메뉴 건너뛰기




Volumn 22, Issue 2, 2017, Pages 240-261

Improving transparency and replication in Bayesian statistics: The WAMBS-checklist

Author keywords

Bayesian checklist; Bayesian estimation; Convergence; Prior; Sensitivity analysis

Indexed keywords

BAYES THEOREM; CHECKLIST; HUMAN; HUMAN EXPERIMENT; MODEL; QUESTIONNAIRE; STATISTICS; STRESS; STATISTICAL ANALYSIS;

EID: 84951310169     PISSN: 1082989X     EISSN: None     Source Type: Journal    
DOI: 10.1037/met0000065     Document Type: Article
Times cited : (259)

References (97)
  • 1
    • 84892280454 scopus 로고    scopus 로고
    • Bayesian computation with R
    • New York, NY: Springer.
    • Albert, J. (2009). Bayesian computation with R. New York, NY: Springer. http://dx.doi.org/10.1007/978-0-387-92298-0
    • (2009)
    • Albert, J.1
  • 2
    • 67349219753 scopus 로고    scopus 로고
    • Amos (Version 7.0) [Computer program]
    • Chicago, IL: SPSS
    • Arbuckle, J. L. (2006). Amos (Version 7.0) [Computer program]. Chicago, IL: SPSS.
    • (2006)
    • Arbuckle, J.L.1
  • 3
    • 84865304109 scopus 로고    scopus 로고
    • Bayesian analysis using Mplus: Technical implementation
    • Tech. Rep. No. Version 3.
    • Asparouhov, T., & Muthén, B. (2010). Bayesian analysis using Mplus: Technical implementation. Tech. Rep. No. Version 3. https://www .statmodel.com/download/Bayes3.pdf
    • (2010)
    • Asparouhov, T.1    Muthén, B.2
  • 4
    • 84867176040 scopus 로고    scopus 로고
    • The case for objective Bayesian analysis
    • Berger, J. (2006). The case for objective Bayesian analysis. Bayesian Analysis, 3, 385-402.
    • (2006) Bayesian Analysis , vol.3 , pp. 385-402
    • Berger, J.1
  • 5
    • 77956802446 scopus 로고    scopus 로고
    • Bayesian forecasting of immigration to selected European countries by using expert knowledge
    • Bijak, J., & Wisniowski, A. (2010). Bayesian forecasting of immigration to selected European countries by using expert knowledge. Journal of the Royal Statistical Society Series A, 173, 775-796. http://dx.doi.org/10 .1111/j.1467-985X.2009.00635.x
    • (2010) Journal of the Royal Statistical Society Series A , vol.173 , pp. 775-796
    • Bijak, J.1    Wisniowski, A.2
  • 6
    • 84889410130 scopus 로고    scopus 로고
    • Introduction to Bayesian statistics
    • New York, NY: Wiley.
    • Bolstad, W. M. (2007). Introduction to Bayesian statistics. New York, NY: Wiley. http://dx.doi.org/10.1002/9780470181188
    • (2007)
    • Bolstad, W.M.1
  • 7
    • 0043096621 scopus 로고    scopus 로고
    • Convergence assessment techniques for Markov chain Monte Carlo
    • Brooks, S. P., & Roberts, G. O. (1998). Convergence assessment techniques for Markov chain Monte Carlo. Statistics and Computing, 8, 319-335. http://dx.doi.org/10.1023/A:1008820505350
    • (1998) Statistics and Computing , vol.8 , pp. 319-335
    • Brooks, S.P.1    Roberts, G.O.2
  • 8
    • 68649116880 scopus 로고    scopus 로고
    • In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies
    • Brown, L. D. (2008). In-season prediction of batting averages: A field test of empirical Bayes and Bayes methodologies. The Annals of Applied Statistics, 2, 113-152. http://dx.doi.org/10.1214/07-AOAS138
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 113-152
    • Brown, L.D.1
  • 9
    • 4143139214 scopus 로고    scopus 로고
    • MCMC Estimation in MLwiN v2.1
    • Bristol, UK: Centre for Multilevel Modelling, University of Bristol
    • Browne, W. J. (2009). MCMC Estimation in MLwiN v2.1. Bristol, UK: Centre for Multilevel Modelling, University of Bristol.
    • (2009)
    • Browne, W.J.1
  • 10
    • 0142200381 scopus 로고    scopus 로고
    • Performance of empirical Bayes estimators of level-2 random parameters in multilevel analysis: A Monte Carlo study for longitudinal designs
    • Candel, J. J. M., & Winkens, B. (2003). Performance of empirical Bayes estimators of level-2 random parameters in multilevel analysis: A Monte Carlo study for longitudinal designs. Journal of Educational and Behavioral Statistics, 28, 169 -194. http://dx.doi.org/10.3102/ 10769986028002169
    • (2003) Journal of Educational and Behavioral Statistics , vol.28 , pp. 169 -194
    • Candel, J.J.M.1    Winkens, B.2
  • 11
    • 59749104832 scopus 로고    scopus 로고
    • Bayesian methods for data analysis
    • Boca Raton, FL: Chapman and Hall/CRC Press
    • Carlin, B. P., & Louis, T. A. (2009). Bayesian methods for data analysis. Boca Raton, FL: Chapman and Hall/CRC Press.
