메뉴 건너뛰기




Volumn 152, Issue , 2015, Pages 69-76

A novel semi-supervised learning for face recognition

Author keywords

Dimension reduction; Discriminant analysis; Diversity; Semi supervised learning

Indexed keywords

DISCRIMINANT ANALYSIS; FACE RECOGNITION;

EID: 84921059466     PISSN: 09252312     EISSN: 18728286     Source Type: Journal    
DOI: 10.1016/j.neucom.2014.11.018     Document Type: Article
Times cited : (34)

References (40)
  • 1
    • 82955164051 scopus 로고    scopus 로고
    • A discriminative non-linear manifold learning technique for face recognition
    • ICIEIS
    • B. Raducanu, F. Dornaika, A discriminative non-linear manifold learning technique for face recognition, in: ICIEIS, pp 339-353, 2011.
    • (2011) , pp. 339-353
    • Raducanu, B.1    Dornaika, F.2
  • 2
    • 84862907634 scopus 로고    scopus 로고
    • Slow feature analysis for human action recognition
    • Zhang Z., Tao D. Slow feature analysis for human action recognition. IEEE T. Pattern Anal 2012, 34(3):436-450.
    • (2012) IEEE T. Pattern Anal , vol.34 , Issue.3 , pp. 436-450
    • Zhang, Z.1    Tao, D.2
  • 3
    • 84862575703 scopus 로고    scopus 로고
    • Adaptive hypergraph learning and its application in image classification
    • Yu J., Tao D., Wang M. Adaptive hypergraph learning and its application in image classification. IEEE T. Image Process 2012, 21(7):3262-3272.
    • (2012) IEEE T. Image Process , vol.21 , Issue.7 , pp. 3262-3272
    • Yu, J.1    Tao, D.2    Wang, M.3
  • 4
    • 35148826924 scopus 로고    scopus 로고
    • Feature extraction by maximizing the average neighborhood margin
    • Wang F., Zhang C. Feature extraction by maximizing the average neighborhood margin. IEEE Comput Vis. Pattern Recogn. (CVPR) 2007, 1-8.
    • (2007) IEEE Comput Vis. Pattern Recogn. (CVPR) , pp. 1-8
    • Wang, F.1    Zhang, C.2
  • 5
    • 0031185845 scopus 로고    scopus 로고
    • Eigenfaces vs. fisherfaces: recognition using class specific linear projection
    • Belhumeur P.N., Hepanha J.P., Kriegman D.J. Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE T. Pattern Anal 1997, 19(7):711-720.
    • (1997) IEEE T. Pattern Anal , vol.19 , Issue.7 , pp. 711-720
    • Belhumeur, P.N.1    Hepanha, J.P.2    Kriegman, D.J.3
  • 7
    • 77956221584 scopus 로고    scopus 로고
    • Discriminative topic modeling based on manifold learning, In Proc
    • ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD'10)
    • S. Huh, S.E. Fienberg, Discriminative topic modeling based on manifold learning, In Proc. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD'10), pp 653-661, 2010.
    • (2010) , pp. 653-661
    • Huh, S.1    Fienberg, S.E.2
  • 8
    • 82055180327 scopus 로고    scopus 로고
    • Subspaces indexing model on Grassmann manifold for image search
    • Wang X., Li Z., Tao D. Subspaces indexing model on Grassmann manifold for image search. IEEE T. Image Process 2011, 20(9):2627-2635.
    • (2011) IEEE T. Image Process , vol.20 , Issue.9 , pp. 2627-2635
    • Wang, X.1    Li, Z.2    Tao, D.3
  • 9
    • 33947194180 scopus 로고    scopus 로고
    • Graph embedding and extensions: a general framework for dimensionality reduction
    • Yan S., Xu D., Zhang B., Zhang H., Yang Q., Lin S. Graph embedding and extensions: a general framework for dimensionality reduction. IEEE T. Pattern Anal 2007, 29(1):40-51.
    • (2007) IEEE T. Pattern Anal , vol.29 , Issue.1 , pp. 40-51
    • Yan, S.1    Xu, D.2    Zhang, B.3    Zhang, H.4    Yang, Q.5    Lin, S.6
  • 10
    • 68549120964 scopus 로고    scopus 로고
    • Patch alignment for dimensionality reduction
    • Zhang T., Tao D., Li X., Yang J. Patch alignment for dimensionality reduction. IEEE T. Knowl. Data En 2009, 21(9):1299-1313.
    • (2009) IEEE T. Knowl. Data En , vol.21 , Issue.9 , pp. 1299-1313
    • Zhang, T.1    Tao, D.2    Li, X.3    Yang, J.4
  • 11
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J. Mach. Learn. Res 2006, 7:2399-2434.
    • (2006) J. Mach. Learn. Res , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 13
    • 1942484430 scopus 로고    scopus 로고
    • Semi-supervised learning using Gaussian fields and harmonic functions, Int'l Conference
