-
1
-
-
0001141391
-
On the development of reference priors (with discussion)
-
In: Bernardo J. M., Berger J. O., Dawid A. P., Smith A. F. M., editors Oxford, UK,: Oxford University Press
-
Berger, J. O. & Bernardo, J. M. (1992). On the development of reference priors (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid & A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 35-60). Oxford, UK: Oxford University Press.
-
(1992)
Bayesian statistics
, vol.4
, pp. 35-60
-
-
Berger, J.O.1
Bernardo, J.M.2
-
3
-
-
84898065862
-
Assessing joint distributions with isoprobability contours
-
Paper presented at the meeting of the Society of Multivariate Experimental Psychology, Atlanta, GA, September
-
Budescu, D. V., Abbas, A. E., Marcus, J. & Gu, Y. (2010, September). Assessing joint distributions with isoprobability contours. Paper presented at the meeting of the Society of Multivariate Experimental Psychology, Atlanta, GA.
-
(2010)
-
-
Budescu, D.V.1
Abbas, A.E.2
Marcus, J.3
Gu, Y.4
-
7
-
-
0021518209
-
Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images
-
Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6, 721-741.
-
(1984)
IEEE Transactions on Pattern Analysis and Machine Intelligence
, vol.6
, pp. 721-741
-
-
Geman, S.1
Geman, D.2
-
8
-
-
0002795650
-
Markov chain Monte Carlo maximum likelihood
-
Computing science and statistics: Proceedings of the 23rd Symposium on the Interface (pp. 1-8). Minneapolis, MN: University of Minnesota
-
Geyer, C. J. (1991). Markov chain Monte Carlo maximum likelihood. In Computing science and statistics: Proceedings of the 23rd Symposium on the Interface (pp. 1-8). Minneapolis, MN: University of Minnesota.
-
(1991)
-
-
Geyer, C.J.1
-
9
-
-
0001218443
-
Non-informative priors (with discussion)
-
In: Bernardo J. M., Berger J. O., Dawid A. P., Smith A. F. M., editors Oxford, UK,: University Press
-
Ghosh, J. K. & Mukerjee, R. (1992). Non-informative priors (with discussion). In J. M. Bernardo, J. O. Berger, A. P. Dawid & A. F. M. Smith (Eds.), Bayesian statistics 4 (pp. 195-210). Oxford, UK: University Press.
-
(1992)
Bayesian statistics
, vol.4
, pp. 195-210
-
-
Ghosh, J.K.1
Mukerjee, R.2
-
10
-
-
0002517089
-
Introducing Markov chain Monte Carlo
-
In: Gilks W. R., Richardson S., Spiegelhalter D. J., editors New York, NY,: Chapman & Hall
-
Gilks, W. R., Richardson, S., & Spiegelhalter, D. J. (1996). Introducing Markov chain Monte Carlo. In W. R. Gilks, S. Richardson & D. J. Spiegelhalter (Eds), Markov chain Monte Carlo in practice (pp. 1-19). New York, NY: Chapman & Hall.
-
(1996)
Markov chain Monte Carlo in practice
, pp. 1-19
-
-
Gilks, W.R.1
Richardson, S.2
Spiegelhalter, D.J.3
-
11
-
-
77954444096
-
Nonlinear growth models in Mplus and SAS
-
Grimm, K. A., & Ram, N. (2009). Nonlinear growth models in Mplus and SAS. Structural Equation Modeling, 16, 676-701.
-
(2009)
Structural Equation Modeling
, vol.16
, pp. 676-701
-
-
Grimm, K.A.1
Ram, N.2
-
12
-
-
32844456565
-
Methodological advances in the analysis of individual growth with relevance to education policy
-
Kaplan, D. (2002). Methodological advances in the analysis of individual growth with relevance to education policy. Peabody Journal of Education, 77, 189-215.
-
(2002)
Peabody Journal of Education
, vol.77
, pp. 189-215
-
-
Kaplan, D.1
-
13
-
-
84880720332
-
-
In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 650-673). New York, NY: The Guilford Press
-
Kaplan, D., & Depaoli, S. (2012.). Bayesian structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 650-673). New York, NY: The Guilford Press.
-
(2012)
Bayesian structural equation modeling
-
-
Kaplan, D.1
Depaoli, S.2
-
15
-
-
23244434820
-
How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS
-
Lambert, P. C., Sutton, A. J., Burton, P. R., Abrams, K. R., & Jones, D. R. (2005). How vague is vague? A simulation study of the impact of the use of vague prior distributions in MCMC using WinBUGS. Statistics in Medicine, 24, 2401-2428.
-
(2005)
Statistics in Medicine
, vol.24
, pp. 2401-2428
-
-
Lambert, P.C.1
Sutton, A.J.2
Burton, P.R.3
Abrams, K.R.4
Jones, D.R.5
-
17
-
-
17444413035
-
Investigating population heterogeneity with factor mixture models
-
Lubke, G. H., & Muthén, B. O. (2005). Investigating population heterogeneity with factor mixture models. Psychological Methods, 10, 21-39.
-
(2005)
Psychological Methods
, vol.10
, pp. 21-39
-
-
Lubke, G.H.1
Muthén, B.O.2
-
20
-
-
0032392354
-
Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference?
-
Natarajan, R. & McCulloch, C. E. (1998). Gibbs sampling with diffuse proper priors: A valid approach to data-driven inference? Journal of Computational and Graphical Statistics, 7, 267-277.
-
(1998)
Journal of Computational and Graphical Statistics
, vol.7
, pp. 267-277
-
-
Natarajan, R.1
McCulloch, C.E.2
-
21
-
-
2642573771
-
Probabilistic sensitivity analysis of complex models: A Bayesian approach
-
Oakley, J. E. & O'Hagan, A. (2004). Probabilistic sensitivity analysis of complex models: A Bayesian approach. Journal of the Royal Statistical Society, 66, 751-769.
-
(2004)
Journal of the Royal Statistical Society
, vol.66
, pp. 751-769
-
-
Oakley, J.E.1
O'Hagan, A.2
-
22
-
-
0346856880
-
Eliciting expert beliefs in substantial practical applications
-
O'Hagan, A. (1998). Eliciting expert beliefs in substantial practical applications. The Statistician, 47, 21-35.
-
(1998)
The Statistician
, vol.47
, pp. 21-35
-
-
O'Hagan, A.1
-
24
-
-
77951655116
-
Evaluation of structural equation mixture models: Parameter estimates and correct class assignment
-
Tueller, S., & Lubke, G. (2010). Evaluation of structural equation mixture models: Parameter estimates and correct class assignment. Structural Equation Modeling, 17, 165-192.
-
(2010)
Structural Equation Modeling
, vol.17
, pp. 165-192
-
-
Tueller, S.1
Lubke, G.2
-
25
-
-
34347330128
-
Bayesian analysis of longitudinal data using growth curve models
-
Zhang, Z., Hamagami, F., Wang, L., Nesselroade, J. R. & Grimm, K. (2002). Bayesian analysis of longitudinal data using growth curve models. International Journal of Behavioral Development, 31, 374-383.
-
(2002)
International Journal of Behavioral Development
, vol.31
, pp. 374-383
-
-
Zhang, Z.1
Hamagami, F.2
Wang, L.3
Nesselroade, J.R.4
Grimm, K.5
|