • 26
    • 10844245499 scopus 로고    scopus 로고
    • An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
    • D.B.FloraP.J.Curran (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.
    • (2004) Psychological Methods , vol.9 , pp. 466-491
    • Flora, D.B.1    Curran, P.J.2
  • 27
    • 0010033533 scopus 로고    scopus 로고
    • Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality
    • R.T.Fouladi (2000). Performance of modified test statistics in covariance and correlation structure analysis under conditions of multivariate nonnormality. Structural Equation Modeling, 7, 356–410.
    • (2000) Structural Equation Modeling , vol.7 , pp. 356-410
    • Fouladi, R.T.1
  • 28
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • A.Gelman (2006). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515–534.
    • (2006) Bayesian Analysis , vol.1 , pp. 515-534
    • Gelman, A.1
  • 29
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • A.GelmanD.B.Rubin (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472.
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 30
    • 0001218443 scopus 로고
    • Non-informative priors (with discussion)
    • Oxford, England: University Press,,. In (Eds.),, (pp
    • J.K.GhoshR.Mukerjee (1992). Non-informative priors (with discussion). In (Eds.), Bayesian statistics4 (pp. 195–2010). Oxford, England: University Press.
    • (1992) Bayesian statistics , vol.4 , pp. 195-2010
    • Ghosh, J.K.1    Mukerjee, R.2
  • 31
    • 0000650620 scopus 로고
    • Restricted unbiased iterative generalized least-squares estimation
    • H.Goldstein (1989). Restricted unbiased iterative generalized least-squares estimation. Biometrika, 76, 622–623.
    • (1989) Biometrika , vol.76 , pp. 622-623
    • Goldstein, H.1
  • 32
    • 80052569198 scopus 로고    scopus 로고
    • Nonlinear growth curves in developmental research
    • K.J.GrimmN.RamF.Hamagami (2011). Nonlinear growth curves in developmental research. Child Development, 82, 1357–1371.
    • (2011) Child Development , vol.82 , pp. 1357-1371
    • Grimm, K.J.1    Ram, N.2    Hamagami, F.3
  • 35
    • 0032330969 scopus 로고    scopus 로고
    • Robustness studies in covariance structure modeling: An overview and a meta-analysis
    • J.J.HooglandA.Boomsma (1998). Robustness studies in covariance structure modeling: An overview and a meta-analysis. Sociological Methods & Research, 26, 329–367.
    • (1998) Sociological Methods & Research , vol.26 , pp. 329-367
    • Hoogland, J.J.1    Boomsma, A.2
  • 37
    • 84883641307 scopus 로고    scopus 로고
    • How few countries will do? Comparative survey analysis from a Bayesian perspective
    • J.HoxR.van de SchootS.Matthijsse (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87–93.
    • (2012) Survey Research Methods , vol.6 , pp. 87-93
    • Hox, J.1    van de Schoot, R.2    Matthijsse, S.3
  • 38
    • 33947414695 scopus 로고    scopus 로고
    • Effect of the number of variables on measures of fit in structural equation modeling
    • D.A.KennyD.B.McCoach (2003). Effect of the number of variables on measures of fit in structural equation modeling. Structural Equation Modeling, 10, 333–351.
    • (2003) Structural Equation Modeling , vol.10 , pp. 333-351
    • Kenny, D.A.1    McCoach, D.B.2
  • 39
    • 0030880605 scopus 로고    scopus 로고
    • Small sample inference for fixed effects from restricted maximum likelihood
    • M.G.KenwardJ.H.Roger (1997). Small sample inference for fixed effects from restricted maximum likelihood. Biometrics, 53, 983–997.
    • (1997) Biometrics , vol.53 , pp. 983-997
    • Kenward, M.G.1    Roger, J.H.2
  • 40
    • 61849100484 scopus 로고    scopus 로고
    • An improved approximation to the precision of fixed effects from restricted maximum likelihood
    • M.G.KenwardJ.H.Roger (2009). An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computational Statistics & Data Analysis, 53, 2583–2595.
    • (2009) Computational Statistics & Data Analysis , vol.53 , pp. 2583-2595
    • Kenward, M.G.1    Roger, J.H.2
  • 41
    • 84873827979 scopus 로고    scopus 로고
    • The time has come Bayesian methods for data analysis in the organizational sciences
    • J.K.KruschkeH.AguinisH.Joo (2012). The time has come Bayesian methods for data analysis in the organizational sciences. Organizational Research Methods, 15, 722–752.
    • (2012) Organizational Research Methods , vol.15 , pp. 722-752
    • Kruschke, J.K.1    Aguinis, H.2    Joo, H.3
  • 43
    • 0020333131 scopus 로고
    • Random-effects models for longitudinal data
    • N.M.LairdJ.H.Ware (1982). Random-effects models for longitudinal data. Biometrics, 38, 963–974.
