메뉴 건너뛰기




Volumn , Issue , 2009, Pages

The rise of Markov chain Monte Carlo estimation for psychometric modeling

Author keywords

[No Author keywords available]

Indexed keywords


EID: 79961194222     PISSN: 1687952X     EISSN: 16879538     Source Type: Journal    
DOI: 10.1155/2009/537139     Document Type: Review
Times cited : (25)

References (123)
  • 1
    • 85101432319 scopus 로고
    • New York, NY, USA John Wiley Sons Wiley Series in Probability and Mathematical Statistics
    • Bollen K. A., Structural Equations with Latent Variables 1989 New York, NY, USA John Wiley Sons xiv+514 Wiley Series in Probability and Mathematical Statistics
    • (1989) Structural Equations with Latent Variables , pp. 514
    • Bollen, K.A.1
  • 2
    • 0004125042 scopus 로고
    • 2nd Hillsdale, NJ, USA Lawrence Earlbaum Associates
    • Gorsuch R. L., Factor Analysis 1983 2nd Hillsdale, NJ, USA Lawrence Earlbaum Associates
    • (1983) Factor Analysis
    • Gorsuch, R.L.1
  • 6
    • 0037279421 scopus 로고    scopus 로고
    • Full maximum likelihood estimation of polychoric and polyserial correlations with missing data
    • Song X.-Y., Lee S.-Y., Full maximum likelihood estimation of polychoric and polyserial correlations with missing data Multivariate Behavioral Research 2003 38 1 57 79 (Pubitemid 36630351)
    • (2003) Multivariate Behavioral Research , vol.38 , Issue.1 , pp. 57-79
    • Song, X.-Y.1    Lee, S.-Y.2
  • 8
    • 34250131877 scopus 로고
    • Bayes modal estimation in item response models
    • Mislevy R. J., Bayes modal estimation in item response models Psychometrika 1986 51 2 177 195
    • (1986) Psychometrika , vol.51 , Issue.2 , pp. 177-195
    • Mislevy, R.J.1
  • 9
  • 11
    • 84920841704 scopus 로고    scopus 로고
    • Chichester, UK John Wiley Sons Wiley Series in Probability and Statistics
    • Lee S.-Y., Structural Equation Modeling: A Bayesian Approach 2007 Chichester, UK John Wiley Sons xvi+432 Wiley Series in Probability and Statistics
    • (2007) Structural Equation Modeling: A Bayesian Approach , pp. 432
    • Lee, S.-Y.1
  • 15
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods
    • Smith A. F. M., Roberts G. O., Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods Journal of the Royal Statistical Society. Series B 1993 55 1 3 23
    • (1993) Journal of the Royal Statistical Society. Series B , vol.55 , Issue.1 , pp. 3-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 17
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions
    • Tierney L., Markov chains for exploring posterior distributions The Annals of Statistics 1994 22 4 1701 1762
    • (1994) The Annals of Statistics , vol.22 , Issue.4 , pp. 1701-1762
    • Tierney, L.1
  • 18
    • 0001974429 scopus 로고    scopus 로고
    • Markov chain concepts related to sampling algorithms
    • Gilks W. R. Richardson S. Spiegelhalter D. J. London, UK Chapman Hall Interdiscip. Statist.
    • Roberts G. O., Gilks W. R., Richardson S., Spiegelhalter D. J., Markov chain concepts related to sampling algorithms Markov Chain Monte Carlo in Practice 1996 London, UK Chapman Hall 45 57 Interdiscip. Statist.
