메뉴 건너뛰기




Volumn 36, Issue 6, 2012, Pages 663-674

Exploring Data From Genetic Association Studies Using Bayesian Variable Selection and the Dirichlet Process: Application to Searching for Gene × Gene Patterns

Author keywords

Clustering; Covariate profiles; Profile regression

Indexed keywords

ARTICLE; BAYESIAN LEARNING; GENE CLUSTER; GENETIC ASSOCIATION; GENETIC RISK; HETEROZYGOSITY; HOMOZYGOSITY; LUNG CANCER; MATHEMATICAL MODEL; PHENOTYPE; SIMULATION; SINGLE NUCLEOTIDE POLYMORPHISM;

EID: 84865067602     PISSN: 07410395     EISSN: 10982272     Source Type: Journal    
DOI: 10.1002/gepi.21661     Document Type: Article
Times cited : (41)

References (43)
  • 2
    • 18444417980 scopus 로고    scopus 로고
    • MDR and PRP: a comparison of methods for high-order genotype-phenotype associations
    • Bastone L, Reilly M, Rader DJ, Foulkes AS. 2004. MDR and PRP: a comparison of methods for high-order genotype-phenotype associations. Hum Hered 58: 82-92.
    • (2004) Hum Hered , vol.58 , pp. 82-92
    • Bastone, L.1    Reilly, M.2    Rader, D.J.3    Foulkes, A.S.4
  • 3
    • 66249124310 scopus 로고    scopus 로고
    • Bayesian semiparametric joint models for functional predictors
    • Bigelow LJ, Dunson DB. 2009. Bayesian semiparametric joint models for functional predictors. J Am Stat Assoc 104: 26-36.
    • (2009) J Am Stat Assoc , vol.104 , pp. 26-36
    • Bigelow, L.J.1    Dunson, D.B.2
  • 4
    • 78650128077 scopus 로고    scopus 로고
    • Discovering influencial variables: a method of partitions
    • Chernoff H, Lo SH, Zheng T. 2009. Discovering influencial variables: a method of partitions. Ann Appl Stat 3: 1335-1369.
    • (2009) Ann Appl Stat , vol.3 , pp. 1335-1369
    • Chernoff, H.1    Lo, S.H.2    Zheng, T.3
  • 5
    • 74049106134 scopus 로고    scopus 로고
    • Nonparametric Bayes conditional distribution modelling with variable selection
    • Chung Y, Dunson DB. 2009. Nonparametric Bayes conditional distribution modelling with variable selection. J Am Stat Assoc 104: 1646-1660.
    • (2009) J Am Stat Assoc , vol.104 , pp. 1646-1660
    • Chung, Y.1    Dunson, D.B.2
  • 6
    • 55949093291 scopus 로고    scopus 로고
    • Simultaneous inference for multiple testing and clustering via a Dirichlet process mixture model
    • Dahl DB, Qianxing M, Vannucci M. 2008. Simultaneous inference for multiple testing and clustering via a Dirichlet process mixture model. Stat Model 8: 23-39.
    • (2008) Stat Model , vol.8 , pp. 23-39
    • Dahl, D.B.1    Qianxing, M.2    Vannucci, M.3
  • 7
    • 34250746325 scopus 로고    scopus 로고
    • Multiple hypothesis testing by clustering treatment effects
    • Dahl DB, Newton MA. 2007. Multiple hypothesis testing by clustering treatment effects. J Am Stat Assoc 102: 517-526.
    • (2007) J Am Stat Assoc , vol.102 , pp. 517-526
    • Dahl, D.B.1    Newton, M.A.2
  • 8
    • 84872660520 scopus 로고    scopus 로고
    • BGX (Bayesian Gene eXpression web site)
    • Dirichlet Process Bayesian Clustering (DiPBaC). . Available from: Accessed on June 28, 2012.
    • Dirichlet Process Bayesian Clustering (DiPBaC). 2012. BGX (Bayesian Gene eXpression web site). Available from: http://www.bgx.org.uk/software/DiPBaC_Matlab.zip. Accessed on June 28, 2012.
    • (2012)
  • 9
    • 84950937290 scopus 로고
    • Bayesian density estimation and inference using mixtures
    • Escobar M, West M. 1995. Bayesian density estimation and inference using mixtures. J Am Stat Assoc 90: 577-588.
    • (1995) J Am Stat Assoc , vol.90 , pp. 577-588
    • Escobar, M.1    West, M.2
