메뉴 건너뛰기




Volumn 3, Issue , 2016, Pages 181-209

Statistical Methods in Integrative Genomics

Author keywords

Genomics; Horizontal data integration; Integrative genomics; Vertical data integration

Indexed keywords


EID: 84973327633     PISSN: 23268298     EISSN: 2326831X     Source Type: Journal    
DOI: 10.1146/annurev-statistics-041715-033506     Document Type: Review
Times cited : (89)

References (114)
  • 2
    • 84862187382 scopus 로고    scopus 로고
    • Bayesian shared spatial-component models to combine and borrow strength across sparse disease surveillance sources
    • Ancelet S, Abellan JJ, Del Rio Vilas VJ, Birch C, Richardson S. 2012. Bayesian shared spatial-component models to combine and borrow strength across sparse disease surveillance sources. Biometr. J. 54:385-404
    • (2012) Biometr. J. , vol.54 , pp. 385-404
    • Ancelet, S.1    Abellan, J.J.2    Del Rio Vilas, V.J.3    Birch, C.4    Richardson, S.5
  • 4
    • 84874397938 scopus 로고    scopus 로고
    • DriverNet: Uncovering the impact of somatic driver mutations on transcriptional networks in cancer
    • Bashashati A, Haffari G, Ding J, Ha G, Lui K, et al. 2012. DriverNet: uncovering the impact of somatic driver mutations on transcriptional networks in cancer. Genome Biol. 13:R124
    • (2012) Genome Biol. , vol.13 , pp. R124
    • Bashashati, A.1    Haffari, G.2    Ding, J.3    Ha, G.4    Lui, K.5
  • 6
    • 84861378533 scopus 로고    scopus 로고
    • Comprehensive literature review and statistical considerations for GWAS meta-analysis
    • Begum F, Ghosh D, Tseng GC, Feingold E. 2012. Comprehensive literature review and statistical considerations for GWAS meta-analysis. Nucleic Acids Res. 40(9):3777-84
    • (2012) Nucleic Acids Res. , vol.40 , Issue.9 , pp. 3777-3784
    • Begum, F.1    Ghosh, D.2    Tseng, G.C.3    Feingold, E.4
  • 8
    • 84879605031 scopus 로고    scopus 로고
    • Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis
    • Bhadra A, Mallick BK. 2013. Joint high-dimensional Bayesian variable and covariance selection with an application to eQTL analysis. Biometrics 69:447-57
    • (2013) Biometrics , vol.69 , pp. 447-457
    • Bhadra, A.1    Mallick, B.K.2
  • 9
    • 84860771128 scopus 로고    scopus 로고
    • A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits
    • Bhattacharjee S, Rajaraman P, Jacobs KB, Wheeler WA, Melin BS, et al. 2012. A subset-based approach improves power and interpretation for the combined analysis of genetic association studies of heterogeneous traits. Am. J. Hum. Genet. 90(5):821-35
    • (2012) Am. J. Hum. Genet. , vol.90 , Issue.5 , pp. 821-835
    • Bhattacharjee, S.1    Rajaraman, P.2    Jacobs, K.B.3    Wheeler, W.A.4    Melin, B.S.5
  • 10
    • 79951533215 scopus 로고    scopus 로고
    • ESS++: A C++ objectedoriented algorithm for Bayesian stochastic search model exploration
    • Bottolo L, Chadeau-Hyam M, Hastie DI, Langley SR, Petretto E, et al. 2011a. ESS++: a C++ objectedoriented algorithm for Bayesian stochastic search model exploration. Bioinformatics 27:587-88
    • (2011) Bioinformatics , vol.27 , pp. 587-588
    • Bottolo, L.1    Chadeau-Hyam, M.2    Hastie, D.I.3    Langley, S.R.4    Petretto, E.5
  • 11
    • 84884626511 scopus 로고    scopus 로고
    • GUESS-ing polygenic associations with multiple phenotypes using a GPU-based evolutionary stochastic search algorithm
    • Bottolo L, Chadeau-Hyam M, Hastie DI, Zeller T, Liquet B, et al. 2013. GUESS-ing polygenic associations with multiple phenotypes using a GPU-based evolutionary stochastic search algorithm. PLoS Genet. 9:e1003657
    • (2013) PLoS Genet. , vol.9 , pp. e1003657
    • Bottolo, L.1    Chadeau-Hyam, M.2    Hastie, D.I.3    Zeller, T.4    Liquet, B.5
  • 12
    • 83455198480 scopus 로고    scopus 로고
    • Bayesian detection of expression quantitative trait loci hot spots
    • Bottolo L, Petretto E, Blankenberg S, Cambien F, Cook SA, et al. 2011b. Bayesian detection of expression quantitative trait loci hot spots. Genetics 189:1449-59
    • (2011) Genetics , vol.189 , pp. 1449-1459
    • Bottolo, L.1    Petretto, E.2    Blankenberg, S.3    Cambien, F.4    Cook, S.A.5
  • 13
    • 79951540621 scopus 로고    scopus 로고
    • Evolutionary stochastic search for Bayesian model exploration
    • Bottolo L, Richardson S. 2010. Evolutionary stochastic search for Bayesian model exploration. Bayesian Anal. 5:583-618
    • (2010) Bayesian Anal. , vol.5 , pp. 583-618