    • (1996) Markov Chain Monte Carlo in Practice , pp. 45-57
    • Roberts, G.O.1
  • 19
    • 0000913755 scopus 로고
    • Spatial interaction and the statistical analysis of lattice systems
    • Besag J., Spatial interaction and the statistical analysis of lattice systems Journal of the Royal Statistical Society. Series B 1974 36 192 236
    • (1974) Journal of the Royal Statistical Society. Series B , vol.36 , pp. 192-236
    • Besag, J.1
  • 20
    • 0021518209 scopus 로고
    • Stochastic relaxation, gibbs distributions, and the bayesian restoration of images
    • Geman S., Geman D., Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images IEEE Transactions on Pattern Analysis and Machine Intelligence 1984 6 6 721 741 (Pubitemid 15453722)
    • (1984) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.PAMI-6 , Issue.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 22
    • 77956890234 scopus 로고
    • Monte Carlo sampling methods using Markov chains and their applications
    • Hastings W. K., Monte Carlo sampling methods using Markov chains and their applications Biometrika 1970 57 1 97 109
    • (1970) Biometrika , vol.57 , Issue.1 , pp. 97-109
    • Hastings, W.K.1
  • 23
    • 32344446687 scopus 로고
    • Understanding the Metropolis-Hastings Algorithm
    • Chib S., Greenberg E., Understanding the Metropolis-Hastings algorithm The American Statistician 1995 49 4 327 335 (Pubitemid 126008969)
    • (1995) American Statistician , vol.49 , Issue.4 , pp. 327-335
    • Chib, S.1    Greenberg, E.2
  • 25
    • 0033247467 scopus 로고    scopus 로고
    • Bayesian estimation and testing of structural equation models
    • Scheines R., Hoijtink H., Boomsma A., Bayesian estimation and testing of structural equation models Psychometrika 1999 64 1 37 52
    • (1999) Psychometrika , vol.64 , Issue.1 , pp. 37-52
    • Scheines, R.1    Hoijtink, H.2    Boomsma, A.3
  • 26
    • 0034557673 scopus 로고    scopus 로고
    • Bayesian Factor Analysis for Multilevel Binary Observations
    • Ansari A., Jedidi K., Bayesian factor analysis for multilevel binary observations Psychometrika 2000 65 4 475 496 (Pubitemid 33222961)
    • (2000) Psychometrika , vol.65 , Issue.4 , pp. 475-496
    • Ansari, A.1    Jedidi, K.2
  • 27
    • 19844369721 scopus 로고    scopus 로고
    • Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes
    • DOI 10.1207/s15327906mbr3904-4
    • Lee S.-Y., Song X.-Y., Evaluation of the Bayesian and maximum likelihood approaches in analyzing structural equation models with small sample sizes Multivariate Behavioral Research 2004 39 4 653 686 (Pubitemid 40763799)
    • (2004) Multivariate Behavioral Research , vol.39 , Issue.4 , pp. 653-686
    • Lee, S.-Y.1    Song, X.-Y.2
  • 28
    • 0036011444 scopus 로고    scopus 로고
    • Heterogeneous factor analysis models: A Bayesian approach
    • Ansari A., Jedidi K., Dube L., Heterogeneous factor analysis models: a Bayesian approach Psychometrika 2002 67 1 49 78
    • (2002) Psychometrika , vol.67 , Issue.1 , pp. 49-78
    • Ansari, A.1    Jedidi, K.2    Dube, L.3
  • 30
    • 0038457409 scopus 로고    scopus 로고
    • Bayesian model selection for mixtures of structural equation models with an unknown number of components
    • DOI 10.1348/000711003321645403
    • Lee S.-Y., Song X.-Y., Bayesian model selection for mixtures of structural equation models with an unknown number of components The British Journal of Mathematical and Statistical Psychology 2003 56 1 145 165 (Pubitemid 37189151)
    • (2003) British Journal of Mathematical and Statistical Psychology , vol.56 , Issue.1 , pp. 145-165
    • Lee, S.-Y.1    Song, X.-Y.2
  • 31
    • 0035286078 scopus 로고    scopus 로고
    • A Bayesian analysis of finite mixtures in the LISREL model
    • Zhu H.-T., Lee S.-Y., A Bayesian analysis of finite mixtures in the LISREL model Psychometrika 2001 66 1 133 152
    • (2001) Psychometrika , vol.66 , Issue.1 , pp. 133-152
    • Zhu, H.-T.1    Lee, S.-Y.2
  • 32
    • 34548063939 scopus 로고    scopus 로고
    • Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables
    • Lee S.-Y., Song X.-Y., Tang N.-S., Bayesian methods for analyzing structural equation models with covariates, interaction, and quadratic latent variables Structural Equation Modeling 2007 14 3 404 434
    • (2007) Structural Equation Modeling , vol.14 , Issue.3 , pp. 404-434
    • Lee, S.-Y.1    Song, X.-Y.2    Tang, N.-S.3
