메뉴 건너뛰기




Volumn 5, Issue 3, 2014, Pages 459-468

Laplacian smooth twin support vector machine for semi-supervised classification

Author keywords

Manifold regularization; Semi supervised classification; Smooth technique; Twin support vector machine

Indexed keywords

LAPLACE TRANSFORMS; QUADRATIC PROGRAMMING; SUPERVISED LEARNING;

EID: 84901320561     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-013-0183-3     Document Type: Article
Times cited : (75)

References (32)
  • 1
    • 34047225880 scopus 로고    scopus 로고
    • Twin support vector machines for pattern classification
    • Jayadeva, Khemchandani R, Chandra S (2007) Twin support vector machines for pattern classification. IEEE Trans Patt Anal Machine Intell 29(5): 905-910.
    • (2007) IEEE Trans Patt Anal Machine Intell , vol.29 , Issue.5 , pp. 905-910
    • Jayadeva, K.R.1    Chandra, S.2
  • 2
    • 79957988400 scopus 로고    scopus 로고
    • Improvements on twin support vector machines
    • Shao Y, Zhang C, Wang X, Deng N (2011) Improvements on twin support vector machines. IEEE Trans on Neural Netw 22(6): 962-968.
    • (2011) IEEE Trans Neural Netw , vol.22 , Issue.6 , pp. 962-968
    • Shao, Y.1    Zhang, C.2    Wang, X.3    Deng, N.4
  • 6
    • 84868240502 scopus 로고    scopus 로고
    • A novel ensemble TBSVM classifier for imbalanced data classification
    • Chen W, Shao Y, Bao W (2012) A novel ensemble TBSVM classifier for imbalanced data classification. J Comput Inf Syst 8(19): 8223-8230.
    • (2012) J Comput Inf Syst , vol.8 , Issue.19 , pp. 8223-8230
    • Chen, W.1    Shao, Y.2    Bao, W.3
  • 7
    • 80055055460 scopus 로고    scopus 로고
    • Building sparse twin support vector machine classifiers in primal space
    • Peng X (2011) Building sparse twin support vector machine classifiers in primal space. Inf Sci 181(18): 3967-3980.
    • (2011) Inf Sci , vol.181 , Issue.18 , pp. 3967-3980
    • Peng, X.1
  • 8
    • 84857059738 scopus 로고    scopus 로고
    • Least squares recursive projection twin support vector machine for classification
    • Shao Y, Deng N, Yang Z (2012) Least squares recursive projection twin support vector machine for classification. Pattern Recogn 45(6): 2299-2307.
    • (2012) Pattern Recogn , vol.45 , Issue.6 , pp. 2299-2307
    • Shao, Y.1    Deng, N.2    Yang, Z.3
  • 9
    • 84878016001 scopus 로고    scopus 로고
    • Multiple birth support vector machine for multi-class classification
    • Yang Z, Shao Y, Zhang X (2013) Multiple birth support vector machine for multi-class classification. Neural Comput Appl 22(1): 153-161.
    • (2013) Neural Comput Appl , vol.22 , Issue.1 , pp. 153-161
    • Yang, Z.1    Shao, Y.2    Zhang, X.3
  • 10
    • 79958843215 scopus 로고    scopus 로고
    • TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition
    • Peng X (2011) TPMSVM: a novel twin parametric-margin support vector machine for pattern recognition. Pattern Recogn 44(10-11): 2678-2692.
    • (2011) Pattern Recogn , vol.44 , Issue.10-11 , pp. 2678-2692
    • Peng, X.1
  • 11
    • 84872356815 scopus 로고    scopus 로고
    • Twin support vector regression for the simultaneous learning of a function and its derivatives
    • Khemchandani R, Karpatne A, Chandra S (2013) Twin support vector regression for the simultaneous learning of a function and its derivatives. Int J Machine Learn Cybern 4(1): 51-63.
    • (2013) Int J Machine Learn Cybern , vol.4 , Issue.1 , pp. 51-63
    • Khemchandani, R.1    Karpatne, A.2    Chandra, S.3