    • Bottolo, L.1    Richardson, S.2
  • 14
    • 0037177625 scopus 로고    scopus 로고
    • Genetic dissection of transcriptional regulation in budding yeast
    • Brem RB, Yvert G, Clinton R, Kruglyak L. 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296:752-55
    • (2002) Science , vol.296 , pp. 752-755
    • Brem, R.B.1    Yvert, G.2    Clinton, R.3    Kruglyak, L.4
  • 15
    • 84895791592 scopus 로고    scopus 로고
    • High-dimensional statistics with a view toward applications in biology
    • Bühlmann P, Kalisch M, MeierL. 2014. High-dimensional statistics with a view toward applications in biology. Annu. Rev. Stat. Appl. 1:255-78
    • (2014) Annu. Rev. Stat. Appl. , vol.1 , pp. 255-278
    • Bühlmann, P.1    Kalisch, M.2    Meier, L.3
  • 16
    • 84878484640 scopus 로고    scopus 로고
    • Inference of gene regulatory networkswith sparse structural equation models exploiting genetic perturbations
    • Cai X, Bazerque JA, GiannakisGB. 2013. Inference of gene regulatory networkswith sparse structural equation models exploiting genetic perturbations. PLoS Comput. Biol. 9:e1003068
    • (2013) PLoS Comput. Biol. , vol.9 , pp. e1003068
    • Cai, X.1    Bazerque, J.A.2    Giannakis, G.B.3
  • 18
    • 84890457668 scopus 로고    scopus 로고
    • Meta-analysismethods for combining multiple expression profiles: Comparisons, statistical characterization and an application guideline
    • Chang L, Lin H, Sibille E, TsengG. 2013. Meta-analysismethods for combining multiple expression profiles: comparisons, statistical characterization and an application guideline. BMC Bioinform. 14:368
    • (2013) BMC Bioinform. , vol.14 , pp. 368
    • Chang, L.1    Lin, H.2    Sibille, E.3    Tseng, G.4
  • 19
    • 42949144555 scopus 로고    scopus 로고
    • Harnessing naturally randomized transcription to infer regulatory relationships among genes
    • Chen LS, Emmert-Streib F, Storey JD, et al. 2007. Harnessing naturally randomized transcription to infer regulatory relationships among genes. Genome Biol. 8:R219
    • (2007) Genome Biol. , vol.8 , pp. R219
    • Chen, L.S.1    Emmert-Streib, F.2    Storey, J.D.3
  • 20
    • 84856535081 scopus 로고    scopus 로고
    • Mutual exclusivity analysis identifies oncogenic network modules
    • Ciriello G, Cerami E, Sander C, Schultz N. 2012. Mutual exclusivity analysis identifies oncogenic network modules. Genome Res. 22:398-406
    • (2012) Genome Res. , vol.22 , pp. 398-406
    • Ciriello, G.1    Cerami, E.2    Sander, C.3    Schultz, N.4
  • 22
    • 84861527388 scopus 로고    scopus 로고
    • The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups
    • Curtis C, Shah SP, Chin SF, Turashvili G, Rueda OM, et al. 2012. The genomic and transcriptomic architecture of 2, 000 breast tumours reveals novel subgroups. Nature 486:346-52
    • (2012) Nature , vol.486 , pp. 346-352
    • Curtis, C.1    Shah, S.P.2    Chin, S.F.3    Turashvili, G.4    Rueda, O.M.5
  • 25
    • 84885647278 scopus 로고    scopus 로고
    • Connecting genomic alterations to cancer biology with proteomics: The NCI clinical proteomic tumor analysis consortium
    • Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, et al. 2013. Connecting genomic alterations to cancer biology with proteomics: the NCI clinical proteomic tumor analysis consortium. Cancer Discov. 3:1108-12
    • (2013) Cancer Discov. , vol.3 , pp. 1108-1112
    • Ellis, M.J.1    Gillette, M.2    Carr, S.A.3    Paulovich, A.G.4    Smith, R.D.5
  • 26
    • 84865790047 scopus 로고    scopus 로고
    • An integrated encyclopedia of DNA elements in the human genome
    • ENCODE Consortium
    • ENCODE Consortium. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature 489:57-74
    • (2012) Nature , vol.489 , pp. 57-74
  • 27
    • 84878020180 scopus 로고    scopus 로고
    • Meta-analysis methods for genome-wide association studies and beyond
    • Evangelou E, Ioannidis JP. 2013. Meta-analysis methods for genome-wide association studies and beyond. Nat. Rev. Genet. 14:379-89
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 379-389
    • Evangelou, E.1    Ioannidis, J.P.2
  • 28
    • 84857467272 scopus 로고    scopus 로고
    • Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies
    • Fusi N, Stegle O, Lawrence ND. 2012. Joint modelling of confounding factors and prominent genetic regulators provides increased accuracy in genetical genomics studies. PLoS Comput. Biol. 8:e1002330