  • 33
    • 33751234948 scopus 로고    scopus 로고
    • Bayesian analysis of nonlinear structural equation models with nonignorable missing data
    • DOI 10.1007/s11336-006-1177-1
    • Lee S.-Y., Tang N.-S., Bayesian analysis of nonlinear structural equation models with nonignorable missing data Psychometrika 2006 71 3 541 564 (Pubitemid 44788548)
    • (2006) Psychometrika , vol.71 , Issue.3 , pp. 541-564
    • Lee, S.-Y.1    Tang, N.-S.2
  • 34
    • 0032329779 scopus 로고    scopus 로고
    • A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm
    • Arminger G., Muthén B. O., A Bayesian approach to nonlinear latent variable models using the Gibbs sampler and the Metropolis-Hastings algorithm Psychometrika 1998 63 3 271 300
    • (1998) Psychometrika , vol.63 , Issue.3 , pp. 271-300
    • Arminger, G.1    Muthén, B.O.2
  • 35
    • 67650696829 scopus 로고    scopus 로고
    • Bayesian analysis of multivariate latent curve models with nonlinear longitudinal latent effects
    • Song X.-Y., Lee S.-Y., Hser Y.-I., Bayesian analysis of multivariate latent curve models with nonlinear longitudinal latent effects Structural Equation Modeling 2009 16 2 245 266
    • (2009) Structural Equation Modeling , vol.16 , Issue.2 , pp. 245-266
    • Song, X.-Y.1    Lee, S.-Y.2    Hser, Y.-I.3
  • 36
    • 34247192112 scopus 로고    scopus 로고
    • Item factor analysis: Current approaches and future directions
    • Wirth R. J., Edwards M. C., Item factor analysis: current approaches and future directions Psychological Methods 2007 12 1 58 79
    • (2007) Psychological Methods , vol.12 , Issue.1 , pp. 58-79
    • Wirth, R.J.1    Edwards, M.C.2
  • 37
    • 0000433590 scopus 로고
    • Marginal maximum likelihood estimation of item parameters: Application of an em algorithm
    • Bock R. D., Aitkin M., Marginal maximum likelihood estimation of item parameters: application of an EM algorithm Psychometrika 1981 46 4 443 459
    • (1981) Psychometrika , vol.46 , Issue.4 , pp. 443-459
    • Bock, R.D.1    Aitkin, M.2
  • 39
    • 84970369963 scopus 로고
    • Adaptive EAP estimation of ability in a microcomputer environment
    • Bock R. D., Mislevy R. J., Adaptive EAP estimation of ability in a microcomputer environment Applied Psychological Measurement 1982 6 431 444
    • (1982) Applied Psychological Measurement , vol.6 , pp. 431-444
    • Bock, R.D.1    Mislevy, R.J.2
  • 40
    • 0001248506 scopus 로고
    • Bayesian estimation of normal ogive item response curves using Gibbs sampling
    • Albert J. H., Bayesian estimation of normal ogive item response curves using Gibbs sampling Journal of Educational Statistics 1992 17 251 269
    • (1992) Journal of Educational Statistics , vol.17 , pp. 251-269
    • Albert, J.H.1
  • 43
    • 0036289272 scopus 로고    scopus 로고
    • Bayesian estimation and model choice in item response models
    • DOI 10.1080/00949650212387
    • Sahu S. K., Bayesian estimation and model choice in item response models Journal of Statistical Computation and Simulation 2002 72 3 217 232 (Pubitemid 36844172)
    • (2002) Journal of Statistical Computation and Simulation , vol.72 , Issue.3 , pp. 217-232
    • Sahu, S.K.1
  • 44
    • 0033411905 scopus 로고    scopus 로고
    • A straightforward approach to Markov chain Monte Carlo methods for item response models
    • Patz R. J., Junker B. W., A straightforward approach to Markov chain Monte Carlo methods for item response models Journal of Educational and Behavioral Statistics 1999 24 2 146 178
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , Issue.2 , pp. 146-178
    • Patz, R.J.1    Junker, B.W.2
  • 45
    • 0033261632 scopus 로고    scopus 로고
    • Applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses
    • Patz R. J., Junker B. W., Applications and extensions of MCMC in IRT: multiple item types, missing data, and rated responses Journal of Educational and Behavioral Statistics 1999 24 4 342 366
    • (1999) Journal of Educational and Behavioral Statistics , vol.24 , Issue.4 , pp. 342-366
    • Patz, R.J.1    Junker, B.W.2
  • 46
    • 0036377040 scopus 로고    scopus 로고
    • Recovery of item parameters in the nominal response model: A comparison of marginal maximum likelihood estimation and Markov chain Monte Carlo estimation
    • DOI 10.1177/0146621602026003007