    • (2009)
    • Carlin, B.P.1    Louis, T.A.2
  • 13
    • 85147609234 scopus 로고    scopus 로고
    • Bayesian ideas and data analysis: An introduction for scientists and statisticians
    • Boca Raton, FL: CRC Press
    • Christensen, R., Johnson, W. O., Branscum, A. J., & Hanson, T. E. (2010). Bayesian ideas and data analysis: An introduction for scientists and statisticians. Boca Raton, FL: CRC Press.
    • (2010)
    • Christensen, R.1    Johnson, W.O.2    Branscum, A.J.3    Hanson, T.E.4
  • 14
    • 84879539198 scopus 로고    scopus 로고
    • Bayesian methods for data-dependent priors (Doctoral Dissertation)
    • Ohio State University, Columbus, OH
    • Darnieder, W. F. (2011). Bayesian methods for data-dependent priors (Doctoral Dissertation). Ohio State University, Columbus, OH.
    • (2011)
    • Darnieder, W.F.1
  • 15
    • 84861637571 scopus 로고    scopus 로고
    • Measurement and structural model class separation in mixture-CFA: ML/EM versus MCMC
    • Depaoli, S. (2012). Measurement and structural model class separation in mixture-CFA: ML/EM versus MCMC. Structural Equation Modeling, 19, 178-203. http://dx.doi.org/10.1080/10705511.2012.659614
    • (2012) Structural Equation Modeling , vol.19 , pp. 178-203
    • Depaoli, S.1
  • 16
    • 84879532581 scopus 로고    scopus 로고
    • Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation
    • Depaoli, S. (2013). Mixture class recovery in GMM under varying degrees of class separation: Frequentist versus Bayesian estimation. Psychological Methods, 18, 186-219. http://dx.doi.org/10.1037/a0031609
    • (2013) Psychological Methods , vol.18 , pp. 186-219
    • Depaoli, S.1
  • 17
    • 84898064791 scopus 로고    scopus 로고
    • The impact of inaccurate "informative" priors for growth parameters in Bayesian Growth Mixture Modeling
    • Depaoli, S. (2014). The impact of inaccurate "informative" priors for growth parameters in Bayesian Growth Mixture Modeling. Structural Equation Modeling, 21, 239-252. http://dx.doi.org/10.1080/10705511 .2014.882686
    • (2014) Structural Equation Modeling , vol.21 , pp. 239-252
    • Depaoli, S.1
  • 18
    • 84925856390 scopus 로고    scopus 로고
    • Linear and nonlinear growth models: Describing a Bayesian perspective
    • Depaoli, S., & Boyajian, J. (2014). Linear and nonlinear growth models: Describing a Bayesian perspective. Journal of Consulting and Clinical Psychology, 82, 784-802. http://dx.doi.org/10.1037/a0035147
    • (2014) Journal of Consulting and Clinical Psychology , vol.82 , pp. 784-802
    • Depaoli, S.1    Boyajian, J.2
  • 19
    • 84930577404 scopus 로고    scopus 로고
    • A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes
    • Depaoli, S., & Clifton, J. (2015). A Bayesian approach to multilevel structural equation modeling with continuous and dichotomous outcomes. Structural Equation Modeling, 22, 327-351. http://dx.doi.org/10 .1080/10705511.2014.937849
    • (2015) Structural Equation Modeling , vol.22 , pp. 327-351
    • Depaoli, S.1    Clifton, J.2
  • 20
    • 84991101408 scopus 로고    scopus 로고
    • Improving transparency and replication in Bayesian statistics: The WAMBS-checklist
    • Psychological Methods
    • Depaoli, S., & van de Schoot, R. (2016). Improving transparency and replication in Bayesian statistics: The WAMBS-checklist. Psychological Methods.
    • (2016)
    • Depaoli, S.1    van de Schoot, R.2
  • 21
    • 84977123320 scopus 로고    scopus 로고
    • Using Bayesian statistics for modeling PTSD through Latent Growth Mixture Modeling: Implementation and discussion
    • Depaoli, S., van de Schoot, R., van Loey, N., & Sijbrandij, M. (2015). Using Bayesian statistics for modeling PTSD through Latent Growth Mixture Modeling: Implementation and discussion. European Journal of Psychotraumatology, 6, 27516. http://dx.doi.org/10.3402/ejpt.v6.27516
    • (2015) European Journal of Psychotraumatology , vol.6 , pp. 27516
    • Depaoli, S.1    van de Schoot, R.2    van Loey, N.3    Sijbrandij, M.4
  • 22
    • 80051815956 scopus 로고    scopus 로고
    • Bayesian versus orthodox statistics: Which side are you on?
