메뉴 건너뛰기




Volumn 378, Issue , 2017, Pages 484-497

Fuzziness based semi-supervised learning approach for intrusion detection system

Author keywords

Divide and conquer strategy; Fuzziness; Intrusion detection; Random weight neural network; Semi supervised learning

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); CLASSIFIERS; COMPUTER CRIME; DECISION TREES; FUZZY SET THEORY; FUZZY SYSTEMS; LEARNING ALGORITHMS; LEARNING SYSTEMS; MERCURY (METAL); PATTERN RECOGNITION; PATTERN RECOGNITION SYSTEMS; SUPERVISED LEARNING;

EID: 84971261474     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.04.019     Document Type: Article
Times cited : (478)

References (65)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • [1] Aha, D., Kibler, D., Albert, M., Instance-based learning algorithms. Mach. Learn. 6:1 (1991), 37–66.
    • (1991) Mach. Learn. , vol.6 , Issue.1 , pp. 37-66
    • Aha, D.1    Kibler, D.2    Albert, M.3
  • 2
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • [2] Alhamdoosh, M., Wang, D.H., Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264 (2014), 104–117.
    • (2014) Inf. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.H.2
  • 3
    • 0342995790 scopus 로고    scopus 로고
    • Using labeled and unlabeled data for probabilistic modeling of face orientation
    • [3] Baluja, S., Using labeled and unlabeled data for probabilistic modeling of face orientation. Int. J. Pattern Recognit. Artif. Intell. 14:08 (2000), 1097–1107.
    • (2000) Int. J. Pattern Recognit. Artif. Intell. , vol.14 , Issue.8 , pp. 1097-1107
    • Baluja, S.1
  • 7
    • 84928230663 scopus 로고    scopus 로고
    • A probabilistic learning algorithm for robust modeling using neural networks with random weights
    • [7] Cao, F.L., Ye, H.L., Wang, D.H., A probabilistic learning algorithm for robust modeling using neural networks with random weights. Inf. Sci. 313 (2015), 62–78.
    • (2015) Inf. Sci. , vol.313 , pp. 62-78
    • Cao, F.L.1    Ye, H.L.2    Wang, D.H.3
  • 9
    • 84901320561 scopus 로고    scopus 로고
    • Laplacian smooth twin support vector machine for semi-supervised classification
    • [9] Chen, W., Shao, Y., Hong, N., Laplacian smooth twin support vector machine for semi-supervised classification. Int. J. Mach. Learn. Cybern. 5:3 (2013), 459–468.
    • (2013) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.3 , pp. 459-468
    • Chen, W.1    Shao, Y.2    Hong, N.3
  • 10
    • 84863520750 scopus 로고    scopus 로고
    • On-demand security architecture for cloud computing
    • [10] Chen, J., Wang, Y., Wang, X., On-demand security architecture for cloud computing. Computer 45:7 (2012), 73–78.
    • (2012) Computer , vol.45 , Issue.7 , pp. 73-78
    • Chen, J.1    Wang, Y.2    Wang, X.3
  • 11
    • 0015340630 scopus 로고
    • A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory
    • [11] De Luca, A., Termini, S., A definition of a nonprobabilistic entropy in the setting of fuzzy sets theory. Inf. Control 20:4 (1972), 301–312.
    • (1972) Inf. Control , vol.20 , Issue.4 , pp. 301-312
    • De Luca, A.1    Termini, S.2
  • 12
    • 0023294428 scopus 로고
    • An intrusion-detection model
    • [12] Denning, D., An intrusion-detection model. IEEE Trans. Softw. Eng. 13:2 (1987), 222–232.
    • (1987) IEEE Trans. Softw. Eng. , vol.13 , Issue.2 , pp. 222-232
    • Denning, D.1
  • 13
    • 33645373593 scopus 로고    scopus 로고
    • A hybrid generative/discriminative classifier design for semi-supervised learning
    • [13] Fujino, A., Ueda, N., Saito, K., A hybrid generative/discriminative classifier design for semi-supervised learning. Trans. Jpn. Soc. Artif. Intell. 21 (2006), 301–309.