    • Wollack J. A., Bolt D. M., Cohen A. S., Lee Y.-S., Recovery of item parameters in the nominal response model: a comparison of marginal maximum likelihood estimation and Markov chain Monte Carlo estimation Applied Psychological Measurement 2002 26 3 339 352 (Pubitemid 36703727)
    • (2002) Applied Psychological Measurement , vol.26 , Issue.3 , pp. 339-352
    • Wollack, J.A.1    Bolt, D.M.2    Cohen, A.S.3    Lee, Y.-S.4
  • 47
    • 0033239554 scopus 로고    scopus 로고
    • A Bayesian random effects model for testlets
    • Bradlow E. T., Wainer H., Wang X., A Bayesian random effects model for testlets Psychometrika 1999 64 2 153 168
    • (1999) Psychometrika , vol.64 , Issue.2 , pp. 153-168
    • Bradlow, E.T.1    Wainer, H.2    Wang, X.3
  • 48
    • 0035534930 scopus 로고    scopus 로고
    • Bayesian estimation of a multilevel IRT model using Gibbs sampling
    • Fox J.-P., Glas C. A. W., Bayesian estimation of a multilevel IRT model using Gibbs sampling Psychometrika 2001 66 2 271 288
    • (2001) Psychometrika , vol.66 , Issue.2 , pp. 271-288
    • Fox, J.-P.1    Glas, C.A.W.2
  • 50
    • 0000563849 scopus 로고
    • On the relationship between item response theory and factor analysis of discretized variables
    • Takane Y., de Leeuw J., On the relationship between item response theory and factor analysis of discretized variables Psychometrika 1987 52 3 393 408
    • (1987) Psychometrika , vol.52 , Issue.3 , pp. 393-408
    • Takane, Y.1    De Leeuw, J.2
  • 51
    • 0035543525 scopus 로고    scopus 로고
    • MCMC estimation and some model-fit analysis of multidimensional IRT models
    • Béguin A. A., Glas C. A. W., MCMC estimation and some model-fit analysis of multidimensional IRT models Psychometrika 2001 66 4 541 561
    • (2001) Psychometrika , vol.66 , Issue.4 , pp. 541-561
    • Béguin, A.A.1    Glas, C.A.W.2
  • 52
    • 0345149832 scopus 로고    scopus 로고
    • Estimation of Compensatory and Noncompensatory Multidimensional Item Response Models Using Markov Chain Monte Carlo
    • DOI 10.1177/0146621603258350
    • Bolt D. M., Lall V. F., Estimation of compensatory and noncompensatory multidimensional item response models using Markov chain Monte Carlo Applied Psychological Measurement 2003 27 6 395 414 (Pubitemid 37514201)
    • (2003) Applied Psychological Measurement , vol.27 , Issue.6 , pp. 395-414
    • Bolt, D.M.1    Lall, V.F.2
  • 53
    • 3042714392 scopus 로고    scopus 로고
    • Multidimensional analysis of roll call data via Bayesian simulation: Identification, estimation, inference, and model checking
    • Jackman S., Multidimensional analysis of roll call data via Bayesian simulation: identification, estimation, inference, and model checking Political Analysis 2001 9 3 227 241
    • (2001) Political Analysis , vol.9 , Issue.3 , pp. 227-241
    • Jackman, S.1
  • 54
    • 33846998326 scopus 로고    scopus 로고
    • A multidimensional item response modeling approach for improving subscale proficiency estimation and classification
    • Yao L., Boughton K. A., A multidimensional item response modeling approach for improving subscale proficiency estimation and classification Applied Psychological Measurement 2007 31 2 83 105
    • (2007) Applied Psychological Measurement , vol.31 , Issue.2 , pp. 83-105
    • Yao, L.1    Boughton, K.A.2
  • 55
    • 18044381191 scopus 로고    scopus 로고
    • Statistical analysis of nonlinear structural equation models with continuous and polytomous data
    • Lee S.-Y., Zhu H.-T., Statistical analysis of nonlinear structural equation models with continuous and polytomous data British Journal of Mathematical and Statistical Psychology 2000 53 2 209 232
    • (2000) British Journal of Mathematical and Statistical Psychology , vol.53 , Issue.2 , pp. 209-232
    • Lee, S.-Y.1    Zhu, H.-T.2
  • 56
    • 0000592609 scopus 로고    scopus 로고
    • Bayesian sampling-based approach for factor analysis models with continuous and polytomous data
    • Shi J.-Q., Lee S.-Y., Bayesian sampling-based approach for factor analysis models with continuous and polytomous data British Journal of Mathematical and Statistical Psychology 1998 51 2 233 252 (Pubitemid 128445045)
    • (1998) British Journal of Mathematical and Statistical Psychology , vol.51 , Issue.2 , pp. 233-252
    • Shi, J.-Q.1    Lee, S.-Y.2
  • 57
    • 0035514102 scopus 로고    scopus 로고
    • Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations
    • DOI 10.1348/000711001159546