    • Dienes, Z. (2011). Bayesian versus orthodox statistics: Which side are you on? Perspectives on Psychological Science, 6, 274-290. http://dx.doi .org/10.1177/1745691611406920
    • (2011) Perspectives on Psychological Science , vol.6 , pp. 274-290
    • Dienes, Z.1
  • 24
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman, A. (2006a). Prior distributions for variance parameters in hierarchical models. Bayesian Analysis, 1, 515-533. http://dx.doi.org/10.1214/ 06-BA117A
    • (2006) Bayesian Analysis , vol.1 , pp. 515-533
    • Gelman, A.1
  • 25
    • 85020265292 scopus 로고    scopus 로고
    • Modeling the group-level covariance matrix for varying-intercept, varying-slope multilevel models: Updated paper by O'Malley and Zaslavsky
    • Gelman, A. (2006b). Modeling the group-level covariance matrix for varying-intercept, varying-slope multilevel models: Updated paper by O'Malley and Zaslavsky. Retrieved from http://andrewgelman.com/ 2006/09/01/modeling_the_gr/
    • (2006)
    • Gelman, A.1
  • 26
    • 0030328027 scopus 로고    scopus 로고
    • Physiological pharmacokinetic analysis using population modeling and informative prior distributions
    • Gelman, A., Bois, F., & Jiang, J. (1996). Physiological pharmacokinetic analysis using population modeling and informative prior distributions. Journal of the American Statistical Association, 91, 1400-1412. http:// dx.doi.org/10.1080/01621459.1996.10476708
    • (1996) Journal of the American Statistical Association , vol.91 , pp. 1400-1412
    • Gelman, A.1    Bois, F.2    Jiang, J.3
  • 27
    • 0004012196 scopus 로고    scopus 로고
    • Bayesian data analysis (2nd ed.)
    • London, UK: Chapman & Hall
    • Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (2004). Bayesian data analysis (2nd ed.). London, UK: Chapman & Hall.
    • (2004)
    • Gelman, A.1    Carlin, J.B.2    Stern, H.S.3    Rubin, D.B.4
  • 28
    • 33845601607 scopus 로고    scopus 로고
    • Data analysis using regression and multilevel/ hierarchical models
    • New York, NY: Cambridge University Press
    • Gelman, A., & Hill, J. (2007). Data analysis using regression and multilevel/ hierarchical models. New York, NY: Cambridge University Press.
    • (2007)
    • Gelman, A.1    Hill, J.2
  • 29
    • 84865371361 scopus 로고    scopus 로고
    • A weakly informative default prior distribution for logistic and other regression models
    • Gelman, A., Jakulin, A., Pittau, M. G., & Su, Y.-S. (2008). A weakly informative default prior distribution for logistic and other regression models. The Annals of Applied Statistics, 2, 1360-1383. http://dx.doi .org/10.1214/08-AOAS191
    • (2008) The Annals of Applied Statistics , vol.2 , pp. 1360-1383
    • Gelman, A.1    Jakulin, A.2    Pittau, M.G.3    Su, Y.-S.4
  • 30
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman, A., & Rubin, D. B. (1992a). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457-472. http://dx.doi .org/10.1214/ss/1177011136
    • (1992) Statistical Science , vol.7 , pp. 457-472
    • Gelman, A.1    Rubin, D.B.2
  • 31
    • 0001032162 scopus 로고
    • A single series from the Gibbs sampler provides a false sense of security
    • In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Oxford, NY: Oxford University Press.
    • Gelman, A., & Rubin, D. B. (1992b). A single series from the Gibbs sampler provides a false sense of security. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 625-631). Oxford, NY: Oxford University Press.
    • (1992) Bayesian statistics , vol.4 , pp. 625-631
    • Gelman, A.1    Rubin, D.B.2
  • 33
    • 0021518209 scopus 로고
    • Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images
    • Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. Pattern Analysis and Machine Intelligence, 6, 721-741.
    • (1984) Pattern Analysis and Machine Intelligence , vol.6 , pp. 721-741
    • Geman, S.1    Geman, D.2
  • 34
    • 0001032163 scopus 로고
    • Evaluating the accuracy of sampling-based approaches to calculating posterior moments
    • In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.) Oxford, UK: Oxford University Press
    • Geweke, J. (1992). Evaluating the accuracy of sampling-based approaches to calculating posterior moments. In J. M. Bernardo, J. O. Berger, A. P. Dawid, & A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 169-193). Oxford, UK: Oxford University Press.