  • 12
    • 67349246464 scopus 로고    scopus 로고
    • A review of machine learning approaches to spam filtering
    • Guzella TS, Caminhas WM (2009) A review of machine learning approaches to spam filtering. Exp Syst Appl 36(7): 10206-10222.
    • (2009) Exp Syst Appl , vol.36 , Issue.7 , pp. 10206-10222
    • Guzella, T.S.1    Caminhas, W.M.2
  • 13
    • 79958826736 scopus 로고    scopus 로고
    • Boosted multi-class semi-supervised learning for human action recognition
    • Zhang T, Liu S, Xu C, Lu H (2011) Boosted multi-class semi-supervised learning for human action recognition. Pattern Recogn 44(10-11): 2334-2342.
    • (2011) Pattern Recogn , vol.44 , Issue.10-11 , pp. 2334-2342
    • Zhang, T.1    Liu, S.2    Xu, C.3    Lu, H.4
  • 14
    • 84865766722 scopus 로고    scopus 로고
    • A novel semisupervised SVM for pixel classification of remote sensing imagery
    • Maulik U, Chakraborty D (2012) A novel semisupervised SVM for pixel classification of remote sensing imagery. Int J Machine Learn Cybern 3(3): 247-258.
    • (2012) Int J Machine Learn Cybern , vol.3 , Issue.3 , pp. 247-258
    • Maulik, U.1    Chakraborty, D.2
  • 15
    • 83555177301 scopus 로고    scopus 로고
    • Detecting disease genes based on semi-supervised learning and protein-protein interaction networks
    • Nguyen T, Ho T (2012) Detecting disease genes based on semi-supervised learning and protein-protein interaction networks. Artif Intell Med 54(1): 63-71.
    • (2012) Artif Intell Med , vol.54 , Issue.1 , pp. 63-71
    • Nguyen, T.1    Ho, T.2
  • 16
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: A geometric framework for learning from labeled and unlabeled examples. J Machine Learn Res 7: 2399-2434.
    • (2006) J Machine Learn Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 17
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • Melacci S, Belkin M (2011) Laplacian support vector machines trained in the primal. J Machine Learn Res 12: 1149-1184.
    • (2011) J Machine Learn Res , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 19
    • 84867178411 scopus 로고    scopus 로고
    • New semi-supervised classification method based on modified cluster assumption
    • Wang Y, Chen S, Zhou Z (2012) New semi-supervised classification method based on modified cluster assumption. IEEE Trans Neural Netw Learn Syst 23(5): 689-702.
    • (2012) IEEE Trans Neural Netw Learn Syst , vol.23 , Issue.5 , pp. 689-702
    • Wang, Y.1    Chen, S.2    Zhou, Z.3
  • 20
    • 78650848127 scopus 로고    scopus 로고
    • Semi-supervised locally discriminant projection for classification and recognition
    • Zhang S, Lei Y, Wu Y (2011) Semi-supervised locally discriminant projection for classification and recognition. Knowl-Based Syst 24(2): 341-346.
    • (2011) Knowl-Based Syst , vol.24 , Issue.2 , pp. 341-346
    • Zhang, S.1    Lei, Y.2    Wu, Y.3
  • 21
    • 51649109792 scopus 로고    scopus 로고
    • Discriminatively regularized least-squares classification
    • Xue H, Chen S, Yang Q (2009) Discriminatively regularized least-squares classification. Pattern Recogn 42(1): 93-104.
    • (2009) Pattern Recogn , vol.42 , Issue.1 , pp. 93-104
    • Xue, H.1    Chen, S.2    Yang, Q.3
  • 22
    • 84876888732 scopus 로고    scopus 로고
    • Semisupervised classification with cluster regularization
    • Soares RGF, Chen H, Yao X (2012) Semisupervised classification with cluster regularization. IEEE Trans Neural Netw Learn Syst 23(11): 1779-1792.