  • 10
    • 0001120413 scopus 로고
    • A semiparametric Bayesian analysis of some non-parametric problems
    • Ferguson TS. 1973. A semiparametric Bayesian analysis of some non-parametric problems. Ann Stat 1: 209-230.
    • (1973) Ann Stat , vol.1 , pp. 209-230
    • Ferguson, T.S.1
  • 11
    • 0035531242 scopus 로고    scopus 로고
    • Modelling heterogeneity with and without the Dirichlet process
    • Green PJ, Richardson S. 2001. Modelling heterogeneity with and without the Dirichlet process. Scand J Stat 28: 355-375.
    • (2001) Scand J Stat , vol.28 , pp. 355-375
    • Green, P.J.1    Richardson, S.2
  • 12
    • 78650115977 scopus 로고    scopus 로고
    • A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility
    • Gui J, Andrew AS, Andrews P, Nelson HM, Kelsey KT, Karagas MR, Moore JH. 2010. A robust multifactor dimensionality reduction method for detecting gene-gene interactions with application to the genetic analysis of bladder cancer susceptibility. Ann Hum Genet 75: 20-28.
    • (2010) Ann Hum Genet , vol.75 , pp. 20-28
    • Gui, J.1    Andrew, A.S.2    Andrews, P.3    Nelson, H.M.4    Kelsey, K.T.5    Karagas, M.R.6    Moore, J.H.7
  • 14
    • 34249066206 scopus 로고    scopus 로고
    • Inference of population structure under a Dirichlet process model
    • Huelsenbeck JP, Andolfatto P. 2007. Inference of population structure under a Dirichlet process model. Genetics 175: 1787-1802.
    • (2007) Genetics , vol.175 , pp. 1787-1802
    • Huelsenbeck, J.P.1    Andolfatto, P.2
  • 15
    • 1842816362 scopus 로고    scopus 로고
    • Gibbs sampling methods for stick-breaking priors
    • Ishwaran H, James L. 2001. Gibbs sampling methods for stick-breaking priors. J Am Stat Assoc 96: 161-173.
    • (2001) J Am Stat Assoc , vol.96 , pp. 161-173
    • Ishwaran, H.1    James, L.2
  • 16
    • 1842486852 scopus 로고    scopus 로고
    • A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model
    • Jain S, Neal R. 2004. A split-merge Markov chain Monte Carlo procedure for the Dirichlet process mixture model. J Comput Graph Stat 13: 158-182.
    • (2004) J Comput Graph Stat , vol.13 , pp. 158-182
    • Jain, S.1    Neal, R.2
  • 17
    • 44649182304 scopus 로고    scopus 로고
    • Splitting and merging components of a nonconjugate Dirichlet process mixture model
    • Jain S, Neal R. 2007. Splitting and merging components of a nonconjugate Dirichlet process mixture model. Bayesian Anal 2: 445-472.
    • (2007) Bayesian Anal , vol.2 , pp. 445-472
    • Jain, S.1    Neal, R.2
  • 18
    • 33845734547 scopus 로고    scopus 로고
    • Variable selection in clustering via Dirichlet process mixture models
    • Kim S, Tadesse M, Vannuci M. 2006. Variable selection in clustering via Dirichlet process mixture models. Biometrika 93: 877-893.
    • (2006) Biometrika , vol.93 , pp. 877-893
    • Kim, S.1    Tadesse, M.2    Vannuci, M.3
  • 19
    • 79956309875 scopus 로고    scopus 로고
    • Spiked Dirichlet process prior for Bayesian multiple hypothesis testing in random effects models
    • Kim S, Dahl DB, Vannucci M. 2009. Spiked Dirichlet process prior for Bayesian multiple hypothesis testing in random effects models. Bayesian Anal 4: 707-732.
    • (2009) Bayesian Anal , vol.4 , pp. 707-732
    • Kim, S.1    Dahl, D.B.2    Vannucci, M.3
  • 20
    • 0032221058 scopus 로고    scopus 로고
    • Estimating mixture of Dirichlet process models
    • MacEachern SN, Muller P. 1998. Estimating mixture of Dirichlet process models. J Comput Graph Stat 7: 223-238.