    • (1992) Bayesian statistics , vol.4 , pp. 169-193
    • Geweke, J.1
  • 36
    • 0007833410 scopus 로고    scopus 로고
    • Bayesian methods: A social and behavioral sciences approach
    • Boca Raton, FL: CRC Press
    • Gill, J. (2008). Bayesian methods: A social and behavioral sciences approach. Boca Raton, FL: CRC Press.
    • (2008)
    • Gill, J.1
  • 37
    • 84873406535 scopus 로고    scopus 로고
    • Sensitivity analyses for sparse-data problems-using weakly informative Bayesian priors
    • Hamra, G. B., MacLehose, R. F., & Cole, S. R. (2013). Sensitivity analyses for sparse-data problems-using weakly informative Bayesian priors. Epidemiology, 24, 233-239. http://dx.doi.org/10.1097/EDE .0b013e318280db1d
    • (2013) Epidemiology , vol.24 , pp. 233-239
    • Hamra, G.B.1    MacLehose, R.F.2    Cole, S.R.3
  • 38
    • 0020850136 scopus 로고
    • Simulation run length control in the presence of an initial transient
    • Heidelberger, P., & Welch, P. D. (1983). Simulation run length control in the presence of an initial transient. Operations Research, 31, 1109- 1144. http://dx.doi.org/10.1287/opre.31.6.1109
    • (1983) Operations Research , vol.31 , pp. 1109- 1144
    • Heidelberger, P.1    Welch, P.D.2
  • 39
    • 84889666279 scopus 로고    scopus 로고
    • Bayesian methodology to estimate and update safety performance functions under limited data conditions: A sensitivity analysis
    • Heydari, S., Miranda-Moreno, L. F., Lord, D., & Fu, L. (2014). Bayesian methodology to estimate and update safety performance functions under limited data conditions: A sensitivity analysis. Accident Analysis and Prevention, 64, 41-51. http://dx.doi.org/10.1016/j.aap.2013.11.001
    • (2014) Accident Analysis and Prevention , vol.64 , pp. 41-51
    • Heydari, S.1    Miranda-Moreno, L.F.2    Lord, D.3    Fu, L.4
  • 40
    • 0034263752 scopus 로고    scopus 로고
    • The proof of the pudding: An illustration of the relative strengths of null hypothesis, meta-analysis, and Bayesian analysis
    • Howard, G. S., Maxwell, S. E., & Fleming, K. J. (2000). The proof of the pudding: An illustration of the relative strengths of null hypothesis, meta-analysis, and Bayesian analysis. Psychological Methods, 5, 315- 332. http://dx.doi.org/10.1037/1082-989X.5.3.315
    • (2000) Psychological Methods , vol.5 , pp. 315- 332
    • Howard, G.S.1    Maxwell, S.E.2    Fleming, K.J.3
  • 41
    • 84883641307 scopus 로고    scopus 로고
    • How few countries will do?Comparative survey analysis from a Bayesian perspective
    • Hox, J., van de Schoot, R., & Matthijsse, S. (2012). How few countries will do? Comparative survey analysis from a Bayesian perspective. Survey Research Methods, 6, 87-93.
    • (2012) Survey Research Methods , vol.6 , pp. 87-93
    • Hox, J.1    van de Schoot, R.2    Matthijsse, S.3
  • 42
    • 84946711386 scopus 로고    scopus 로고
    • Bayesian survival analysis
    • New York, NY: Wiley.
    • Ibrahim, J. G., Chen, M. H., & Sinha, D. (2005). Bayesian survival analysis. New York, NY: Wiley. http://dx.doi.org/10.1002/0470011815 .b2a11006
    • (2005)
    • Ibrahim, J.G.1    Chen, M.H.2    Sinha, D.3
  • 43
    • 65549126972 scopus 로고    scopus 로고
    • Bayesian analysis for the social sciences
    • New York, NY: Wiley.
    • Jackman, S. (2009). Bayesian analysis for the social sciences (Vol. 846). New York, NY: Wiley. http://dx.doi.org/10.1002/9780470686621
    • (2009) , vol.846
    • Jackman, S.1
  • 44
    • 0003414592 scopus 로고
    • Theory of probability, 3rd ed
    • New York: Oxford University Press
    • Jeffreys, H. (1961). Theory of probability, 3rd ed. New York: Oxford University Press.
    • (1961)
    • Jeffreys, H.1
  • 45
    • 84885037441 scopus 로고    scopus 로고
    • Uniformly most powerful Bayesian tests
    • Johnson, V. E. (2013). Uniformly most powerful Bayesian tests. Annals of Statistics, 41, 1716-1741. http://dx.doi.org/10.1214/13-AOS1123
    • (2013) Annals of Statistics , vol.41 , pp. 1716-1741
    • Johnson, V.E.1
  • 46
    • 32844456565 scopus 로고    scopus 로고
    • Methodological advances in the analysis of individual growth with relevance to education policy
    • Kaplan, D. (2002). Methodological advances in the analysis of individual growth with relevance to education policy. Peabody Journal of Education, 77, 189-215. http://dx.doi.org/10.1207/S15327930PJE7704_9
    • (2002) Peabody Journal of Education , vol.77 , pp. 189-215
    • Kaplan, D.1
  • 47
    • 84926418781 scopus 로고    scopus 로고
    • Bayesian statistics for the social sciences
    • New York, NY: Guilford Press
    • Kaplan, D. (2014). Bayesian statistics for the social sciences. New York, NY: Guilford Press.