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002330
    • Fusi, N.1    Stegle, O.2    Lawrence, N.D.3
  • 29
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, et al. 1999. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286:531-37
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1    Slonim, D.K.2    Tamayo, P.3    Huard, C.4    Gaasenbeek, M.5
  • 31
    • 79955455061 scopus 로고    scopus 로고
    • A Bayesian framework for inference of the genotype-phenotype map for segregating populations
    • Hageman RS, Leduc MS, Korstanje R, Paigen B, Churchill GA. 2011. A Bayesian framework for inference of the genotype-phenotype map for segregating populations. Genetics 187:1163-70
    • (2011) Genetics , vol.187 , pp. 1163-1170
    • Hageman, R.S.1    Leduc, M.S.2    Korstanje, R.3    Paigen, B.4    Churchill, G.A.5
  • 32
    • 84859246571 scopus 로고    scopus 로고
    • Interpreting meta-analyses of genome-wide association studies
    • Han B, Eskin E. 2012. Interpreting meta-analyses of genome-wide association studies. PLOS Genet. 8(3):e1002555
    • (2012) PLOS Genet. , vol.8 , Issue.3 , pp. e1002555
    • Han, B.1    Eskin, E.2
  • 33
    • 34250747348 scopus 로고    scopus 로고
    • Shotgun stochastic search for large p regression
    • Hans C, Dobra A, West M. 2007. Shotgun stochastic search for large p regression. J. Am. Stat. Assoc. 102:507-16
    • (2007) J. Am. Stat. Assoc. , vol.102 , pp. 507-516
    • Hans, C.1    Dobra, A.2    West, M.3
  • 34
  • 36
    • 33751006151 scopus 로고    scopus 로고
    • RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis
    • Hong F, Breitling R, McEntee CW, Wittner BS, Nemhauser JL, Chory J. 2006. RankProd: A bioconductor package for detecting differentially expressed genes in meta-analysis. Bioinformatics 22:2825-27
    • (2006) Bioinformatics , vol.22 , pp. 2825-2827
    • Hong, F.1    Breitling, R.2    McEntee, C.W.3    Wittner, B.S.4    Nemhauser, J.L.5    Chory, J.6
  • 37
    • 84898045710 scopus 로고    scopus 로고
    • Joint analysis of SNPand gene expression data in genetic association studies of complex diseases
    • HuangYT, VanderWeeleTJ, LinX. 2014. Joint analysis of SNPand gene expression data in genetic association studies of complex diseases. Ann. Appl. Stat. 8:352
    • (2014) Ann. Appl. Stat. , vol.8 , pp. 352
    • Huang, Y.T.1    VanderWeele, T.J.2    Lin, X.3
  • 38
    • 84969835793 scopus 로고    scopus 로고
    • Meta-analytic framework for sparse K-means to identify disease subtypes in multiple transcriptomic studies
    • In press
    • Huo Z, Ding Y, Liu S, Oesterreich S, Tseng GC. 2016. Meta-analytic framework for sparse K-means to identify disease subtypes in multiple transcriptomic studies. J. Am. Stat. Assoc. In press
    • (2016) J. Am. Stat. Assoc.
    • Huo, Z.1    Ding, Y.2    Liu, S.3    Oesterreich, S.4    Tseng, G.C.5
  • 40
    • 22944460748 scopus 로고    scopus 로고
    • Spike and slab variable selection: Frequentist and Bayesian strategies
    • Ishwaran H, Rao JS. 2005. Spike and slab variable selection: frequentist and Bayesian strategies. Ann. Stat. 33:730-73
    • (2005) Ann. Stat. , vol.33 , pp. 730-773
    • Ishwaran, H.1    Rao, J.S.2
  • 42
    • 84855897445 scopus 로고    scopus 로고
    • MetaQC: Objective quality control and inclusion/ exclusion criteria for genomic meta-analysis
    • Kang DD, Sibille E, Kaminski N, Tseng GC. 2012. MetaQC: objective quality control and inclusion/ exclusion criteria for genomic meta-analysis. Nucleic Acids Res. 40:e15
    • (2012) Nucleic Acids Res. , vol.40 , pp. e15
    • Kang, D.D.1    Sibille, E.2    Kaminski, N.3    Tseng, G.C.4
  • 43
    • 33645068841 scopus 로고    scopus 로고
    • Statistical methods for expression quantitative trait loci (eQTL) mapping
    • Kendziorski C, Chen M, Yuan M, Lan H, Attie A. 2006. Statistical methods for expression quantitative trait loci (eQTL) mapping. Biometrics 62:19-27
    • (2006) Biometrics , vol.62 , pp. 19-27
    • Kendziorski, C.1    Chen, M.2    Yuan, M.3    Lan, H.4    Attie, A.5
  • 44
    • 84861123691 scopus 로고    scopus 로고
    • Ten years of pathway analysis: Current approaches and outstanding challenges
    • Khatri P, Sirota M, Butte AJ. 2012. Ten years of pathway analysis: current approaches and outstanding challenges. PLoS Comput. Biol. 8:e1002375
    • (2012) PLoS Comput. Biol. , vol.8 , pp. e1002375
    • Khatri, P.1    Sirota, M.2    Butte, A.J.3
  • 45