    • Zhu X., Ghahramani Z., Lafferty J.D. Semi-supervised learning using Gaussian fields and harmonic functions, Int'l Conference. Machine Learning 2003, 912-919.
    • (2003) Machine Learning , pp. 912-919
    • Zhu, X.1    Ghahramani, Z.2    Lafferty, J.D.3
  • 14
    • 79960697096 scopus 로고    scopus 로고
    • Semi-supervised metric learning by maximizing constraint margin
    • Wang F. Semi-supervised metric learning by maximizing constraint margin. IEEE T. Syst. Man Cy. B 2011, 41(4):931-939.
    • (2011) IEEE T. Syst. Man Cy. B , vol.41 , Issue.4 , pp. 931-939
    • Wang, F.1
  • 15
    • 79960697395 scopus 로고    scopus 로고
    • M-SNE: multiview stochastic neighbor embedding
    • Xie B., Mu Y., Tao D., Huang K. m-SNE: multiview stochastic neighbor embedding, IEEE T. Syst. Man Cy. B 2011, 41:1088-1096.
    • (2011) IEEE T. Syst. Man Cy , vol.41 , pp. 1088-1096
    • Xie, B.1    Mu, Y.2    Tao, D.3    Huang, K.4
  • 19
    • 84875397507 scopus 로고    scopus 로고
    • Human action recognition based on semi-supervised discriminant analysis with global constraint
    • Zhao X., Li X., Li C., Wang S. Human action recognition based on semi-supervised discriminant analysis with global constraint. Neurocomputing 2013, 105:45-50.
    • (2013) Neurocomputing , vol.105 , pp. 45-50
    • Zhao, X.1    Li, X.2    Li, C.3    Wang, S.4
  • 20
    • 84893813272 scopus 로고    scopus 로고
    • Semi-supervised discriminative common vector method for computer vision applications
    • Cevikalp H. Semi-supervised discriminative common vector method for computer vision applications. Neurocomputing 2014, 129:289-297.
    • (2014) Neurocomputing , vol.129 , pp. 289-297
    • Cevikalp, H.1
  • 21
    • 77953705810 scopus 로고    scopus 로고
    • Flexible manifold embedding: a framework for semi- supervised and unsupervised dimension reduction
    • Nie F., Xu D., Tsang I.W.H., Zhang C. Flexible manifold embedding: a framework for semi- supervised and unsupervised dimension reduction. IEEE T. Image Process 2010, 19(7):1921-1932.
    • (2010) IEEE T. Image Process , vol.19 , Issue.7 , pp. 1921-1932
    • Nie, F.1    Xu, D.2    Tsang, I.W.H.3    Zhang, C.4
  • 22
    • 56749103988 scopus 로고    scopus 로고
    • A graph based subspace semi-supervised learning framework for dimensionality reduction
    • Yang W., Zhang S., Liang W. A graph based subspace semi-supervised learning framework for dimensionality reduction. ECCV 2008, 664-677.
    • (2008) ECCV , pp. 664-677
    • Yang, W.1    Zhang, S.2    Liang, W.3
  • 23
    • 77952518276 scopus 로고    scopus 로고
    • B. kijsirkul, A unified semi-supervised dimensionality reduction framework for manifold learning
    • Chatpatanasir R. B. kijsirkul, A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing 2010, 73:1631-1640.
    • (2010) Neurocomputing , vol.73 , pp. 1631-1640
    • Chatpatanasir, R.1
  • 24
    • 37549070399 scopus 로고    scopus 로고
    • Learning a maximum margin subspace for image retrieval
    • He X., Cai D., Han J. Learning a maximum margin subspace for image retrieval. IEEE T. Knowl. Data Eng 2008, 20:189-201.
    • (2008) IEEE T. Knowl. Data Eng , vol.20 , pp. 189-201
    • He, X.1    Cai, D.2    Han, J.3
  • 25
    • 84870388995 scopus 로고    scopus 로고
    • A semi-supervised approach for dimensionality reduction with distributional similarity
    • Zheng F., Song Z., Shao L., Chung R., Jia K., Wu X. A semi-supervised approach for dimensionality reduction with distributional similarity. Neurocomputing 2013, 103:210-221.
    • (2013) Neurocomputing , vol.103 , pp. 210-221
    • Zheng, F.1    Song, Z.2    Shao, L.3    Chung, R.4    Jia, K.5    Wu, X.6
  • 26
    • 79957454703 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction and classification through virtual label regression
    • Nie F., Xu D., Li X., Xiang S. Semi-supervised dimensionality reduction and classification through virtual label regression. IEEE T. Syst. Man Cy. B 2011, 41(3):675-685.
    • (2011) IEEE T. Syst. Man Cy. B , vol.41 , Issue.3 , pp. 675-685
    • Nie, F.1    Xu, D.2    Li, X.3    Xiang, S.4
  • 27
    • 67649427872 scopus 로고    scopus 로고
    • Semi-supervised orthogonal discriminant analysis via label propagation