    • (2014)
    • Kaplan, D.1
  • 48
    • 84880720332 scopus 로고    scopus 로고
    • Bayesian structural equation modeling
    • In R. Hoyle (Ed.), New York, NY: Guilford Press.
    • Kaplan, D., & Depaoli, S. (2012). Bayesian structural equation modeling. In R. Hoyle (Ed.), Handbook of structural equation modeling (pp. 650-673). New York, NY: Guilford Press.
    • (2012) Handbook of structural equation modeling , pp. 650-673
    • Kaplan, D.1    Depaoli, S.2
  • 49
    • 85143949056 scopus 로고    scopus 로고
    • Bayesian statistical methods
    • In T. D. Little (Ed.), Oxford, UK: Oxford University Press.
    • Kaplan, D., & Depaoli, S. (2013). Bayesian statistical methods. In T. D. Little (Ed.), Oxford handbook of quantitative methods (pp. 407-437). Oxford, UK: Oxford University Press.
    • (2013) Oxford handbook of quantitative methods , pp. 407-437
    • Kaplan, D.1    Depaoli, S.2
  • 50
    • 36148959043 scopus 로고    scopus 로고
    • Estimating item response theory models using Markov Chain Monte Carlo methods
    • Kim, J. S., & Bolt, D. M. (2007). Estimating item response theory models using Markov Chain Monte Carlo methods. Educational Measurement: Issues and Practice, 26, 38-51. http://dx.doi.org/10.1111/j.1745-3992 .2007.00107.x
    • (2007) Educational Measurement: Issues and Practice , vol.26 , pp. 38-51
    • Kim, J.S.1    Bolt, D.M.2
  • 51
    • 84880956938 scopus 로고    scopus 로고
    • Single and multiple ability estimation in the SEM framework: A noninformative Bayesian estimation approach
    • Kim, S. Y., Suh, Y., Kim, J. S., Albanese, M. A., & Langer, M. M. (2013). Single and multiple ability estimation in the SEM framework: A noninformative Bayesian estimation approach. Multivariate Behavioral Research, 48, 563-591. http://dx.doi.org/10.1080/00273171.2013.802647
    • (2013) Multivariate Behavioral Research , vol.48 , pp. 563-591
    • Kim, S.Y.1    Suh, Y.2    Kim, J.S.3    Albanese, M.A.4    Langer, M.M.5
  • 52
    • 77954032966 scopus 로고    scopus 로고
    • Doing Bayesian analysis
    • Burlington, MA: Academic Press
    • Kruschke, J. K. (2010). Doing Bayesian analysis. Burlington, MA: Academic Press.
    • (2010)
    • Kruschke, J.K.1
  • 53
    • 80051812703 scopus 로고    scopus 로고
    • Introduction to special section on Bayesian data analysis
    • Kruschke, J. K. (2011). Introduction to special section on Bayesian data analysis. Perspectives on Psychological Science, 6, 272-273. http://dx .doi.org/10.1177/1745691611406926
    • (2011) Perspectives on Psychological Science , vol.6 , pp. 272-273
    • Kruschke, J.K.1
  • 54
    • 23244434820 scopus 로고    scopus 로고
    • How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
    • Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., & Jones, D. R. (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401-2428. http://dx.doi.org/10.1002/sim.2112
    • (2005) Statistics in Medicine , vol.24 , pp. 2401-2428
    • Lambert, P.C.1    Sutton, A.J.2    Burton, P.R.3    Abrams, K.R.4    Jones, D.R.5
  • 55
    • 84920841704 scopus 로고    scopus 로고
    • Structural equation modeling: A Bayesian approach
    • West Sussex, UK: Wiley and Sons.