    • (1998) J Comput Graph Stat , vol.7 , pp. 223-238
    • MacEachern, S.N.1    Muller, P.2
  • 21
    • 77956638095 scopus 로고    scopus 로고
    • Bayesian profile regression with an application to the National Survey of Children's Health
    • Molitor J, Papathomas M, Jerrett M, Richardson S. 2010. Bayesian profile regression with an application to the National Survey of Children's Health. Biostatistics 11: 484-498.
    • (2010) Biostatistics , vol.11 , pp. 484-498
    • Molitor, J.1    Papathomas, M.2    Jerrett, M.3    Richardson, S.4
  • 22
    • 77958469463 scopus 로고    scopus 로고
    • Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction
    • Moore JH. 2010. Detecting, characterizing, and interpreting nonlinear gene-gene interactions using multifactor dimensionality reduction. Adv Genet 72: 101-116.
    • (2010) Adv Genet , vol.72 , pp. 101-116
    • Moore, J.H.1
  • 23
    • 77953360441 scopus 로고    scopus 로고
    • Random partition models with regression on covariates
    • Müller P, Quintana F. 2010. Random partition models with regression on covariates. J Statist Plann Inference 140: 2801-2808.
    • (2010) J Statist Plann Inference , vol.140 , pp. 2801-2808
    • Müller, P.1    Quintana, F.2
  • 24
    • 40249114903 scopus 로고    scopus 로고
    • Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models
    • Papaspiliopoulos O, Roberts GO. 2008. Retrospective Markov chain Monte Carlo methods for Dirichlet process hierarchical models. Biometrika 95: 169-186.
    • (2008) Biometrika , vol.95 , pp. 169-186
    • Papaspiliopoulos, O.1    Roberts, G.O.2
  • 25
    • 78751516919 scopus 로고    scopus 로고
    • Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in non-smokers
    • Papathomas M, Molitor J, Riboli E, Richardson S, Vineis P. 2011. Examining the joint effect of multiple risk factors using exposure risk profiles: lung cancer in non-smokers. Environ Health Perspect 119: 84-91.
    • (2011) Environ Health Perspect , vol.119 , pp. 84-91
    • Papathomas, M.1    Molitor, J.2    Riboli, E.3    Richardson, S.4    Vineis, P.5
  • 26
  • 27
    • 79959352367 scopus 로고    scopus 로고
    • A spatial Dirichlet process mixture model for clustering population genetics data
    • Reich BJ, Bondell HD. 2011. A spatial Dirichlet process mixture model for clustering population genetics data. Biometrics 67: 381-390.
    • (2011) Biometrics , vol.67 , pp. 381-390
    • Reich, B.J.1    Bondell, H.D.2
  • 28
    • 0034973569 scopus 로고    scopus 로고
    • Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer
    • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH. 2001. Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69: 138-147.
    • (2001) Am J Hum Genet , vol.69 , pp. 138-147
    • Ritchie, M.D.1    Hahn, L.W.2    Roodi, N.3    Bailey, L.R.4    Dupont, W.D.5    Parl, F.F.6    Moore, J.H.7
  • 29
    • 70349673850 scopus 로고    scopus 로고
    • Racial differences in the association between SNPs on 15q25.1, smoking behavior, and risk of non-small cell lung cancer
    • Schwartz AG, Cote ML, Wenzlaff AS, Land S, Amos CI. 2009. Racial differences in the association between SNPs on 15q25.1, smoking behavior, and risk of non-small cell lung cancer. J Thorac Oncol 4: 1195-1201.
    • (2009) J Thorac Oncol , vol.4 , pp. 1195-1201
    • Schwartz, A.G.1    Cote, M.L.2    Wenzlaff, A.S.3    Land, S.4    Amos, C.I.5
  • 30
    • 77953014964 scopus 로고    scopus 로고
    • Semiparametric Bayesian analysis of nutritional epidemiology data in the presence of measurement error
