메뉴 건너뛰기




Volumn 364-365, Issue , 2016, Pages 222-240

Fuzzy nonlinear regression analysis using a random weight network

Author keywords

Fuzzy nonlinear regression; Fuzzy in fuzzy out; Random weight network; Triangular fuzzy number; cut set

Indexed keywords

BACKPROPAGATION; COMPUTATION THEORY; FUZZY RULES; FUZZY SETS; ITERATIVE METHODS; REGRESSION ANALYSIS;

EID: 84958214320     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.01.037     Document Type: Article
Times cited : (118)

References (55)
  • 1
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • [1] Alhamdoosh, M., Wang, D.H., Fast decorrelated neural network ensembles with random weights. Inf. Sci. 264 (2014), 104–117.
    • (2014) Inf. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.H.2
  • 2
    • 76349093533 scopus 로고    scopus 로고
    • Estimating the parameters of a fuzzy linear regression model
    • [2] Arabpour, A.R., Tata, M., Estimating the parameters of a fuzzy linear regression model. Iran. J. Fuzzy Syst. 5:2 (2008), 1–19.
    • (2008) Iran. J. Fuzzy Syst. , vol.5 , Issue.2 , pp. 1-19
    • Arabpour, A.R.1    Tata, M.2
  • 3
    • 84890128815 scopus 로고    scopus 로고
    • Sparse algorithms of random weight networks and applications
    • [3] Cao, F.L., Tan, Y.P., Cai, M.M., Sparse algorithms of random weight networks and applications. Expert Syst. Appl. 41:5 (2014), 2457–2462.
    • (2014) Expert Syst. Appl. , vol.41 , Issue.5 , pp. 2457-2462
    • Cao, F.L.1    Tan, Y.P.2    Cai, M.M.3
  • 4
    • 84945578663 scopus 로고    scopus 로고
    • An iterative learning algorithm for feedforward neural networks with random weights
    • [4] Cao, F.L., Wang, D.H., Cao, F.L, Zhu, H.Y., Wang, Y.G., An iterative learning algorithm for feedforward neural networks with random weights. Inf. Sci. 328 (2016), 546–557.
    • (2016) Inf. Sci. , vol.328 , pp. 546-557
    • Cao, F.L.1    Wang, D.H.2    Cao, F.L.3    Zhu, H.Y.4    Wang, Y.G.5
  • 5
    • 84928230663 scopus 로고    scopus 로고
    • A probabilistic learning algorithm for robust modeling using neural networks with random weights
    • [5] Cao, F.L., Ye, H.L., Wang, D.H., A probabilistic learning algorithm for robust modeling using neural networks with random weights. Inf. Sci. 313 (2015), 62–78.
    • (2015) Inf. Sci. , vol.313 , pp. 62-78
    • Cao, F.L.1    Ye, H.L.2    Wang, D.H.3
  • 6
    • 0342961074 scopus 로고    scopus 로고
    • Fuzzy regression with radial basis function network
    • [6] Cheng, C.B., Lee, E.S., Fuzzy regression with radial basis function network. Fuzzy Sets Syst. 119:2 (2001), 291–301.
    • (2001) Fuzzy Sets Syst. , vol.119 , Issue.2 , pp. 291-301
    • Cheng, C.B.1    Lee, E.S.2
  • 7
    • 0000325717 scopus 로고
    • Fuzzy least squares
    • [7] Diamond, P., Fuzzy least squares. Inf. Sci. 46:3 (1988), 141–157.
    • (1988) Inf. Sci. , vol.46 , Issue.3 , pp. 141-157
    • Diamond, P.1
  • 8
    • 0037454064 scopus 로고    scopus 로고
    • Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data
    • [8] D'Urso, P., Linear regression analysis for fuzzy/crisp input and fuzzy/crisp output data. Comput. Stat. Data Anal. 42:1 (2003), 47–72.
    • (2003) Comput. Stat. Data Anal. , vol.42 , Issue.1 , pp. 47-72
    • D'Urso, P.1
  • 9
    • 84944514201 scopus 로고    scopus 로고
    • Dynamic online HDP model for discovering evolutionary topics from Chinese social texts
    • [9] Fu, X.H., Li, J.Q., Yang, K., Cui, L.Z., Yang, L., Dynamic online HDP model for discovering evolutionary topics from Chinese social texts. Neurocomputing 171 (2016), 412–424.
    • (2016) Neurocomputing , vol.171 , pp. 412-424
    • Fu, X.H.1    Li, J.Q.2    Yang, K.3    Cui, L.Z.4    Yang, L.5