    • (2012) IEEE Trans Neural Netw Learn Syst , vol.23 , Issue.11 , pp. 1779-1792
    • Soares, R.G.F.1    Chen, H.2    Yao, X.3
  • 23
    • 84865661519 scopus 로고    scopus 로고
    • Laplacian twin support vector machine for semi-supervised classification
    • Qi Z, Tian Y, Shi Y (2012) Laplacian twin support vector machine for semi-supervised classification. Neural Netw 35: 46-53.
    • (2012) Neural Netw , vol.35 , pp. 46-53
    • Qi, Z.1    Tian, Y.2    Shi, Y.3
  • 24
    • 84898720274 scopus 로고    scopus 로고
    • Improving Lap-TSVM with successive overrelaxation and differential evolution
    • Chen W, Shao Y, Ye Y (2013) Improving Lap-TSVM with successive overrelaxation and differential evolution. Procedia Comput Sci 17: 33-40.
    • (2013) Procedia Comput Sci , vol.17 , pp. 33-40
    • Chen, W.1    Shao, Y.2    Ye, Y.3
  • 25
    • 0035479871 scopus 로고    scopus 로고
    • SSVM: a smooth support vector machine for classification
    • Lee Y, Mangasarian OL (2001) SSVM: A smooth support vector machine for classification. Comput Optim Appl 20(1): 5-22.
    • (2001) Comput Optim Appl , vol.20 , Issue.1 , pp. 5-22
    • Lee, Y.1    Mangasarian, O.L.2
  • 26
    • 84875740720 scopus 로고    scopus 로고
    • A GA-based model selection for smooth twin parametric-margin support vector machine
    • Wang Z, Shao Y, Wu T (2013) A GA-based model selection for smooth twin parametric-margin support vector machine. Pattern Recogn 46: 2267-2277.
    • (2013) Pattern Recogn , vol.46 , pp. 2267-2277
    • Wang, Z.1    Shao, Y.2    Wu, T.3
  • 27
    • 48649097170 scopus 로고    scopus 로고
    • Application of smoothing technique on twin support vector machines
    • Kumar MA, Gopal M (2008) Application of smoothing technique on twin support vector machines. Pattern Recogn Lett 29(13): 1842-1848.
    • (2008) Pattern Recogn Lett , vol.29 , Issue.13 , pp. 1842-1848
    • Kumar, M.A.1    Gopal, M.2
  • 28
    • 84858159769 scopus 로고    scopus 로고
    • Smooth twin support vector regression
    • Chen X, Yang J, Liang J, Ye Q (2012) Smooth twin support vector regression. Neural Comput Appl 21(3): 505-513.
    • (2012) Neural Comput Appl , vol.21 , Issue.3 , pp. 505-513
    • Chen, X.1    Yang, J.2    Liang, J.3    Ye, Q.4
  • 30
    • 0038167128 scopus 로고    scopus 로고
    • Learning to classify text using support vector machines: methods, theory and algorithms
    • Springer, New York
    • Joachims T (2002) Learning to classify text using support vector machines: methods, theory and algorithms. In: The Kluwer international series in engineering and computer science. Springer, New York.
    • (2002) The Kluwer international series in engineering and computer science
    • Joachims, T.1
  • 31
    • 84868624200 scopus 로고    scopus 로고
    • Using clustering analysis to improve semi-supervised classification
    • Gan H, Sang N, Huang R, Tong X, Dan Z (2013) Using clustering analysis to improve semi-supervised classification. Neurocomputing 101: 290-298.
    • (2013) Neurocomputing , vol.101 , pp. 290-298
    • Gan, H.1    Sang, N.2    Huang, R.3    Tong, X.4    Dan, Z.5
  • 32
    • 34147175614 scopus 로고    scopus 로고
    • On the student's t-distribution and the t-statistic
    • Yang Z, Fang K, Kotz S (2007) On the student's t-distribution and the t-statistic. J Multivar Anal 98(6): 1293-1304.
    • (2007) J Multivar Anal , vol.98 , Issue.6 , pp. 1293-1304
    • Yang, Z.1    Fang, K.2    Kotz, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.