    • (1982) Biometrics , vol.38 , pp. 963-974
    • Laird, N.M.1    Ware, J.H.2
  • 44
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • P.C.LambertA.J.SuttonP.R.BurtonK.R.AbramsD.R.Jones (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401–2428.
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 45
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • S.Y.LeeX.Y.Song (2004). Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes. Multivariate Behavioral Research, 39, 653–686.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 653-686
    • Lee, S.Y.1    Song, X.Y.2
  • 48
    • 0001568978 scopus 로고
    • Dynamic but structural equation modeling of repeated measures data
    • New York, NY: Plenum Press,,. In (Eds.),, (pp
    • J.J.McArdle (1988). Dynamic but structural equation modeling of repeated measures data. In (Eds.), The handbook of multivariate experimental psychology (pp. 561–614). New York, NY: Plenum Press.
    • (1988) The handbook of multivariate experimental psychology , pp. 561-614
    • McArdle, J.J.1
  • 49
    • 0023285136 scopus 로고
    • Latent growth curves within developmental structural equation models
    • J.J.McArdleD.Epstein (1987). Latent growth curves within developmental structural equation models. Child Development, 58, 110–133.
    • (1987) Child Development , vol.58 , pp. 110-133
    • McArdle, J.J.1    Epstein, D.2
  • 50
    • 84908298355 scopus 로고    scopus 로고
    • The effect of small sample size on two level model estimates: A review and illustration
    • D.M.McNeishL.M.Stapleton (2014). The effect of small sample size on two level model estimates: A review and illustration. Educational Psychology Review. doi:10.1007/s10648-014-9287-x
    • (2014) Educational Psychology Review
    • McNeish, D.M.1    Stapleton, L.M.2
  • 51
    • 34249962132 scopus 로고
    • Latent curve analysis
    • W.MeredithJ.Tisak (1990). Latent curve analysis. Psychometrika, 55, 107–122.
    • (1990) Psychometrika , vol.55 , pp. 107-122
    • Meredith, W.1    Tisak, J.2
  • 53
    • 0002569771 scopus 로고    scopus 로고
    • Second-generation structural equation modeling with a combination for categorical and continuous latent variables: New opportunities for latent class/latent curve modeling
    • Washington, DC: American Psychological Association,,. In (Eds.),, (pp
    • B.O.Muthén (2001). Second-generation structural equation modeling with a combination for categorical and continuous latent variables: New opportunities for latent class/latent curve modeling. In (Eds.), New methods for the analysis of change (pp. 291–322). Washington, DC: American Psychological Association.
    • (2001) New methods for the analysis of change , pp. 291-322
    • Muthén, B.O.1
  • 55
    • 0032969449 scopus 로고    scopus 로고
    • Finite mixture modeling with mixture outcomes using the EM algorithm
    • B.MuthénK.Shedden (1999). Finite mixture modeling with mixture outcomes using the EM algorithm. Biometrics, 55, 463–469.
    • (1999) Biometrics , vol.55 , pp. 463-469
    • Muthén, B.1    Shedden, K.2
  • 56
    • 0033441152 scopus 로고    scopus 로고
    • Analyzing developmental trajectories: a semiparametric, group-based approach
    • D.S.Nagin (1999). Analyzing developmental trajectories: a semiparametric, group-based approach. Psychological Methods, 4, 139–157.
    • (1999) Psychological Methods , vol.4 , pp. 139-157
    • Nagin, D.S.1
  • 57
    • 11144327159 scopus 로고    scopus 로고
    • Evaluating small sample approaches for model test statistics in structural equation modeling
    • J.NevittG.R.Hancock (2004). Evaluating small sample approaches for model test statistics in structural equation modeling. Multivariate Behavioral Research, 39, 439–478.
    • (2004) Multivariate Behavioral Research , vol.39 , pp. 439-478
    • Nevitt, J.1    Hancock, G.R.2
  • 58
    • 33947405554 scopus 로고    scopus 로고
    • Variance-covariance functions for domain means of ordinal survey items
    • A.J.MalleyA.M.Zaslavsky (2005). Variance-covariance functions for domain means of ordinal survey items. Survey Methodology, 31, 169–182.
    • (2005) Survey Methodology , vol.31 , pp. 169-182
    • Malley, A.J.1    Zaslavsky, A.M.2
  • 59
    • 27144512096 scopus 로고    scopus 로고
    • Using the SPSS mixed procedure to fit cross-sectional and longitudinal multilevel models
    • J.L.PeughC.K.Enders (2005). Using the SPSS mixed procedure to fit cross-sectional and longitudinal multilevel models. Educational and Psychological Measurement, 65, 717–741.
