메뉴 건너뛰기




Volumn 66, Issue 2, 2010, Pages 474-484

Incorporating predictor network in penalized regression with application to microarray data

Author keywords

Elastic net; Generalized boosted Lasso; L1 penalization; Laplacian; Lasso; Microarray gene expression; Penalized likelihood

Indexed keywords

GENE EXPRESSION; SAMPLING;

EID: 77952976255     PISSN: 0006341X     EISSN: 15410420     Source Type: Journal    
DOI: 10.1111/j.1541-0420.2009.01296.x     Document Type: Article
Times cited : (93)

References (24)
  • 2
    • 39849102639 scopus 로고    scopus 로고
    • Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR
    • Bondell, H. D. and Reich, B. J. (2008). Simultaneous regression shrinkage, variable selection, and supervised clustering of predictors with OSCAR. Biometrics 64, 115 123.
    • (2008) Biometrics , vol.64 , pp. 115-123
    • Bondell, H.D.1    Reich, B.J.2
  • 5
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. Journal of the American Statistical Association 96, 1348 1360.
    • (2001) Journal of the American Statistical Association , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 7
    • 0141767040 scopus 로고    scopus 로고
    • Proper multivariate conditional autoregressive models for spatial data analysis
    • Gelfand, A. E. and Vounatsou, P. (2003). Proper multivariate conditional autoregressive models for spatial data analysis. Biostatistics 4, 11 25.
    • (2003) Biostatistics , vol.4 , pp. 11-25
    • Gelfand, A.E.1    Vounatsou, P.2
  • 8
    • 84942484786 scopus 로고
    • Ridge regression: Biased estimation for nonorthogonal problems
    • Hoerl, A. E. and Kennard, R. W. (1970). Ridge regression: Biased estimation for nonorthogonal problems. Technometrics 12, 55 67.
    • (1970) Technometrics , vol.12 , pp. 55-67
    • Hoerl, A.E.1    Kennard, R.W.2
  • 9
    • 33751208636 scopus 로고    scopus 로고
    • Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target
    • Horvath, S., Zhang, B., Carlson, et al (2006). Analysis of oncogenic signaling networks in glioblastoma identifies ASPM as a molecular target. Proceedings of the National Academy of Sciences USA 103, 17402 17407.
    • (2006) Proceedings of the National Academy of Sciences USA , vol.103 , pp. 17402-17407
    • Horvath, S.1    Zhang, B.2    Carlson3
  • 11
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto encyclopedia of genes and genomes
    • Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research 28, 27 30.
    • (2000) Nucleic Acids Research , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 13
    • 42649140560 scopus 로고    scopus 로고
    • Network-constrained regularization and variable selection for analysis of genomic data
    • Li, C. and Li, H. (2008). Network-constrained regularization and variable selection for analysis of genomic data. Bioinformatics 24, 1175 1182.
    • (2008) Bioinformatics , vol.24 , pp. 1175-1182
    • Li, C.1    Li, H.2
  • 16
    • 1642332084 scopus 로고    scopus 로고
    • Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation
    • Seoane, J., Le, H. V., Shen, L., Anderson, S. A., and Massagui, J. (2004). Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell, 117, 211 223.
    • (2004) Cell , vol.117 , pp. 211-223
    • Seoane, J.1    Le, H.V.2    Shen, L.3    Anderson, S.A.4    Massagui, J.5
  • 18
    • 34547844074 scopus 로고    scopus 로고
    • A Markov random field model for network-based analysis of genomic data
    • Wei, Z. and Li, H. (2007). A Markov random field model for network-based analysis of genomic data. Bioinformatics 23, 1537 1544.
    • (2007) Bioinformatics , vol.23 , pp. 1537-1544
    • Wei, Z.1    Li, H.2
  • 19
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society, Series B 68, 49 67.
    • (2006) Journal of the Royal Statistical Society, Series B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 21
    • 34447335946 scopus 로고    scopus 로고
    • Grouped and hierarchical model selection through composite absolute penalties
    • To appear in
    • Zhao, P., Rocha, G., and Yu, B. (2006). Grouped and hierarchical model selection through composite absolute penalties. To appear in Annals of Statistics.
    • (2006) Annals of Statistics.
    • Zhao, P.1    Rocha, G.2    Yu, B.3
  • 22
    • 15944363312 scopus 로고    scopus 로고
    • Classification of gene microarrays by penalized logistic regression
    • Zhu, J. and Hastie, T. (2004). Classification of gene microarrays by penalized logistic regression. Biostatistics 5, 427 443.
    • (2004) Biostatistics , vol.5 , pp. 427-443
    • Zhu, J.1    Hastie, T.2
  • 23
    • 60849121073 scopus 로고    scopus 로고
    • Network-based support vector machine for classification of microarray samples
    • Zhu, Y., Shen, X., and Pan, W. (2009). Network-based support vector machine for classification of microarray samples. BMC Bioinformatics 10 (Suppl 1) S21.
    • (2009) BMC Bioinformatics , vol.10 , Issue.SUPPL. 1 , pp. 21
    • Zhu, Y.1    Shen, X.2    Pan, W.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.