    • Nie F., Xiang S., Jia Y., Zhang C. Semi-supervised orthogonal discriminant analysis via label propagation. Pattern Recogn 2009, 42(11):2615-2627.
    • (2009) Pattern Recogn , vol.42 , Issue.11 , pp. 2615-2627
    • Nie, F.1    Xiang, S.2    Jia, Y.3    Zhang, C.4
  • 29
    • 80053449475 scopus 로고    scopus 로고
    • Cauchy graph embedding
    • Int'l Conference Machine Learning
    • D. Luo, C. Ding, F. Nie, H. Huang, Cauchy graph embedding, Int'l Conference Machine Learning, 2011.
    • (2011)
    • Luo, D.1    Ding, C.2    Nie, F.3    Huang, H.4
  • 30
    • 84861833031 scopus 로고    scopus 로고
    • Enhanced fisher discriminant criterion for image recognition
    • Gao Q., Liu J., Zhang H., Hou J., Yang X. Enhanced fisher discriminant criterion for image recognition. Pattern Recogn 2012, 45:3717-3724.
    • (2012) Pattern Recogn , vol.45 , pp. 3717-3724
    • Gao, Q.1    Liu, J.2    Zhang, H.3    Hou, J.4    Yang, X.5
  • 32
    • 33750743381 scopus 로고    scopus 로고
    • An introduction to nonlinear dimensionality reduction by maximum variance unfolding
    • Proceedings of the Twenty First AAAI
    • K.Q. Weinberger, L.K. Saul, An introduction to nonlinear dimensionality reduction by maximum variance unfolding, in: Proceedings of the Twenty First AAAI, pp. 1683-1686, 2006.
    • (2006) , pp. 1683-1686
    • Weinberger, K.Q.1    Saul, L.K.2
  • 33
    • 84867873734 scopus 로고    scopus 로고
    • Joint geometry and variability for image recognition
    • Gao Q., Zhang H., Yang X., Liu J., Liu Y. Joint geometry and variability for image recognition. Neurocomputing 2013, 99(1):241-249.
    • (2013) Neurocomputing , vol.99 , Issue.1 , pp. 241-249
    • Gao, Q.1    Zhang, H.2    Yang, X.3    Liu, J.4    Liu, Y.5
  • 34
    • 67349170432 scopus 로고    scopus 로고
    • Stable local dimensionality reduction approaches
    • Hou C., Zhang C., Wu Y., Jiao Y. Stable local dimensionality reduction approaches. Pattern Recogn 2009, 42:2054-2066.
    • (2009) Pattern Recogn , vol.42 , pp. 2054-2066
    • Hou, C.1    Zhang, C.2    Wu, Y.3    Jiao, Y.4
  • 35
    • 84883413715 scopus 로고    scopus 로고
    • Two-dimensional maximum local variation based on image Euclidean distance for face recognition
    • Gao Q., Gao F., Zhang H., Hao X., Wang X. Two-dimensional maximum local variation based on image Euclidean distance for face recognition. IEEE T. Image Process 2013, 22(10):3807-3817.
    • (2013) IEEE T. Image Process , vol.22 , Issue.10 , pp. 3807-3817
    • Gao, Q.1    Gao, F.2    Zhang, H.3    Hao, X.4    Wang, X.5
  • 37
    • 0034290919 scopus 로고    scopus 로고
    • The FERET evaluation methodology for face recognition algorithms, IEEE T
    • Phillips P., Moon H., Rizvi S., Rauss P. The FERET evaluation methodology for face recognition algorithms, IEEE T. Pattern Anal. 2000, 22(10):1090-1104.
    • (2000) Pattern Anal. , vol.22 , Issue.10 , pp. 1090-1104
    • Phillips, P.1    Moon, H.2    Rizvi, S.3    Rauss, P.4
  • 38
    • 84867796463 scopus 로고    scopus 로고
    • Semi-supervised dimension reduction using trace ratio criterion
    • Huang Y., Xu D., Nie F. Semi-supervised dimension reduction using trace ratio criterion. IEEE T. Neural Networ. Learn. Syst 2012, 23(3):519-526.
    • (2012) IEEE T. Neural Networ. Learn. Syst , vol.23 , Issue.3 , pp. 519-526
    • Huang, Y.1    Xu, D.2    Nie, F.3
  • 39
    • 84875384168 scopus 로고    scopus 로고
    • Efficient semi-supervised feature selection with noise insensitive trace ratio criterion
    • Liu Y., Nie F., Wu J., Chen L. Efficient semi-supervised feature selection with noise insensitive trace ratio criterion. Neurocomputing 2013, 105:12-18.
    • (2013) Neurocomputing , vol.105 , pp. 12-18
    • Liu, Y.1    Nie, F.2    Wu, J.3    Chen, L.4
  • 40
    • 83655161380 scopus 로고    scopus 로고
    • Trace ratio criterion based generalized discriminant learning for semi-supervised dimensionality reduction
    • Zhao M., Zhang Z., Chow T.W.S. Trace ratio criterion based generalized discriminant learning for semi-supervised dimensionality reduction. Pattern Recogn 2012, 45:1482-1499.
    • (2012) Pattern Recogn , vol.45 , pp. 1482-1499
    • Zhao, M.1    Zhang, Z.2    Chow, T.W.S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.