    • (2006) Trans. Jpn. Soc. Artif. Intell. , vol.21 , pp. 301-309
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 14
    • 84921059466 scopus 로고    scopus 로고
    • A novel semi-supervised learning for face recognition
    • [14] Gao, Q., Huang, Y., Gao, X., Shen, W., Zhang, H., A novel semi-supervised learning for face recognition. Neurocomputing 152 (2015), 69–76.
    • (2015) Neurocomputing , vol.152 , pp. 69-76
    • Gao, Q.1    Huang, Y.2    Gao, X.3    Shen, W.4    Zhang, H.5
  • 15
    • 84958214320 scopus 로고    scopus 로고
    • Fuzzy nonlinear regression analysis using a random weight network
    • In press
    • [15] He, Y., Wang, X.Z., Huang, J.Z.X., Fuzzy nonlinear regression analysis using a random weight network. Inf. Sci., 2016, 10.1016/j.ins.2016.01.037 In press.
    • (2016) Inf. Sci.
    • He, Y.1    Wang, X.Z.2    Huang, J.Z.X.3
  • 16
    • 67349099506 scopus 로고    scopus 로고
    • Conversion methods for symbolic features: a comparison applied to an intrusion detection problem
    • [16] Hernndez-Pereira, E., Surez-Romero, J., Fontenla-Romero, O., Alonso-Betanzos, A., Conversion methods for symbolic features: a comparison applied to an intrusion detection problem. Expert Syst. Appl. 36:7 (2009), 10612–10617.
    • (2009) Expert Syst. Appl. , vol.36 , Issue.7 , pp. 10612-10617
    • Hernndez-Pereira, E.1    Surez-Romero, J.2    Fontenla-Romero, O.3    Alonso-Betanzos, A.4
  • 17
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • [17] Igelnik, B., Pao, Y.-H., Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 6:6 (1995), 1320–1329.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.-H.2
  • 21
    • 34249011605 scopus 로고    scopus 로고
    • A decision-theoretic, semi-supervised model for intrusion detection, part of the series advanced information and knowledge processing
    • Springer London
    • [21] Lane, T., A decision-theoretic, semi-supervised model for intrusion detection, part of the series advanced information and knowledge processing. Machine Learning and Data Mining for Computer Security: Methods and Applications, 2006, Springer, London, 157–177, 10.1007/1-84628-253-5_10.
    • (2006) Machine Learning and Data Mining for Computer Security: Methods and Applications , pp. 157-177
    • Lane, T.1
  • 23
    • 0030855587 scopus 로고    scopus 로고
    • Decision boundary feature extraction for neural networks
    • [23] Lee, C., Landgrebe, D.A., Decision boundary feature extraction for neural networks. IEEE Trans. Neural Netw. 8:1 (1997), 75–83.
    • (1997) IEEE Trans. Neural Netw. , vol.8 , Issue.1 , pp. 75-83
    • Lee, C.1    Landgrebe, D.A.2
  • 24
    • 0036321445 scopus 로고    scopus 로고
    • Use of k-nearest neighbor classifier for intrusion detection
    • [24] Liao, Y., Vemuri, V., Use of k-nearest neighbor classifier for intrusion detection. Comput. Secur. 21:5 (2002), 439–448.
    • (2002) Comput. Secur. , vol.21 , Issue.5 , pp. 439-448
    • Liao, Y.1    Vemuri, V.2
  • 26
    • 84922978908 scopus 로고    scopus 로고
    • Semi-supervised evolutionary ensembles for web video categorization
    • [26] Mahmood, A., Li, T., Yang, Y., Wang, H., Afzal, M., Semi-supervised evolutionary ensembles for web video categorization. Knowl. Based Syst. 76 (2015), 53–66.