    • Lee, S.-Y. (2007). Structural equation modeling: A Bayesian approach. West Sussex, UK: Wiley and Sons. http://dx.doi.org/10.1002/ 9780470024737
    • (2007)
    • Lee, S.-Y.1
  • 56
    • 84867407667 scopus 로고    scopus 로고
    • On thinning of chains in MCMC
    • Link, W. A., & Eaton, M. J. (2012). On thinning of chains in MCMC. Methods in Ecology and Evolution, 3, 112-115. http://dx.doi.org/10 .1111/j.2041-210X.2011.00131.x
    • (2012) Methods in Ecology and Evolution , vol.3 , pp. 112-115
    • Link, W.A.1    Eaton, M.J.2
  • 57
    • 80051716562 scopus 로고    scopus 로고
    • Confronting prior convictions: On issues of prior sensitivity and likelihood robustness in Bayesian analysis
    • Lopes, H. F., & Tobias, J. L. (2011). Confronting prior convictions: On issues of prior sensitivity and likelihood robustness in Bayesian analysis. Annual Review of Economics, 3, 107-131. http://dx.doi.org/10.1146/ annurev-economics-111809-125134
    • (2011) Annual Review of Economics , vol.3 , pp. 107-131
    • Lopes, H.F.1    Tobias, J.L.2
  • 59
    • 0006407254 scopus 로고    scopus 로고
    • Win- BUGS-A Bayesian modelling framework: Concepts, structure, and extensibility
    • Lunn, D. J., Thomas, A., Best, N., & Spiegelhalter, D. (2000). Win- BUGS-A Bayesian modelling framework: Concepts, structure, and extensibility. Statistics and Computing, 10, 325-337. http://dx.doi.org/ 10.1023/A:1008929526011
    • (2000) Statistics and Computing , vol.10 , pp. 325-337
    • Lunn, D.J.1    Thomas, A.2    Best, N.3    Spiegelhalter, D.4
  • 60
    • 56249115275 scopus 로고    scopus 로고
    • Introduction to applied Bayesian statistics and estimation for social scientists
    • New York, NY: Springer.
    • Lynch, S. M. (2007). Introduction to applied Bayesian statistics and estimation for social scientists (Vol. 2). New York, NY: Springer. http://dx.doi.org/10.1007/978-0-387-71265-9
    • (2007) , vol.2
    • Lynch, S.M.1
  • 63
    • 2942651147 scopus 로고    scopus 로고
    • Sensitivity of Bayes estimators to hyper-parameters with an application to maximum yield from fisheries
    • Millar, R. B. (2004). Sensitivity of Bayes estimators to hyper-parameters with an application to maximum yield from fisheries. Biometrics, 60, 536-542. http://dx.doi.org/10.1111/j.0006-341X.2004.00201.x
    • (2004) Biometrics , vol.60 , pp. 536-542
    • Millar, R.B.1
  • 64
    • 84928229444 scopus 로고    scopus 로고
    • Iteration of partially specified target matrices: Applications in exploratory and Bayesian confirmatory factor analysis
    • Moore, T. M., Reise, S. P., Depaoli, S., & Haviland, M. G. (2015). Iteration of partially specified target matrices: Applications in exploratory and Bayesian confirmatory factor analysis. Multivariate Behavioral Research, 50, 149-161. http://dx.doi.org/10.1080/00273171.2014.973990
    • (2015) Multivariate Behavioral Research , vol.50 , pp. 149-161
    • Moore, T.M.1    Reise, S.P.2    Depaoli, S.3    Haviland, M.G.4
  • 65
    • 84942298440 scopus 로고    scopus 로고
    • Bayes factor: Computation of Bayes factors for common designs
    • R package version 3.0.2.
    • Morey, R., Rouder, J., & Jamil, T. (2015). Bayes factor: Computation of Bayes factors for common designs. R package version 3.0.2. https://cran .r-project.org/web/packages/BayesFactor/BayesFactor.pdf
    • (2015)
    • Morey, R.1    Rouder, J.2    Jamil, T.3
  • 66
    • 84887551125 scopus 로고    scopus 로고
    • A web-based tool for eliciting probability distributions from experts
    • Morris, D. E., Oakley, J. E., & Crowe, J. A. (2014). A web-based tool for eliciting probability distributions from experts. Environmental Modelling & Software, 52, 1-4. http://dx.doi.org/10.1016/j.envsoft.2013.10 .010
    • (2014) Environmental Modelling & Software , vol.52 , pp. 1-4
    • Morris, D.E.1    Oakley, J.E.2    Crowe, J.A.3
  • 67
    • 84857411685 scopus 로고    scopus 로고
    • BIEMS: A Fortran 90 program for calculating Bayes factors for inequality and equality constrained models
    • Mulder, J., Hoijtink, H., & de Leeuw, C. (2012). BIEMS: A Fortran 90 program for calculating Bayes factors for inequality and equality constrained models. Journal of Statistical Software, 46, 1-39. http://dx.doi .org/10.18637/jss.v046.i02
    • (2012) Journal of Statistical Software , vol.46 , pp. 1-39
    • Mulder, J.1    Hoijtink, H.2    de Leeuw, C.3
  • 68
    • 84873047637 scopus 로고    scopus 로고
    • Bayesian structural equation modeling: A more flexible representation of substantive theory
    • Muthén, B., & Asparouhov, T. (2012). Bayesian structural equation modeling: A more flexible representation of substantive theory. Psychological Methods, 17, 313-335. http://dx.doi.org/10.1037/a0026802
    • (2012) Psychological Methods , vol.17 , pp. 313-335
    • Muthén, B.1    Asparouhov, T.2
  • 70
    • 85020265673 scopus 로고    scopus 로고
    • Early childhood longitudinal study: Kindergarten class of 1998-99: Base year public-use data files user's manual (Tech. Rep. No. NCES 2001-029)
    • Washington, DC: U.S. Government Printing Office.