  • 10
    • 84870067197 scopus 로고    scopus 로고
    • Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon
    • [10] Fu, X.H., Liu, G., Guo, Y.Y., Wang, Z.Q., Multi-aspect sentiment analysis for Chinese online social reviews based on topic modeling and HowNet lexicon. Knowl. Based Syst. 37 (2013), 186–195.
    • (2013) Knowl. Based Syst. , vol.37 , pp. 186-195
    • Fu, X.H.1    Liu, G.2    Guo, Y.Y.3    Wang, Z.Q.4
  • 11
    • 84928068815 scopus 로고    scopus 로고
    • Dynamic non-parametric joint sentiment topic mixture model
    • [11] Fu, X.H., Yang, K., Huang, J.Z.X., Cui, L.Z., Dynamic non-parametric joint sentiment topic mixture model. Knowl. Based Syst. 82 (2015), 102–114.
    • (2015) Knowl. Based Syst. , vol.82 , pp. 102-114
    • Fu, X.H.1    Yang, K.2    Huang, J.Z.X.3    Cui, L.Z.4
  • 12
    • 77958468495 scopus 로고    scopus 로고
    • Fuzzy linear regression model with crisp coefficients: a goal programming approach
    • [12] Hasanpour, H., Maleki, H.R., Yaghoubi, M.A., Fuzzy linear regression model with crisp coefficients: a goal programming approach. Iran. J. Fuzzy Syst. 7:2 (2010), 19–39.
    • (2010) Iran. J. Fuzzy Syst. , vol.7 , Issue.2 , pp. 19-39
    • Hasanpour, H.1    Maleki, H.R.2    Yaghoubi, M.A.3
  • 13
    • 84940215664 scopus 로고    scopus 로고
    • Approximation of polygonal fuzzy neural networks in sense of Choquet integral norms
    • [13] He, C.M., Approximation of polygonal fuzzy neural networks in sense of Choquet integral norms. Int. J. Mach. Learn. Cybern. 5:1 (2014), 93–99.
    • (2014) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.1 , pp. 93-99
    • He, C.M.1
  • 14
    • 0033906922 scopus 로고    scopus 로고
    • Ridge regression: biased estimation for nonorthogonal problems
    • [14] Hoerl, A.E., Kennard, R.W., Ridge regression: biased estimation for nonorthogonal problems. Technometrics 42:1 (2000), 80–86.
    • (2000) Technometrics , vol.42 , Issue.1 , pp. 80-86
    • Hoerl, A.E.1    Kennard, R.W.2
  • 15
    • 0035899786 scopus 로고    scopus 로고
    • Fuzzy linear regression analysis for fuzzy input-output data using shape-preserving operations
    • [15] Hong, D.H., Lee, S., Do, H.Y., Fuzzy linear regression analysis for fuzzy input-output data using shape-preserving operations. Fuzzy Sets Syst. 122:3 (2001), 513–526.
    • (2001) Fuzzy Sets Syst. , vol.122 , Issue.3 , pp. 513-526
    • Hong, D.H.1    Lee, S.2    Do, H.Y.3
  • 16
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • [16] Igelnik, B., Pao, Y.H., Stochastic choice of basis functions in adaptive function approximation and the functional-link net. IEEE Trans. Neural Netw. 6:6 (1995), 1320–1329.
    • (1995) IEEE Trans. Neural Netw. , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.H.2
  • 17
    • 0001557773 scopus 로고
    • Fuzzy regression analysis using neural networks
    • [17] Ishibuchi, H., Tanaka, H., Fuzzy regression analysis using neural networks. Fuzzy Sets Syst. 50:3 (1992), 257–265.
    • (1992) Fuzzy Sets Syst. , vol.50 , Issue.3 , pp. 257-265
    • Ishibuchi, H.1    Tanaka, H.2
  • 18
    • 0027912844 scopus 로고
    • An architecture of neural networks with interval weights and its application to fuzzy regression analysis
    • [18] Ishibuchi, H., Tanaka, H., An architecture of neural networks with interval weights and its application to fuzzy regression analysis. Fuzzy Sets Syst. 57:1 (1993), 27–39.
    • (1993) Fuzzy Sets Syst. , vol.57 , Issue.1 , pp. 27-39
    • Ishibuchi, H.1    Tanaka, H.2
  • 19
    • 0029297402 scopus 로고
    • A learning algorithm of fuzzy neural networks with triangular fuzzy weights