    • (2015) Knowl. Based Syst. , vol.76 , pp. 53-66
    • Mahmood, A.1    Li, T.2    Yang, Y.3    Wang, H.4    Afzal, M.5
  • 27
    • 84865766722 scopus 로고    scopus 로고
    • A novel semisupervised SVM for pixel classification of remote sensing imagery
    • [27] Maulik, U., Chakraborty, D., A novel semisupervised SVM for pixel classification of remote sensing imagery. Int. J. Mach. Learn. Cybern. 3:3 (2011), 247–258.
    • (2011) Int. J. Mach. Learn. Cybern. , vol.3 , Issue.3 , pp. 247-258
    • Maulik, U.1    Chakraborty, D.2
  • 28
    • 85019254461 scopus 로고    scopus 로고
    • Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing
    • in press, doi: (accessed 19.08.15)
    • [28] Meng, M., Wei, J., Wang, J., Ma, Q., Wang, X., Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing. Int. J. Mach. Learn. Cybern., 2015 in press, doi: 10.1007/s13042-015-0380-3 (accessed 19.08.15).
    • (2015) Int. J. Mach. Learn. Cybern.
    • Meng, M.1    Wei, J.2    Wang, J.3    Ma, Q.4    Wang, X.5
  • 31
    • 10844230994 scopus 로고    scopus 로고
    • Intrusion detection using an ensemble of intelligent paradigms
    • Science Direct
    • [31] Mukkamala, S., Sung, A., Abraham, A., Intrusion detection using an ensemble of intelligent paradigms. J. Netw. Comput. Appl., 28, 2005, 167 Science Direct.
    • (2005) J. Netw. Comput. Appl. , vol.28 , pp. 167
    • Mukkamala, S.1    Sung, A.2    Abraham, A.3
  • 34
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • [34] Nigam, K., Mccallum, A., Thrun, S., Mitchell, T., Text classification from labeled and unlabeled documents using EM. Mach. Learn. 39:23 (2000), 103–134.
    • (2000) Mach. Learn. , vol.39 , Issue.23 , pp. 103-134
    • Nigam, K.1    Mccallum, A.2    Thrun, S.3    Mitchell, T.4
  • 36
    • 84900001495 scopus 로고    scopus 로고
    • Ideal regularization for learning kernels from labels
    • [36] Pan, B., Lai, J., Shen, L., Ideal regularization for learning kernels from labels. Neural Netw. 56 (2014), 22–34.
    • (2014) Neural Netw. , vol.56 , pp. 22-34
    • Pan, B.1    Lai, J.2    Shen, L.3
  • 37
    • 78650749488 scopus 로고    scopus 로고
    • Local margin based semi-supervised discriminant embedding for visual recognition
    • [37] Pan, F., Wang, J., Lin, X., Local margin based semi-supervised discriminant embedding for visual recognition. Neurocomputing 74:5 (2011), 812–819.
    • (2011) Neurocomputing , vol.74 , Issue.5 , pp. 812-819
    • Pan, F.1    Wang, J.2    Lin, X.3
  • 38
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • [38] Pao, Y., Park, G., Sobajic, D., Learning and generalization characteristics of the random vector functional-link net. Neurocomputing 6:2 (1994), 163–180.
    • (1994) Neurocomputing , vol.6 , Issue.2 , pp. 163-180
    • Pao, Y.1    Park, G.2    Sobajic, D.3
  • 39
    • 84937879277 scopus 로고    scopus 로고
    • Semi-supervised classification with privileged information
    • [39] Qi, Z., Tian, Y., Niu, L., Wang, B., Semi-supervised classification with privileged information. Int. J. Mach. Learn. Cybern. 6:4 (2015), 667–676.
    • (2015) Int. J. Mach. Learn. Cybern. , vol.6 , Issue.4 , pp. 667-676
    • Qi, Z.1    Tian, Y.2    Niu, L.3    Wang, B.4
  • 40
    • 84875212881 scopus 로고    scopus 로고
    • Security-aware optimization for ubiquitous computing systems with SEAT graph approach
    • [40] Qiu, M., Zhang, L., Ming, Z., Chen, Z., Qin, X., Yang, L., Security-aware optimization for ubiquitous computing systems with SEAT graph approach. J. Comput. Syst. Sci. vol. 79:5 (2013), 518–529.