    • NCES. (2001). Early childhood longitudinal study: Kindergarten class of 1998-99: Base year public-use data files user's manual (Tech. Rep. No. NCES 2001-029). Washington, DC: U.S. Government Printing Office.
    • (2001)
  • 71
    • 84889367764 scopus 로고    scopus 로고
    • Bayesian modeling using WinBUGS
    • Hoboken, NJ: Wiley.
    • Ntzoufras, I. (2009). Bayesian modeling using WinBUGS. Hoboken, NJ: Wiley. http://dx.doi.org/10.1002/9780470434567
    • (2009)
    • Ntzoufras, I.1
  • 73
    • 84864383375 scopus 로고    scopus 로고
    • Cluster-level covariance analysis for survey data with structured nonresponse
    • Tech. Rep. No. Cambridge, MA: Department of Health Care Policy, Harvard Medical School.
    • O'Malley, A. J., & Zaslavsky, A. M. (2005). Cluster-level covariance analysis for survey data with structured nonresponse. Tech. Rep. No. Cambridge, MA: Department of Health Care Policy, Harvard Medical School.
    • (2005)
    • O'Malley, A.J.1    Zaslavsky, A.M.2
  • 74
    • 67650521193 scopus 로고    scopus 로고
    • JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling
    • Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using Gibbs sampling. Retrieved from http://www-fis.iarc.fr/ ~martyn/software/jags/
    • (2003)
    • Plummer, M.1
  • 75
    • 0041745823 scopus 로고    scopus 로고
    • Subjective and objective Bayesian statistics: Principles, models, and applications (2nd ed.)
    • New York, NY: Wiley
    • Press, S. J. (2003). Subjective and objective Bayesian statistics: Principles, models, and applications (2nd ed.). New York, NY: Wiley.
    • (2003)
    • Press, S.J.1
  • 76
    • 0000783674 scopus 로고    scopus 로고
    • Hypothesis testing and model selection
    • In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), New York, NY: Chapman & Hall.
    • Raftery, A. E. (1996). Hypothesis testing and model selection. In W. R. Gilks, S. Richardson, & D. J. Spiegelhalter (Eds.), Markov chain Monte Carlo in practice (pp. 163-187). New York, NY: Chapman & Hall.
    • (1996) Markov chain Monte Carlo in practice , pp. 163-187
    • Raftery, A.E.1
  • 77
    • 0000759236 scopus 로고
    • How many iterations in the Gibbs sampler
    • Raftery, A. E., & Lewis, S. (1992). How many iterations in the Gibbs sampler. Bayesian statistics, 4, 763-773.
    • (1992) Bayesian statistics , vol.4 , pp. 763-773
    • Raftery, A.E.1    Lewis, S.2
  • 78
    • 18244378520 scopus 로고    scopus 로고
    • On Bayesian analysis of mixtures with an unknown number of components
    • Richardson, S., & Green, P. J. (1997). On Bayesian analysis of mixtures with an unknown number of components. Journal of the Royal Statistical Society Series A, 59, 731-792. http://dx.doi.org/10.1111/1467-9868 .00095
    • (1997) Journal of the Royal Statistical Society Series A , vol.59 , pp. 731-792
    • Richardson, S.1    Green, P.J.2
  • 79
    • 80053386883 scopus 로고    scopus 로고
    • Incorporation of historical data in the analysis of randomized therapeutic trials
    • Rietbergen, C., Klugkist, I., Janssen, K. J., Moons, K. G., & Hoijtink, H. J. (2011). Incorporation of historical data in the analysis of randomized therapeutic trials. Contemporary Clinical Trials, 32, 848-855. http://dx .doi.org/10.1016/j.cct.2011.06.002
    • (2011) Contemporary Clinical Trials , vol.32 , pp. 848-855
    • Rietbergen, C.1    Klugkist, I.2    Janssen, K.J.3    Moons, K.G.4    Hoijtink, H.J.5
  • 80
    • 34547596912 scopus 로고    scopus 로고
    • Cary, NC: SAS Institute Inc.
    • SAS Institute Inc. (2012-2013). SAS 9 help and documentation, Cary, NC: SAS Institute Inc.
    • (2012) SAS 9 help and documentation
  • 81
    • 85020272452 scopus 로고    scopus 로고
    • A comparison of Wishart prior specifications for variance-covariance matrices in multilevel autoregressive models
    • (in press). Multivariate Behavioral Research.
    • Schuurman, N. K., Grasman, R. P. P. P., & Hamaker, E. L. (in press). A comparison of Wishart prior specifications for variance-covariance matrices in multilevel autoregressive models. Multivariate Behavioral Research.