    • Song X.-Y., Lee S.-Y., Bayesian estimation and test for factor analysis model with continuous and polytomous data in several populations British Journal of Mathematical and Statistical Psychology 2001 54 2 237 259 (Pubitemid 33597341)
    • (2001) British Journal of Mathematical and Statistical Psychology , vol.54 , Issue.2 , pp. 237-259
    • Song, X.-Y.1    Lee, S.-Y.2
  • 58
    • 0035998146 scopus 로고    scopus 로고
    • Analysis of structural equation model with ignorable missing continuous and polytomous data
    • Song X.-Y., Lee S.-Y., Analysis of structural equation model with ignorable missing continuous and polytomous data Psychometrika 2002 67 2 261 288
    • (2002) Psychometrika , vol.67 , Issue.2 , pp. 261-288
    • Song, X.-Y.1    Lee, S.-Y.2
  • 59
    • 0032382315 scopus 로고    scopus 로고
    • Constrained latent class analysis using the Gibbs sampler and posterior predictive P-values: Applications to educational testing
    • Hoijtink H., Constrained latent class analysis using the Gibbs sampler and posterior predictive p -values: applications to educational testing Statistica Sinica 1998 8 3 691 711 (Pubitemid 128480615)
    • (1998) Statistica Sinica , vol.8 , Issue.3 , pp. 691-711
    • Hoijtink, H.1
  • 60
    • 12344305155 scopus 로고    scopus 로고
    • Model based clustering of large data sets: Tracing the development of spelling ability
    • Hoijtink H., Notenboom A., Model based clustering of large data sets: tracing the development of spelling ability Psychometrika 2004 69 3 481 498 (Pubitemid 40131590)
    • (2004) Psychometrika , vol.69 , Issue.3 , pp. 481-498
    • Hoijtink, H.1    Notenboom, A.2
  • 62
    • 0037001878 scopus 로고    scopus 로고
    • Bayesian estimation and model selection in ordered latent class models for polytomous items
    • van Onna M. J. H., Bayesian estimation and model selection in ordered latent class models for polytomous items Psychometrika 2002 67 4 519 538 (Pubitemid 36256523)
    • (2002) Psychometrika , vol.67 , Issue.4 , pp. 519-538
    • Van Onna, M.J.H.1
  • 63
    • 69949123555 scopus 로고    scopus 로고
    • Unique characteristics of diagnostic classification models: A comprehensive review of the current state-of-the-art
    • Rupp A. A., Templin J. L., Unique characteristics of diagnostic classification models: a comprehensive review of the current state-of-the-art Measurement: Interdisciplinary Research and Perspectives 2008 6 4 219 262
    • (2008) Measurement: Interdisciplinary Research and Perspectives , vol.6 , Issue.4 , pp. 219-262
    • Rupp, A.A.1    Templin, J.L.2
  • 64
    • 12344281031 scopus 로고    scopus 로고
    • Higher-order latent trait models for cognitive diagnosis
    • de la Torre J., Douglas J. A., Higher-order latent trait models for cognitive diagnosis Psychometrika 2004 69 3 333 353 (Pubitemid 40131582)
    • (2004) Psychometrika , vol.69 , Issue.3 , pp. 333-353
    • De La Torre, J.1    Douglas, J.A.2
  • 67
    • 33748759826 scopus 로고    scopus 로고
    • Measurement of psychological disorders using cognitive diagnosis models
    • DOI 10.1037/1082-989X.11.3.287
    • Templin J. L., Henson R. A., Measurement of psychological disorders using cognitive diagnosis models Psychological Methods 2006 11 3 287 305 (Pubitemid 44414072)
    • (2006) Psychological Methods , vol.11 , Issue.3 , pp. 287-305
    • Templin, J.L.1    Henson, R.A.2
  • 69
    • 67649339573 scopus 로고    scopus 로고
    • Specifying and refining a measurement model for a simulation-based assessment
    • Levy R., Mislevy R. J., Specifying and refining a measurement model for a simulation-based assessment International Journal of Measurement 2004 4 333 369
    • (2004) International Journal of Measurement , vol.4 , pp. 333-369
    • Levy, R.1    Mislevy, R.J.2
  • 70
    • 29744470267 scopus 로고    scopus 로고
    • Feature selection for choosing and assembling measurement models: A building-block-based organization
    • Rupp A. A., Feature selection for choosing and assembling measurement models: a building-block-based organization International Journal of Testing 2002 2 3-4 311 360
    • (2002) International Journal of Testing , vol.2 , Issue.34 , pp. 311-360
    • Rupp, A.A.1
  • 72
    • 21644481766 scopus 로고    scopus 로고
    • A mixture model analysis of differential item functioning
    • DOI 10.1111/j.1745-3984.2005.00007