    • (2005) Educational and Psychological Measurement , vol.65 , pp. 717-741
    • Peugh, J.L.1    Enders, C.K.2
  • 60
    • 0000661332 scopus 로고
    • A generalized multivariate analysis of variance model useful especially for growth curve problems
    • R.F.PotthoffS.N.Roy (1964). A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika, 51, 313–326.
    • (1964) Biometrika , vol.51 , pp. 313-326
    • Potthoff, R.F.1    Roy, S.N.2
  • 61
    • 84865617049 scopus 로고    scopus 로고
    • Small sample properties of Bayesian multivariate autoregressive time series models
    • L.R.Price (2012). Small sample properties of Bayesian multivariate autoregressive time series models. Structural Equation Modeling: A Multidisciplinary Journal, 19, 51–64.
    • (2012) Structural Equation Modeling: A Multidisciplinary Journal , vol.19 , pp. 51-64
    • Price, L.R.1
  • 66
    • 84872636119 scopus 로고
    • An approximate distribution of estimates of variance components
    • F.E.Satterthwaite (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin, 2, 110–114.
    • (1946) Biometrics Bulletin , vol.2 , pp. 110-114
    • Satterthwaite, F.E.1
  • 67
    • 77951654107 scopus 로고    scopus 로고
    • Small sample statistics for incomplete nonnormal data: Extensions of complete data formulae and a Monte Carlo comparison
    • V.Savalei (2010). Small sample statistics for incomplete nonnormal data: Extensions of complete data formulae and a Monte Carlo comparison. Structural Equation Modeling, 17, 241–264.
    • (2010) Structural Equation Modeling , vol.17 , pp. 241-264
    • Savalei, V.1
  • 68
    • 45449111368 scopus 로고    scopus 로고
    • Constrained versus unconstrained estimation in structural equation modeling
    • V.SavaleiS.Kolenikov (2008). Constrained versus unconstrained estimation in structural equation modeling. Psychological Methods, 13, 150–170.
    • (2008) Psychological Methods , vol.13 , pp. 150-170
    • Savalei, V.1    Kolenikov, S.2
  • 70
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • R.ScheinesH.HoijtinkA.Boomsma (1999). Bayesian estimation and testing of structural equation models. Psychometrika, 64, 37–52.
    • (1999) Psychometrika , vol.64 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 72
    • 84899623960 scopus 로고    scopus 로고
    • College Station, TX: Stata Press
    • StataCorp. (2013). Stata 13 base reference manual. College Station, TX: Stata Press.
    • (2013) Stata 13 base reference manual
  • 73
    • 84879841014 scopus 로고    scopus 로고
    • How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches
    • D.Stegmueller (2013). How many countries for multilevel modeling? A comparison of frequentist and Bayesian approaches. American Journal of Political Science, 57, 748–761.
    • (2013) American Journal of Political Science , vol.57 , pp. 748-761
    • Stegmueller, D.1
  • 74
    • 0038525498 scopus 로고
    • Unpublished doctoral dissertation, Department of Statistics, University of Adelaide, Australia:
    • A.J.Swain (1975). Analysis of parametric structures for variance matrices (Unpublished doctoral dissertation). Department of Statistics, University of Adelaide, Australia.
    • (1975) Analysis of parametric structures for variance matrices
    • Swain, A.J.1
  • 78
    • 70249111205 scopus 로고    scopus 로고
    • Evaluating model fit for growth curve models: Integration of fit indices from SEM and MLM frameworks
    • W.WuS.G.WestA.B.Taylor (2009). Evaluating model fit for growth curve models: Integration of fit indices from SEM and MLM frameworks. Psychological Methods, 14, 183–201.
    • (2009) Psychological Methods , vol.14 , pp. 183-201
    • Wu, W.1    West, S.G.2    Taylor, A.B.3
  • 79
    • 25444473930 scopus 로고    scopus 로고
    • Fit indices versus test statistics
    • K.-H.Yuan (2005). Fit indices versus test statistics. Multivariate Behavioral Research, 40, 115–148.
    • (2005) Multivariate Behavioral Research , vol.40 , pp. 115-148
    • Yuan, K.-H.1
  • 80
    • 84922051374 scopus 로고    scopus 로고
    • Rendezvous Overdue Bayes analysis meets organizational research
    • M.J.ZyphurF.L.OswaldD.E.Rupp (2015). Rendezvous Overdue Bayes analysis meets organizational research. Journal of Management, 41, 387–389.
    • (2015) Journal of Management , vol.41 , pp. 387-389
    • Zyphur, M.J.1    Oswald, F.L.2    Rupp, D.E.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.