    • 85007227258 scopus 로고    scopus 로고
    • MetaKTSP: A meta-analytic top scoring pair method for robust crossstudy validation of omics prediction analysis
    • Kim S, Lin C-W, Tseng GC. 2016. MetaKTSP: A meta-analytic top scoring pair method for robust crossstudy validation of omics prediction analysis. Bioinformatics. doi: 10. 1093/bioinformatics/btw115
    • (2016) Bioinformatics
    • Kim, S.1    Lin, C.-W.2    Tseng, G.C.3
  • 46
    • 84870038047 scopus 로고    scopus 로고
    • Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping
    • Kim S, Xing EP. 2012. Tree-guided group lasso for multi-response regression with structured sparsity, with an application to eQTL mapping. Ann. Appl. Stat. 6:1095-117
    • (2012) Ann. Appl. Stat. , vol.6 , pp. 1095-1117
    • Kim, S.1    Xing, E.P.2
  • 48
    • 0035649641 scopus 로고    scopus 로고
    • A shared component model for detecting joint and selective clustering of two diseases
    • Knorr-Held L, Best NG. 2001. A shared component model for detecting joint and selective clustering of two diseases. J. R. Stat. Soc. Ser. A 164:73-85
    • (2001) J. R. Stat. Soc. Ser. A , vol.164 , pp. 73-85
    • Knorr-Held, L.1    Best, N.G.2
  • 49
    • 84922432978 scopus 로고    scopus 로고
    • The devil in the details of RNA-seq
    • Kratz A, Carninci P. 2014. The devil in the details of RNA-seq. Nat. Biotechnol. 32:882-84
    • (2014) Nat. Biotechnol. , vol.32 , pp. 882-884
    • Kratz, A.1    Carninci, P.2
  • 50
    • 80053414769 scopus 로고    scopus 로고
    • Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis
    • Lee JC, Lyons PA, McKinney EF, Sowerby JM, Carr EJ, et al. 2011. Gene expression profiling of CD8+ T cells predicts prognosis in patients with Crohn disease and ulcerative colitis. J. Clin. Investig. 121:4170
    • (2011) J. Clin. Investig. , vol.121 , pp. 4170
    • Lee, J.C.1    Lyons, P.A.2    McKinney, E.F.3    Sowerby, J.M.4    Carr, E.J.5
  • 52
    • 84860491216 scopus 로고    scopus 로고
    • An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies
    • Li J, Tseng GC. 2011. An adaptively weighted statistic for detecting differential gene expression when combining multiple transcriptomic studies. Ann. Appl. Stat. 5:994-1019
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 994-1019
    • Li, J.1    Tseng, G.C.2
  • 53
    • 84919664716 scopus 로고    scopus 로고
    • Meta-analysis based variable selection for gene expression data
    • Li Q, Wang S, Huang C-C, Yu M, Shao J. 2014. Meta-analysis based variable selection for gene expression data. Biometrics 70:872-80
    • (2014) Biometrics , vol.70 , pp. 872-880
    • Li, Q.1    Wang, S.2    Huang, C.-C.3    Yu, M.4    Shao, J.5
  • 55
    • 84885617335 scopus 로고    scopus 로고
    • Bayesian consensus clustering
    • Lock E, Dunson D. 2013. Bayesian consensus clustering. Bioinformatics 29:2610-16
    • (2013) Bioinformatics , vol.29 , pp. 2610-2616
    • Lock, E.1    Dunson, D.2
  • 56
    • 78651228162 scopus 로고    scopus 로고
    • Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations
    • Logsdon BA, Mezey J. 2010. Gene expression network reconstruction by convex feature selection when incorporating genetic perturbations. PLoS Comput. Biol. 6:e1001014
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1001014
    • Logsdon, B.A.1    Mezey, J.2
  • 57
    • 84878112868 scopus 로고    scopus 로고
    • MiRNAs and cancer: An epigenetics view
    • Malumbres M. 2013. miRNAs and cancer: an epigenetics view. Mol. Aspects Med. 34:863-74
    • (2013) Mol. Aspects Med. , vol.34 , pp. 863-874
    • Malumbres, M.1
  • 58
    • 84903957321 scopus 로고    scopus 로고
    • Assessing multivariate gene-metabolome associations with rare variants using Bayesian reduced rank regression
    • Marttinen P, Pirinen M, Sarin AP, Gillberg J, Kettunen J, et al. 2014. Assessing multivariate gene-metabolome associations with rare variants using Bayesian reduced rank regression. Bioinformatics 30:2026-34
    • (2014) Bioinformatics , vol.30 , pp. 2026-2034
    • Marttinen, P.1    Pirinen, M.2    Sarin, A.P.3    Gillberg, J.4    Kettunen, J.5
  • 59
    • 84975804424 scopus 로고    scopus 로고
    • Mapping copy number variation by population-scale genome sequencing
    • Mills RE, Walter K, Stewart C, Handsaker RE, Chen K, et al. 2011. Mapping copy number variation by population-scale genome sequencing. Nature 470:59-65
    • (2011) Nature , vol.470 , pp. 59-65