    • Cohen A. S., Bolt D. M., A mixture model analysis of differential item functioning Journal of Educational Measurement 2005 42 2 133 148 (Pubitemid 40937934)
    • (2005) Journal of Educational Measurement , vol.42 , Issue.2 , pp. 133-148
    • Cohen, A.S.1    Bolt, D.M.2
  • 73
    • 0036408331 scopus 로고    scopus 로고
    • Latent variables in psychology and the social sciences
    • Bollen K. A., Latent variables in psychology and the social sciences Annual Review of Psychology 2002 53 605 634
    • (2002) Annual Review of Psychology , vol.53 , pp. 605-634
    • Bollen, K.A.1
  • 74
    • 0007287414 scopus 로고    scopus 로고
    • Estimation and inference are missing data problems: Unifying social science statistics via Bayesian simulation
    • Jackman S., Estimation and inference are missing data problems: unifying social science statistics via Bayesian simulation Political Analysis 2000 8 307 332
    • (2000) Political Analysis , vol.8 , pp. 307-332
    • Jackman, S.1
  • 75
    • 34948909683 scopus 로고    scopus 로고
    • Covariates of the rating process in hierarchical models for multiple ratings of test items
    • Mariano L. T., Junker B. W., Covariates of the rating process in hierarchical models for multiple ratings of test items Journal of Educational and Behavioral Statistics 2007 32 3 287 314
    • (2007) Journal of Educational and Behavioral Statistics , vol.32 , Issue.3 , pp. 287-314
    • Mariano, L.T.1    Junker, B.W.2
  • 77
    • 0035998840 scopus 로고    scopus 로고
    • Empirical Bayes and item-clustering effects in a latent variable hierarchical model: A case study from the National Assessment of Educational Progress
    • Scott S. L., Ip E. H., Empirical Bayes and item-clustering effects in a latent variable hierarchical model: a case study from the National Assessment of Educational Progress Journal of the American Statistical Association 2002 97 458 409 419
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.458 , pp. 409-419
    • Scott, S.L.1    Ip, E.H.2
  • 78
    • 0010126865 scopus 로고
    • Model-based methods for analysis of data from the 1990 NAEP trial state assessment
    • Washington, DC, USA National Center for Education Statistics
    • Longford N. T., Model-based methods for analysis of data from the 1990 NAEP trial state assessment Research and Development Report 1995 95-696 Washington, DC, USA National Center for Education Statistics
    • (1995) Research and Development Report , Issue.95-696
    • Longford, N.T.1
  • 80
    • 67649375930 scopus 로고    scopus 로고
    • A Bayesian hierarchical model for large-scale educational surveys: An application to the National Assessment of Educational Progress
    • RR-04-38 Princeton, NJ, USA ETS
    • Johnson M. S., Jenkins F., A Bayesian hierarchical model for large-scale educational surveys: an application to the National Assessment of Educational Progress Research Report 2005 RR-04-38 Princeton, NJ, USA ETS
    • (2005) Research Report
    • Johnson, M.S.1    Jenkins, F.2
  • 82
    • 0004105694 scopus 로고
    • 2nd Mooresville, Ind, USA Scientific Software
    • Mislevy R. J., Bock R. D., BILOG 3 1990 2nd Mooresville, Ind, USA Scientific Software
    • (1990) BILOG 3
    • Mislevy, R.J.1    Bock, R.D.2
  • 84
    • 0032390589 scopus 로고    scopus 로고
    • An investigation of the item parameter recovery characteristics of a Gibbs sampling procedure
    • Baker F. B., An investigation of the item parameter recovery characteristics of a Gibbs sampling procedure Applied Psychological Measurement 1998 22 2 153 169
    • (1998) Applied Psychological Measurement , vol.22 , Issue.2 , pp. 153-169
    • Baker, F.B.1
  • 85
    • 28844454343 scopus 로고    scopus 로고
    • High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature
    • DOI 10.1007/s11336-003-1141-x
    • Schilling S., Bock R. D., High-dimensional maximum marginal likelihood item factor analysis by adaptive quadrature Psychometrika 2005 70 3 533 555 (Pubitemid 41771193)
    • (2005) Psychometrika , vol.70 , Issue.3 , pp. 533-555
    • Schilling, S.1    Darrell Bock, R.2
  • 86
    • 0013297364 scopus 로고    scopus 로고
    • Beyond SEM: General latent variable modeling
    • Muthén B. O., Beyond SEM: general latent variable modeling Behaviormetrika 2002 29 1 81 117
    • (2002) Behaviormetrika , vol.29 , Issue.1 , pp. 81-117
    • Muthén, B.O.1
  • 87
    • 10044290370 scopus 로고    scopus 로고