    • Sinha S, Mallick BK, Kipnis V, Carroll RJ. 2010. Semiparametric Bayesian analysis of nutritional epidemiology data in the presence of measurement error. Biometrics 66: 444-454.
    • (2010) Biometrics , vol.66 , pp. 444-454
    • Sinha, S.1    Mallick, B.K.2    Kipnis, V.3    Carroll, R.J.4
  • 32
    • 20444465712 scopus 로고    scopus 로고
    • Bayesian variable selection in clustering high-dimensional data
    • Tadesse M, Sha N, Vannucci M. 2005. Bayesian variable selection in clustering high-dimensional data. J Am Stat Assoc 100: 602-617.
    • (2005) J Am Stat Assoc , vol.100 , pp. 602-617
    • Tadesse, M.1    Sha, N.2    Vannucci, M.3
  • 33
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • Tibshirani R. 1996. Regression shrinkage and selection via the Lasso. J R Stat Soc B 58: 267-288.
    • (1996) J R Stat Soc , vol.58 B , pp. 267-288
    • Tibshirani, R.1
  • 34
    • 75649136956 scopus 로고    scopus 로고
    • Bayesian mixture modelling of gene-environment and gene-gene interactions
    • Wakefield J, De Vocht F, Hung RJ. 2010. Bayesian mixture modelling of gene-environment and gene-gene interactions. Genet Epidemiol 34: 16-25.
    • (2010) Genet Epidemiol , vol.34 , pp. 16-25
    • Wakefield, J.1    De Vocht, F.2    Hung, R.J.3
  • 35
    • 0001541832 scopus 로고    scopus 로고
    • Bayesian nonparametric inference for random distributions and related functions (with discussion)
    • Walker S, Damien P, Laud P, Smith A. 1999. Bayesian nonparametric inference for random distributions and related functions (with discussion). J R Statist Soc B 61: 485-527.
    • (1999) J R Statist Soc , vol.61 B , pp. 485-527
    • Walker, S.1    Damien, P.2    Laud, P.3    Smith, A.4
  • 36
    • 33847707418 scopus 로고    scopus 로고
    • Sampling the Dirichlet mixture model with slices
    • Walker SG. 2007. Sampling the Dirichlet mixture model with slices. Comm Stat Simulat Comput 36: 45-54.
    • (2007) Comm Stat Simulat Comput , vol.36 , pp. 45-54
    • Walker, S.G.1
  • 38
    • 79952782467 scopus 로고    scopus 로고
    • Fast Bayesian inference in Dirichlet process mixture models
    • Wang L, Dunson DB. 2011. Fast Bayesian inference in Dirichlet process mixture models. J Comput Graph Stat 20: 196-216.
    • (2011) J Comput Graph Stat , vol.20 , pp. 196-216
    • Wang, L.1    Dunson, D.B.2
  • 40
    • 79958700388 scopus 로고    scopus 로고
    • Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination
    • Yau C, Holmes C. 2011. Hierarchical Bayesian nonparametric mixture models for clustering with variable relevance determination. Bayesian Anal 6: 329-352.
    • (2011) Bayesian Anal , vol.6 , pp. 329-352
    • Yau, C.1    Holmes, C.2
  • 41
    • 78650906670 scopus 로고    scopus 로고
    • Bayesian non-parametric hidden Markov models with applications in genomics
    • Yau C, Papaspiliopoulos O, Roberts GO, Holmes C. 2011. Bayesian non-parametric hidden Markov models with applications in genomics. J R Statist Soc B 73: 37-57.
    • (2011) J R Statist Soc , vol.73 B , pp. 37-57
    • Yau, C.1    Papaspiliopoulos, O.2    Roberts, G.O.3    Holmes, C.4
  • 42
    • 76749132132 scopus 로고    scopus 로고
    • A Bayesian partition method for detecting Pleiotropic and Epistatic eQTL modules
    • Zhang W, Zhu J, Schadt EE, Liu JS. 2010. A Bayesian partition method for detecting Pleiotropic and Epistatic eQTL modules. PLoS Comput Biol 6: 1-10.
    • (2010) PLoS Comput Biol , vol.6 , pp. 1-10
    • Zhang, W.1    Zhu, J.2    Schadt, E.E.3    Liu, J.S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.