    • (2013) J. Comput. Syst. Sci. , vol.79 , Issue.5 , pp. 518-529
    • Qiu, M.1    Zhang, L.2    Ming, Z.3    Chen, Z.4    Qin, X.5    Yang, L.6
  • 43
    • 84868275998 scopus 로고    scopus 로고
    • Measures of fuzziness under different uses of fuzzy sets
    • [43] Sanchez, D., Trillas, E., Measures of fuzziness under different uses of fuzzy sets. Commun. Comput. Inf. Sci. 298 (2012), 25–34.
    • (2012) Commun. Comput. Inf. Sci. , vol.298 , pp. 25-34
    • Sanchez, D.1    Trillas, E.2
  • 44
    • 84922746025 scopus 로고    scopus 로고
    • Distributed learning for random vector functional-link networks
    • [44] Scardapane, S., Wang, D.H., Panella, M., Uncini, A., Distributed learning for random vector functional-link networks. Inf. Sci. 301 (2015), 271–284.
    • (2015) Inf. Sci. , vol.301 , pp. 271-284
    • Scardapane, S.1    Wang, D.H.2    Panella, M.3    Uncini, A.4
  • 47
    • 85016100807 scopus 로고    scopus 로고
    • Efficiently detecting overlapping communities using seeding and semi-supervised learning
    • in press, doi: (accessed 19.08.15)
    • [47] Shang, C., Feng, S., Zhao, Z., Fan, J., Efficiently detecting overlapping communities using seeding and semi-supervised learning. Int. J. Mach. Learn. Cybern., 2015 in press, doi: 10.1007/s13042-015-0338-5 (accessed 19.08.15).
    • (2015) Int. J. Mach. Learn. Cybern.
    • Shang, C.1    Feng, S.2    Zhao, Z.3    Fan, J.4
  • 49
    • 0029253483 scopus 로고
    • Random activation weight neural net (RAWN) for east non-iterative training
    • [49] Braake, H.T., Straten, G.V., Random activation weight neural net (RAWN) for east non-iterative training. Eng. Appl. Artif. Intell. 8:1 (1995), 71–80.
    • (1995) Eng. Appl. Artif. Intell. , vol.8 , Issue.1 , pp. 71-80
    • Braake, H.T.1    Straten, G.V.2
  • 51
    • 84944558821 scopus 로고    scopus 로고
    • Fuzziness based sample categorization for classifier performance improvement
    • [51] Wang, X., Ashfaq, R.A.R., Fu, A., Fuzziness based sample categorization for classifier performance improvement. J. Intell. Fuzzy Syst. 29:3 (2015), 1185–1196.
    • (2015) J. Intell. Fuzzy Syst. , vol.29 , Issue.3 , pp. 1185-1196
    • Wang, X.1    Ashfaq, R.A.R.2    Fu, A.3
  • 52
    • 84867858093 scopus 로고    scopus 로고
    • Constraint projections for semi-supervised affinity propagation
    • [52] Wang, H., Nie, R., Liu, X., Li, T., Constraint projections for semi-supervised affinity propagation. Knowl. Based Syst. 36 (2012), 315–321.
    • (2012) Knowl. Based Syst. , vol.36 , pp. 315-321
    • Wang, H.1    Nie, R.2    Liu, X.3    Li, T.4
  • 53
    • 84975259875 scopus 로고    scopus 로고
    • A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning
    • [53] Wang, X., Xing, H.J., Li, Y., Hua, Q., Dong, C.R., Pedrycz, W., A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans. Fuzzy Syst. 23:5 (2015), 1638–1654.
    • (2015) IEEE Trans. Fuzzy Syst. , vol.23 , Issue.5 , pp. 1638-1654
    • Wang, X.1    Xing, H.J.2    Li, Y.3    Hua, Q.4    Dong, C.R.5    Pedrycz, W.6
  • 54
    • 84881434004 scopus 로고    scopus 로고
    • Extending twin support vector machine classifier for multi-category classification problems
    • [54] Xie, J., Hone, K., Xie, W., Gao, X., Shi, Y., Liu, X., Extending twin support vector machine classifier for multi-category classification problems. Intell. Data Anal. 17:4 (2013), 649–664.