    • Generalized multilevel structural equation modeling
    • Rabe-Hesketh S., Skrondal A., Pickles A., Generalized multilevel structural equation modeling Psychometrika 2004 69 2 167 190 (Pubitemid 39603753)
    • (2004) Psychometrika , vol.69 , Issue.2 , pp. 167-190
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 88
    • 21044449296 scopus 로고    scopus 로고
    • 2nd Berkeley, Calif, USA U.C. Berkeley Division of Biostatistics U.C. Berkeley Division of Biostatistics Working Paper Series, 160
    • Rabe-Hesketh S., Skrondal A., Pickles A., GLLAMM Manual 2004 2nd Berkeley, Calif, USA U.C. Berkeley Division of Biostatistics U.C. Berkeley Division of Biostatistics Working Paper Series, 160
    • (2004) GLLAMM Manual
    • Rabe-Hesketh, S.1    Skrondal, A.2    Pickles, A.3
  • 93
    • 56549087864 scopus 로고    scopus 로고
    • A MATLAB package for Markov chain Monte Carlo with a multi-unidimensional IRT model
    • Sheng Y., A MATLAB package for Markov chain Monte Carlo with a multi-unidimensional IRT model Journal of Statistical Software 2008 28 10 1 20
    • (2008) Journal of Statistical Software , vol.28 , Issue.10 , pp. 1-20
    • Sheng, Y.1
  • 94
    • 46749152614 scopus 로고    scopus 로고
    • Markov Chain Monte Carlo estimation of normal ogive IRT models in MATLAB
    • Sheng Y., Markov Chain Monte Carlo estimation of normal ogive IRT models in MATLAB Journal of Statistical Software 2008 25 8 1 15
    • (2008) Journal of Statistical Software , vol.25 , Issue.8 , pp. 1-15
    • Sheng, Y.1
  • 96
    • 0004161731 scopus 로고    scopus 로고
    • 2nd Chichester, UK John Wiley Sons Wiley Series in Probability and Statistics
    • Congdon P., Bayesian Statistical Modelling 2006 2nd Chichester, UK John Wiley Sons xiv+573 Wiley Series in Probability and Statistics
    • (2006) Bayesian Statistical Modelling , pp. 573
    • Congdon, P.1
  • 99
  • 100
    • 37349019755 scopus 로고    scopus 로고
    • Boa: An R package for MCMC output convergence assessment and posterior inference
    • Smith B. J., boa: an R package for MCMC output convergence assessment and posterior inference Journal of Statistical Software 2007 21 11 1 37
    • (2007) Journal of Statistical Software , vol.21 , Issue.11 , pp. 1-37
    • Smith, B.J.1
  • 101
    • 0347574107 scopus 로고    scopus 로고
    • Estimation and inference via Bayesian simulation: An introduction to Markov chain Monte Carlo
    • Jackman S., Estimation and inference via Bayesian simulation: an introduction to Markov chain Monte Carlo American Journal of Political Science 2000 44 2 375 404
    • (2000) American Journal of Political Science , vol.44 , Issue.2 , pp. 375-404
    • Jackman, S.1
  • 102
    • 36148959043 scopus 로고    scopus 로고
    • Estimating item response theory models using markov chain Monte Carlo methods: An NCME instructional module on
    • Kim J.-S., Bolt D. M., Estimating item response theory models using markov chain Monte Carlo methods: An NCME instructional module on Educational Measurement: Issues and Practice 2007 26 4 38 51
    • (2007) Educational Measurement: Issues and Practice , vol.26 , Issue.4 , pp. 38-51
    • Kim, J.-S.1    Bolt, D.M.2
  • 103
    • 11844261472 scopus 로고    scopus 로고
    • Experiences with markov chain monte carlo convergence assessment in two psychometric examples
    • Sinharay S., Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples Journal of Educational and Behavioral Statistics 2004 29 4 461 488 (Pubitemid 40097369)
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , Issue.4 , pp. 461-488
    • Sinharay, S.1
  • 104
    • 67649353051 scopus 로고    scopus 로고
    • Assessing the fit of item response models
    • Rao C. R. Sinharay S. Amsterdam, The Netherlands Elsevier/North-Holland
    • Swaminathan H., Hambleton R. K., Rogers H. J., Rao C. R., Sinharay S., Assessing the fit of item response models Handbook of Statistics 2007 26 Amsterdam, The Netherlands Elsevier/North-Holland 683 718
    • (2007) Handbook of Statistics , vol.26 , pp. 683-718
    • Swaminathan, H.1    Hambleton, R.K.2    Rogers, H.J.3
  • 105
    • 0037238031 scopus 로고    scopus 로고
    • A comparison of item-fit statistics for the three-parameter logistic model
    • Glas C. A. W., Falcn J. C. S., A comparison of item-fit statistics for the three-parameter logistic model Applied Psychological Measurement 2003 27 2 87 106