    • Mills, R.E.1    Walter, K.2    Stewart, C.3    Handsaker, R.E.4    Chen, K.5
  • 60
    • 84875016233 scopus 로고    scopus 로고
    • Pattern discovery and cancer gene identification in integrated cancer genomic data
    • MoQ, Wang S, Seshan VE, Olshen AB, SchultzN, et al. 2013. Pattern discovery and cancer gene identification in integrated cancer genomic data. PNAS 110:4245-50
    • (2013) PNAS , vol.110 , pp. 4245-4250
    • Mo, Q.1    Wang, S.2    Seshan, V.E.3    Olshen, A.B.4    Schultz, N.5
  • 61
    • 77956638095 scopus 로고    scopus 로고
    • Bayesian profile regression with an application to the national survey of children's health
    • Molitor J, Papathomas M, Jerrett M, Richardson S. 2010. Bayesian profile regression with an application to the national survey of children's health. Biostatistics 11:484-98
    • (2010) Biostatistics , vol.11 , pp. 484-498
    • Molitor, J.1    Papathomas, M.2    Jerrett, M.3    Richardson, S.4
  • 62
    • 77953356238 scopus 로고    scopus 로고
    • A stochastic partitioning method to associate high-dimensional responses and covariates
    • Monni S, Tadesse MG. 2009. A stochastic partitioning method to associate high-dimensional responses and covariates. Bayesian Anal. 4:413-36
    • (2009) Bayesian Anal. , vol.4 , pp. 413-436
    • Monni, S.1    Tadesse, M.G.2
  • 64
    • 49849090353 scopus 로고    scopus 로고
    • Inferring causal phenotype networks from segregating populations
    • Neto EC, Ferrara CT, Attie AD, Yandell BS. 2008. Inferring causal phenotype networks from segregating populations. Genetics 179:1089-100
    • (2008) Genetics , vol.179 , pp. 1089-1100
    • Neto, E.C.1    Ferrara, C.T.2    Attie, A.D.3    Yandell, B.S.4
  • 65
    • 84870284276 scopus 로고    scopus 로고
    • Causal graphical models in systems genetics: A unified framework for joint inference of causal network and genetic architecture for correlated phenotypes
    • Neto EC, Keller MP, Attie AD, Yandell BS. 2010. Causal graphical models in systems genetics: a unified framework for joint inference of causal network and genetic architecture for correlated phenotypes. Ann. Appl. Stat. 4:320-29
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 320-329
    • Neto, E.C.1    Keller, M.P.2    Attie, A.D.3    Yandell, B.S.4
  • 66
    • 84928128526 scopus 로고    scopus 로고
    • Multiset statistics for gene set analysis
    • Newton MA, Wang Z. 2015. Multiset statistics for gene set analysis. Annu. Rev. Stat. Appl. 2:95-111
    • (2015) Annu. Rev. Stat. Appl. , vol.2 , pp. 95-111
    • Newton, M.A.1    Wang, Z.2
  • 68
    • 77952976255 scopus 로고    scopus 로고
    • Incorporating predictor network in penalized regression with application to microarray data
    • Pan W, Xie B, Shen X. 2010. Incorporating predictor network in penalized regression with application to microarray data. Biometrics 66:474-84
    • (2010) Biometrics , vol.66 , pp. 474-484
    • Pan, W.1    Xie, B.2    Shen, X.3
  • 69
    • 84865067602 scopus 로고    scopus 로고
    • Exploring data from genetic association studies using Bayesian variable selection and the Dirichlet process: Application to searching for gene gene patterns
    • Papathomas M, Molitor J, Hoggart C, Hastie D, Richardson S. 2012. Exploring data from genetic association studies using Bayesian variable selection and the Dirichlet process: application to searching for gene gene patterns. Genet. Epidemiol. 36:663-74
    • (2012) Genet. Epidemiol. , vol.36 , pp. 663-674
    • Papathomas, M.1    Molitor, J.2    Hoggart, C.3    Hastie, D.4    Richardson, S.5
  • 70
    • 84858446579 scopus 로고    scopus 로고
    • MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship
    • Pasquinelli AE. 2012. MicroRNAs and their targets: recognition, regulation and an emerging reciprocal relationship. Nat. Rev. Genet. 13:271-82
    • (2012) Nat. Rev. Genet. , vol.13 , pp. 271-282
    • Pasquinelli, A.E.1
  • 71
    • 84884403849 scopus 로고    scopus 로고
    • Discovering causal pathways linking genomic events to transcriptional states using tied diffusion through interacting events (TieDIE)
    • Paull EO, Carlin DE, Niepel M, Sorger PK, Haussler D, Stuart JM. 2013. Discovering causal pathways linking genomic events to transcriptional states using tied diffusion through interacting events (TieDIE). Bioinformatics 29:2757-64
    • (2013) Bioinformatics , vol.29 , pp. 2757-2764
    • Paull, E.O.1    Carlin, D.E.2    Niepel, M.3    Sorger, P.K.4    Haussler, D.5    Stuart, J.M.6