    • (2013) Intell. Data Anal. , vol.17 , Issue.4 , pp. 649-664
    • Xie, J.1    Hone, K.2    Xie, W.3    Gao, X.4    Shi, Y.5    Liu, X.6
  • 55
    • 0031193520 scopus 로고    scopus 로고
    • A new method in determining initial weights of feedforward neural networks for training enhancement
    • [55] Yam, Y., Chow, T., Leung, C., A new method in determining initial weights of feedforward neural networks for training enhancement. Neurocomputing 16:1 (1997), 23–32.
    • (1997) Neurocomputing , vol.16 , Issue.1 , pp. 23-32
    • Yam, Y.1    Chow, T.2    Leung, C.3
  • 56
    • 84927760095 scopus 로고    scopus 로고
    • Distributed denial of service attacks in software-defined networking with cloud computing
    • [56] Yan, Q., Yu, F., Distributed denial of service attacks in software-defined networking with cloud computing. IEEE Commun. Mag. 53:4 (2015), 52–59.
    • (2015) IEEE Commun. Mag. , vol.53 , Issue.4 , pp. 52-59
    • Yan, Q.1    Yu, F.2
  • 58
    • 84906935098 scopus 로고    scopus 로고
    • A mapreduce based parallel SVM for large-scale predicting proteinprotein interactions
    • [58] You, Z., Yu, J.Z., Zhu, L., Li, S., Wen, Z.K., A mapreduce based parallel SVM for large-scale predicting proteinprotein interactions. Neurocomputing 145 (2014), 37–43.
    • (2014) Neurocomputing , vol.145 , pp. 37-43
    • You, Z.1    Yu, J.Z.2    Zhu, L.3    Li, S.4    Wen, Z.K.5
  • 59
    • 0000868331 scopus 로고
    • Induction of fuzzy decision trees
    • [59] Yuan, Y., Shaw, M.J., Induction of fuzzy decision trees. Fuzzy Sets Syst. 69 (1995), 125–139.
    • (1995) Fuzzy Sets Syst. , vol.69 , pp. 125-139
    • Yuan, Y.1    Shaw, M.J.2
  • 60
    • 49949126152 scopus 로고
    • Probability measures of fuzzy events
    • [60] Zadeh, L., Probability measures of fuzzy events. J. Math. Anal. Appl. 23:2 (1968), 421–427.
    • (1968) J. Math. Anal. Appl. , vol.23 , Issue.2 , pp. 421-427
    • Zadeh, L.1
  • 61
    • 84926246788 scopus 로고    scopus 로고
    • A local learning algorithm for random weights networks
    • [61] Zhao, J.W., Wang, Z.H., Cao, F.L., Wang, D.H., A local learning algorithm for random weights networks. Knowl. Based Syst. 74 (2015), 159–166.
    • (2015) Knowl. Based Syst. , vol.74 , pp. 159-166
    • Zhao, J.W.1    Wang, Z.H.2    Cao, F.L.3    Wang, D.H.4
  • 62
    • 84940670037 scopus 로고    scopus 로고
    • Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction
    • [62] Zhao, M., Chow, T., Wu, Z., Zhang, Z., Li, B., Learning from normalized local and global discriminative information for semi-supervised regression and dimensionality reduction. Inf. Sci. 324 (2015), 286–309.
    • (2015) Inf. Sci. , vol.324 , pp. 286-309
    • Zhao, M.1    Chow, T.2    Wu, Z.3    Zhang, Z.4    Li, B.5
  • 64
    • 33745456231 scopus 로고    scopus 로고
    • Semi-Supervised Learning Literature Survey
    • University of WisconsinMadison
    • [64] Zhu, X., Semi-Supervised Learning Literature Survey. Computer Sciences Technical Report 1530, 2005, University of WisconsinMadison.
    • (2005) Computer Sciences Technical Report 1530
    • Zhu, X.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.