    • (2003) Applied Psychological Measurement , vol.27 , Issue.2 , pp. 87-106
    • Glas, C.A.W.1    Falcn, J.C.S.2
  • 106
    • 0000721024 scopus 로고
    • Model modification
    • Srbom D., Model modification Psychometrika 1989 54 3 371 384
    • (1989) Psychometrika , vol.54 , Issue.3 , pp. 371-384
    • Srbom, D.1
  • 107
    • 67650706330 scopus 로고    scopus 로고
    • Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives
    • Hu L., Bentler P. M., Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives Structural Equation Modeling 1999 6 1 1 55
    • (1999) Structural Equation Modeling , vol.6 , Issue.1 , pp. 1-55
    • Hu, L.1    Bentler, P.M.2
  • 108
    • 0642281963 scopus 로고    scopus 로고
    • Local Dependence Indexes for Item Pairs Using Item Response Theory
    • Chen W.-H., Thissen D., Local dependence indexes for item pairs using item response theory Journal of Educational and Behavioral Statistics 1997 22 3 265 289 (Pubitemid 127472138)
    • (1997) Journal of Educational and Behavioral Statistics , vol.22 , Issue.3 , pp. 265-289
    • Chen, W.-H.1    Thissen, D.2
  • 109
    • 25444484077 scopus 로고    scopus 로고
    • Posterior predictive assessment of model fitness via realized discrepancies
    • Gelman A., Meng X.-L., Stern H., Posterior predictive assessment of model fitness via realized discrepancies Statistica Sinica 1996 6 4 733 807 (Pubitemid 126706389)
    • (1996) Statistica Sinica , vol.6 , Issue.4 , pp. 733-807
    • Gelman, A.1    Meng, X.-L.2    Stern, H.3
  • 112
    • 70350053095 scopus 로고    scopus 로고
    • Posterior predictive model checking for multidimensionality in item response theory
    • Levy R., Mislevy R. J., Sinharay S., Posterior predictive model checking for multidimensionality in item response theory Applied Psychological Measurement 2009 33 7 519 537
    • (2009) Applied Psychological Measurement , vol.33 , Issue.7 , pp. 519-537
    • Levy, R.1    Mislevy, R.J.2    Sinharay, S.3
  • 113
    • 36148940569 scopus 로고    scopus 로고
    • Comparing multiunidimensional and unidimensional item response theory models
    • Sheng Y., Wikle C. K., Comparing multiunidimensional and unidimensional item response theory models Educational and Psychological Measurement 2007 67 6 899 919
    • (2007) Educational and Psychological Measurement , vol.67 , Issue.6 , pp. 899-919
    • Sheng, Y.1    Wikle, C.K.2
  • 114
    • 30344469096 scopus 로고    scopus 로고
    • Assessing fit of unidimensional item response theory models using a bayesian approach
    • DOI 10.1111/j.1745-3984.2005.00021.x
    • Sinharay S., Assessing fit of unidimensional item response theory models using a Bayesian approach Journal of Educational Measurement 2005 42 4 375 394 (Pubitemid 43057419)
    • (2005) Journal of Educational Measurement , vol.42 , Issue.4 , pp. 375-394
    • Sinharay, S.1
  • 115
    • 33744933187 scopus 로고    scopus 로고
    • Posterior predictive assessment of item response theory models
    • DOI 10.1177/0146621605285517
    • Sinharay S., Johnson M. S., Stern H. S., Posterior predictive assessment of item response theory models Applied Psychological Measurement 2006 30 4 298 321 (Pubitemid 43847276)
    • (2006) Applied Psychological Measurement , vol.30 , Issue.4 , pp. 298-321
    • Sinharay, S.1    Johnson, M.S.2    Stern, H.S.3
  • 119
    • 49449097260 scopus 로고    scopus 로고
    • Comment: Bayesian checking of the second levels of hierarchical models
    • Gelman A., Comment: Bayesian checking of the second levels of hierarchical models Statistical Science 2007 22 3 349 352
    • (2007) Statistical Science , vol.22 , Issue.3 , pp. 349-352
    • Gelman, A.1
  • 120
    • 41349098477 scopus 로고    scopus 로고
    • Bayesian model assessment using pivotal quantities
    • Johnson V. E., Bayesian model assessment using pivotal quantities Bayesian Analysis 2007 2 4 719 733
    • (2007) Bayesian Analysis , vol.2 , Issue.4 , pp. 719-733
    • Johnson, V.E.1
  • 122
    • 0042360596 scopus 로고    scopus 로고
    • A Bayesian formulation of exploratory data analysis and goodness-of-fit testing
    • Gelman A., A Bayesian formulation of exploratory data analysis and goodness-of-fit testing International Statistical Review 2003 71 2 369 382 (Pubitemid 37052986)
    • (2003) International Statistical Review , vol.71 , Issue.2 , pp. 369-382
    • Gelman, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.