  • 72
    • 84870267097 scopus 로고    scopus 로고
    • Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer
    • Peng J, Zhu J, Bergamaschi A, HanW, Noh D, et al. 2008. Regularized multivariate regression for identifying master predictors with application to integrative genomics study of breast cancer. Ann. Appl. Stat. 4:53-77
    • (2008) Ann. Appl. Stat. , vol.4 , pp. 53-77
    • Peng, J.1    Zhu, J.2    Bergamaschi, A.3    Han, W.4    Noh, D.5
  • 75
    • 0034118493 scopus 로고    scopus 로고
    • Inference of population structure using multilocus genotype data
    • Pritchard JK, Stephens M, Donnelly P. 2000. Inference of population structure using multilocus genotype data. Genetics 155(2):945-59
    • (2000) Genetics , vol.155 , Issue.2 , pp. 945-959
    • Pritchard, J.K.1    Stephens, M.2    Donnelly, P.3
  • 77
    • 84887187386 scopus 로고    scopus 로고
    • Integrative variable selection via Bayesian model uncertainty
    • Quintana M, ContiD. 2013. Integrative variable selection via Bayesian model uncertainty. Stat. Med. 32:4938-53
    • (2013) Stat. Med. , vol.32 , pp. 4938-4953
    • Quintana, M.1    Conti, D.2
  • 78
    • 53149135477 scopus 로고    scopus 로고
    • Key issues in conducting a meta-analysis of gene expression microarray datasets
    • Ramasamy A, Mondry A, Holmes CC, Altman DG. 2008. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Med. 5:e184
    • (2008) PLoS Med. , vol.5 , pp. e184
    • Ramasamy, A.1    Mondry, A.2    Holmes, C.C.3    Altman, D.G.4
  • 79
    • 84901750541 scopus 로고    scopus 로고
    • Some statistical strategies for DAE-seq data analysis: Variable selection and modeling dependencies among observations
    • Rashid N, SunW, Ibrahim JG. 2014. Some statistical strategies for DAE-seq data analysis: Variable selection and modeling dependencies among observations. J. Am. Stat. Assoc. 109:78-94
    • (2014) J. Am. Stat. Assoc. , vol.109 , pp. 78-94
    • Rashid, N.1    Sun, W.2    Ibrahim, J.G.3
  • 82
    • 84861153094 scopus 로고    scopus 로고
    • Matrix eQTL: Ultra fast eQTL analysis via large matrix operations
    • Shabalin AA. 2012. Matrix eQTL: ultra fast eQTL analysis via large matrix operations. Bioinformatics 28:1353-58
    • (2012) Bioinformatics , vol.28 , pp. 1353-1358
    • Shabalin, A.A.1
  • 83
    • 50949084462 scopus 로고    scopus 로고
    • Mendelian randomisation and causal inference in observational epidemiology
    • Sheehan N, Didelez V, Burton P, TobinM. 2008. Mendelian randomisation and causal inference in observational epidemiology. PLoS Med. 5:e177
    • (2008) PLoS Med. , vol.5 , pp. e177
    • Sheehan, N.1    Didelez, V.2    Burton, P.3    Tobin, M.4
  • 84
    • 77952844021 scopus 로고    scopus 로고
    • Meta-analysis for pathway enrichment analysis when combining multiple genomic studies
    • Shen K, Tseng GC. 2010. Meta-analysis for pathway enrichment analysis when combining multiple genomic studies. Bioinformatics 26:1316-23
    • (2010) Bioinformatics , vol.26 , pp. 1316-1323
    • Shen, K.1    Tseng, G.C.2
  • 85
    • 70449331456 scopus 로고    scopus 로고
    • Integrative clustering ofmultiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis
    • Shen R, Olshen AB, LadanyiM. 2009. Integrative clustering ofmultiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis. Bioinformatics 25:2906-12
    • (2009) Bioinformatics , vol.25 , pp. 2906-2912
    • Shen, R.1    Olshen, A.B.2    Ladanyi, M.3
  • 86
    • 34948891618 scopus 로고    scopus 로고
    • Capitalizing on Mendelian randomization to assess the effects of treatments
    • Smith GD. 2007. Capitalizing on Mendelian randomization to assess the effects of treatments. J. R. Soc. Med. 100:432-35
    • (2007) J. R. Soc. Med. , vol.100 , pp. 432-435
    • Smith, G.D.1
  • 87
    • 84903775766 scopus 로고    scopus 로고
    • Hypothesis setting and order statistic for robust genomic meta-analysis
    • Song C, Tseng GC. 2014. Hypothesis setting and order statistic for robust genomic meta-analysis. Ann. Appl. Stat. 8:777-800
    • (2014) Ann. Appl. Stat. , vol.8 , pp. 777-800
    • Song, C.1    Tseng, G.C.2
  • 88
    • 77956276383 scopus 로고    scopus 로고
    • DNase-seq: A high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells
    • pdb. prot5384
    • Song L, Crawford GE. 2010. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010:pdb. prot5384
    • (2010) Cold Spring Harb. Protoc.