    • Schuurman, N.K.1    Grasman, R.P.P.P.2    Hamaker, E.L.3
  • 82
    • 84865761131 scopus 로고    scopus 로고
    • Hidden dangers of specifying noninformative priors
    • Seaman, J. W., III, Seaman, J. W., Jr., & Stamey, J. D. (2012). Hidden dangers of specifying noninformative priors. The American Statistician, 66, 77-84. http://dx.doi.org/10.1080/00031305.2012.695938
    • (2012) The American Statistician , vol.66 , pp. 77-84
    • Seaman, J.W.1    Seaman III, J.W.2    Stamey, J.D.3
  • 83
    • 11844261472 scopus 로고    scopus 로고
    • Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples
    • Sinharay, S. (2004). Experiences with Markov chain Monte Carlo convergence assessment in two psychometric examples. Journal of Educational and Behavioral Statistics, 29, 461- 488. http://dx.doi.org/10.3102/ 10769986029004461
    • (2004) Journal of Educational and Behavioral Statistics , vol.29 , pp. 461- 488
    • Sinharay, S.1
  • 84
    • 84879175911 scopus 로고    scopus 로고
    • Multilevel and longitudinal modeling using Stata
    • College Station, TX: Stata Press
    • Skrondal, A., & Rabe-Hesketh, S. (2012). Multilevel and longitudinal modeling using Stata. College Station, TX: Stata Press.
    • (2012)
    • Skrondal, A.1    Rabe-Hesketh, S.2
  • 85
    • 0003660974 scopus 로고    scopus 로고
    • Bayesian Output Analysis program (BOA), version 1.1.5.
    • March 23).
    • Smith, B. J. (2005, March 23). Bayesian Output Analysis program (BOA), version 1.1.5. Retrieved from http://www.public-health.uiowa.edu/boa
    • (2005)
    • Smith, B.J.1
  • 86
    • 85003226669 scopus 로고    scopus 로고
    • STAN Modeling Language Users Guide and Reference Manual, Version 2.2
    • Stan Development Team. (2014). STAN Modeling Language Users Guide and Reference Manual, Version 2.2. http://mc-stan.org/citations/
    • (2014)
  • 87
    • 84899623960 scopus 로고    scopus 로고
    • Stata 13 base reference manual
    • College Station, TX: Stata Press
    • StataCorp. (2013). Stata 13 base reference manual. College Station, TX: Stata Press.
    • (2013)
  • 88
    • 40749130885 scopus 로고    scopus 로고
    • Using response times for item selection in adaptive testing
    • van der Linden, W. J. (2008). Using response times for item selection in adaptive testing. Journal of Educational and Behavioral Statistics, 33, 5-20. http://dx.doi.org/10.3102/1076998607302626
    • (2008) Journal of Educational and Behavioral Statistics , vol.33 , pp. 5-20
    • van der Linden, W.J.1
  • 89
    • 84977106631 scopus 로고    scopus 로고
    • Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors
    • van de Schoot, R., Broere, J. J., Perryck, K. H., Zondervan-Zwijnenburg, M., & van Loey, N. E. (2015). Analyzing small data sets using Bayesian estimation: The case of posttraumatic stress symptoms following mechanical ventilation in burn survivors. European Journal of Psychotraumatology, 6, 25216. http://dx.doi.org/10.3402/ejpt.v6.25216
    • (2015) European Journal of Psychotraumatology , vol.6 , pp. 25216
    • van de Schoot, R.1    Broere, J.J.2    Perryck, K.H.3    Zondervan-Zwijnenburg, M.4    van Loey, N.E.5
  • 91
  • 93
    • 0042346332 scopus 로고    scopus 로고
    • Predictors of chronic posttraumatic stress symptoms following burn injury: Results of a longitudinal study
    • van Loey, N. E. E., Maas, C. J. M., Faber, A. W., & Taal, L. A. (2003). Predictors of chronic posttraumatic stress symptoms following burn injury: Results of a longitudinal study. Journal of Traumatic Stress, 16, 361-369. http://dx.doi.org/10.1023/A:1024465902416
    • (2003) Journal of Traumatic Stress , vol.16 , pp. 361-369
    • van Loey, N.E.E.1    Maas, C.J.M.2    Faber, A.W.3    Taal, L.A.4
  • 94
    • 81855194758 scopus 로고    scopus 로고
    • Choosing priors for constrained analysis of variance: Methods based on training data
    • Van Wesel, F., Hoijtink, H., & Klugkist, I. (2011). Choosing priors for constrained analysis of variance: Methods based on training data. Scandinavian Journal of Statistics, 38, 666-690. http://dx.doi.org/10.1111/j .1467-9469.2010.00719.x
    • (2011) Scandinavian Journal of Statistics , vol.38 , pp. 666-690
    • Van Wesel, F.1    Hoijtink, H.2    Klugkist, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.