    • Song, L.1    Crawford, G.E.2
  • 90
    • 77955505742 scopus 로고    scopus 로고
    • A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies
    • Stegle O, Parts L, Durbin R, Winn J. 2010. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput. Biol. 6:e1000770
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000770
    • Stegle, O.1    Parts, L.2    Durbin, R.3    Winn, J.4
  • 91
    • 84861734626 scopus 로고    scopus 로고
    • Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses
    • Stegle O, Parts L, Piipari M, Winn J, Durbin R. 2012. Using probabilistic estimation of expression residuals (PEER) to obtain increased power and interpretability of gene expression analyses. Nat. Protoc. 7:500-7
    • (2012) Nat. Protoc. , vol.7 , pp. 500-507
    • Stegle, O.1    Parts, L.2    Piipari, M.3    Winn, J.4    Durbin, R.5
  • 92
    • 80053590625 scopus 로고    scopus 로고
    • Incorporating biological information into linear models: A Bayesian approach to the selection of pathways and genes
    • Stingo FC, Chen YA, Tadesse MG, Vannucci M. 2011. Incorporating biological information into linear models: a Bayesian approach to the selection of pathways and genes. Ann. Appl. Stat. 5:1978-2002
    • (2011) Ann. Appl. Stat. , vol.5 , pp. 1978-2002
    • Stingo, F.C.1    Chen, Y.A.2    Tadesse, M.G.3    Vannucci, M.4
  • 93
    • 80054851243 scopus 로고    scopus 로고
    • A Bayesian graphical modeling approach to microRNA regulatory network inference
    • Stingo FC, Chen YA, Vannucci M, Barrier M, Mirkes PE. 2010. A Bayesian graphical modeling approach to microRNA regulatory network inference. Ann. Appl. Stat. 4:2024-28
    • (2010) Ann. Appl. Stat. , vol.4 , pp. 2024-2028
    • Stingo, F.C.1    Chen, Y.A.2    Vannucci, M.3    Barrier, M.4    Mirkes, P.E.5
  • 95
    • 84856753476 scopus 로고    scopus 로고
    • A statistical framework for eQTL mapping using RNA-seq data
    • SunW. 2012. A statistical framework for eQTL mapping using RNA-seq data. Biometrics 68:1-11
    • (2012) Biometrics , vol.68 , pp. 1-11
    • Sun, W.1
  • 96
    • 84877032773 scopus 로고    scopus 로고
    • EQTL mapping using RNA-seq data
    • SunW, Hu Y. 2013. eQTL mapping using RNA-seq data. Stat. Biosci. 5(1):198-219
    • (2013) Stat. Biosci. , vol.5 , Issue.1 , pp. 198-219
    • Sun, W.1    Hu, Y.2
  • 97
    • 70449418416 scopus 로고    scopus 로고
    • Integrated study of copy number states and genotype calls using high-density SNP arrays
    • Sun W, Wright FA, Tang Z, Nordgard SH, Van Loo P, et al. 2009. Integrated study of copy number states and genotype calls using high-density SNP arrays. Nucleic Acids Res. 37:5365-77
    • (2009) Nucleic Acids Res. , vol.37 , pp. 5365-5377
    • Sun, W.1    Wright, F.A.2    Tang, Z.3    Nordgard, S.H.4    Van Loo, P.5
  • 98
    • 34548711825 scopus 로고    scopus 로고
    • Detection of eQTL modules mediated by activity levels of transcription factors
    • SunW, Yu T, Li KC. 2007. Detection of eQTL modules mediated by activity levels of transcription factors. Bioinformatics 23:2290-97
    • (2007) Bioinformatics , vol.23 , pp. 2290-2297
    • Sun, W.1    Yu, T.2    Li, K.C.3
  • 99
    • 84867537553 scopus 로고    scopus 로고
    • CellNOptR: A flexible toolkit to train protein signaling networks to data using multiple logic formalisms
    • Terfve C, Cokelaer T, Henriques D, MacNamara A, Goncalves E, et al. 2012. CellNOptR: a flexible toolkit to train protein signaling networks to data using multiple logic formalisms. BMC Syst. Biol. 6:133
    • (2012) BMC Syst. Biol. , vol.6 , pp. 133
    • Terfve, C.1    Cokelaer, T.2    Henriques, D.3    MacNamara, A.4    Goncalves, E.5
  • 100
    • 79955771434 scopus 로고    scopus 로고
    • Themeta-analysis of genome-wide association studies
    • Thompson JR, Attia J, Minelli C. 2011. Themeta-analysis of genome-wide association studies. Brief. Bioinform. 12:259-69
    • (2011) Brief. Bioinform. , vol.12 , pp. 259-269
    • Thompson, J.R.1    Attia, J.2    Minelli, C.3
  • 101
    • 84861414639 scopus 로고    scopus 로고
    • Comprehensive literature review and statistical considerations for microarray meta-analysis
    • Tseng GC, Ghosh D, Feingold E. 2012. Comprehensive literature review and statistical considerations for microarray meta-analysis. Nucleic Acids Res. 40:3785-99
    • (2012) Nucleic Acids Res. , vol.40 , pp. 3785-3799
    • Tseng, G.C.1    Ghosh, D.2    Feingold, E.3
  • 104
    • 79952389826 scopus 로고    scopus 로고
    • Algorithms for detecting significantly mutated pathways in cancer
    • Vandin F, Upfal E, Raphael BJ. 2011. Algorithms for detecting significantly mutated pathways in cancer. J. Comput. Biol. 18:507-22
    • (2011) J. Comput. Biol. , vol.18 , pp. 507-522
    • Vandin, F.1    Upfal, E.2    Raphael, B.J.3
  • 105
    • 77954195272 scopus 로고    scopus 로고
    • Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM
    • Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, et al. 2010. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 26:i237-45
    • (2010) Bioinformatics , vol.26 , pp. i237-i245
    • Vaske, C.J.1    Benz, S.C.2    Sanborn, J.Z.3    Earl, D.4    Szeto, C.5
  • 106
    • 35948984173 scopus 로고    scopus 로고
    • PennCNV: An integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data
    • Wang K, Li M, Hadley D, Liu R, Glessner J, et al. 2007. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 17:1665-74
    • (2007) Genome Res. , vol.17 , pp. 1665-1674
    • Wang, K.1    Li, M.2    Hadley, D.3    Liu, R.4    Glessner, J.5
  • 107
    • 84877889897 scopus 로고    scopus 로고
    • Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies
    • Wang X, Chua HX, Chen P, Ong RTH, Sim X, et al. 2013. Comparing methods for performing trans-ethnic meta-analysis of genome-wide association studies. Hum. Mol. Genet. 22:2303-11
    • (2013) Hum. Mol. Genet. , vol.22 , pp. 2303-2311
    • Wang, X.1    Chua, H.X.2    Chen, P.3    Ong, R.T.H.4    Sim, X.5
  • 109
    • 84856557856 scopus 로고    scopus 로고
    • Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets
    • Xiong Q, Ancona N, Hauser ER, Mukherjee S, Furey TS. 2012. Integrating genetic and gene expression evidence into genome-wide association analysis of gene sets. Genome Res. 22:386-97
    • (2012) Genome Res. , vol.22 , pp. 386-397
    • Xiong, Q.1    Ancona, N.2    Hauser, E.R.3    Mukherjee, S.4    Furey, T.S.5
  • 110
    • 84885673911 scopus 로고    scopus 로고
    • Inferring tumour purity and stromal and immune cell admixture from expression data
    • Yoshihara K, Shahmoradgoli M, Martnez E, Vegesna R, Kim H, et al. 2013. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 4:2612
    • (2013) Nat. Commun. , vol.4 , pp. 2612
    • Yoshihara, K.1    Shahmoradgoli, M.2    Martnez, E.3    Vegesna, R.4    Kim, H.5
  • 111
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan M, Lin Y. 2006. Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68:49-67
    • (2006) J. R. Stat. Soc. Ser. B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 112
    • 80055083654 scopus 로고    scopus 로고
    • Patient-specific data fusion defines prognostic cancer subtypes
    • Yuan Y, Savage RS, Markowetz F. 2011. Patient-specific data fusion defines prognostic cancer subtypes. PLoS Comput. Biol. 7:e1002227
    • (2011) PLoS Comput. Biol. , vol.7 , pp. e1002227
    • Yuan, Y.1    Savage, R.S.2    Markowetz, F.3
  • 113
    • 76749132132 scopus 로고    scopus 로고
    • A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules
    • ZhangW, Zhu J, Schadt EE, Liu JS. 2010. A Bayesian partition method for detecting pleiotropic and epistatic eQTL modules. PLoS Comput. Biol. 6:e1000642
    • (2010) PLoS Comput. Biol. , vol.6 , pp. e1000642
    • Zhang, W.1    Zhu, J.2    Schadt, E.E.3    Liu, J.S.4
  • 114
    • 84924551236 scopus 로고    scopus 로고
    • MethylPurify: Tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes
    • Zheng X, Zhao Q, Wu HJ, Li W, Wang H, et al. 2014. MethylPurify: tumor purity deconvolution and differential methylation detection from single tumor DNA methylomes. Genome Biol. 15:1-13
    • (2014) Genome Biol. , vol.15 , pp. 1-13
    • Zheng, X.1    Zhao, Q.2    Wu, H.J.3    Li, W.4    Wang, H.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.