    • [19] Ishibuchi, H., Kwon, K., Tanaka, H., A learning algorithm of fuzzy neural networks with triangular fuzzy weights. Fuzzy Sets Syst. 71:3 (1995), 277–293.
    • (1995) Fuzzy Sets Syst. , vol.71 , Issue.3 , pp. 277-293
    • Ishibuchi, H.1    Kwon, K.2    Tanaka, H.3
  • 20
    • 0037117204 scopus 로고    scopus 로고
    • A fuzzy linear regression model with better explanatory power
    • [20] Kao, C., Chyu, C.L., A fuzzy linear regression model with better explanatory power. Fuzzy Sets Syst. 126:3 (2002), 401–409.
    • (2002) Fuzzy Sets Syst. , vol.126 , Issue.3 , pp. 401-409
    • Kao, C.1    Chyu, C.L.2
  • 21
    • 0037449241 scopus 로고    scopus 로고
    • Least-squares estimates in fuzzy regression analysis
    • [21] Kao, C., Chyu, C.L., Least-squares estimates in fuzzy regression analysis. Eur. J. Oper. Res. 148:2 (2003), 426–435.
    • (2003) Eur. J. Oper. Res. , vol.148 , Issue.2 , pp. 426-435
    • Kao, C.1    Chyu, C.L.2
  • 22
    • 84872356815 scopus 로고    scopus 로고
    • Twin support vector regression for the simultaneous learning of a function and its derivatives
    • [22] Khemchandani, R., Karpatne, A., Chandra, S., Twin support vector regression for the simultaneous learning of a function and its derivatives. Int. J. Mach. Learn. Cybern. 4:1 (2013), 51–63.
    • (2013) Int. J. Mach. Learn. Cybern. , vol.4 , Issue.1 , pp. 51-63
    • Khemchandani, R.1    Karpatne, A.2    Chandra, S.3
  • 24
    • 84937814430 scopus 로고    scopus 로고
    • Study on novel curvature features for 3d fingerprint recognition
    • [24] Liu, F., Zhang, D., Shen, L.L., Study on novel curvature features for 3d fingerprint recognition. Neurocomputing 168 (2015), 599–608.
    • (2015) Neurocomputing , vol.168 , pp. 599-608
    • Liu, F.1    Zhang, D.2    Shen, L.L.3
  • 25
    • 84872352584 scopus 로고    scopus 로고
    • Comparative study on classification performance between support vector machine and logistic regression
    • [25] Musa, A.B., Comparative study on classification performance between support vector machine and logistic regression. Int. J. Mach. Learn. Cybern. 4:1 (2013), 13–24.
    • (2013) Int. J. Mach. Learn. Cybern. , vol.4 , Issue.1 , pp. 13-24
    • Musa, A.B.1
  • 26
    • 84901768122 scopus 로고    scopus 로고
    • 1-regularizion, PCA, KPCA and ICA for dimensionality reduction in logistic regression
    • 1-regularizion, PCA, KPCA and ICA for dimensionality reduction in logistic regression. Int. J. Mach. Learn. Cybern. 5:6 (2014), 861–873.
    • (2014) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.6 , pp. 861-873
    • Musa, A.B.1
  • 27
    • 0026868102 scopus 로고
    • Functional-link net computing
    • [27] Pao, Y.H., Takefuji, Y., Functional-link net computing. IEEE Comput. 25:5 (1992), 76–79.
    • (1992) IEEE Comput. , vol.25 , Issue.5 , pp. 76-79
    • Pao, Y.H.1    Takefuji, Y.2
  • 29
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • [29] Rumelhart, D.E., Hinton, G.E., Williams, R.J., Learning representations by back-propagating errors. Nature 323 (1986), 533–536.
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 30
    • 38249008924 scopus 로고
    • Fuzzy linear regression analysis for fuzzy input output data
    • [30] Sakawa, M., Yano, H., Fuzzy linear regression analysis for fuzzy input output data. Inf. Sci. 63:3 (1992), 191–206.
    • (1992) Inf. Sci. , vol.63 , Issue.3 , pp. 191-206
    • Sakawa, M.1    Yano, H.2
  • 31
    • 0001563202 scopus 로고
    • Multiobjective fuzzy linear regression analysis for fuzzy input-output data
    • [31] Sakawa, M., Yano, H., Multiobjective fuzzy linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst. 47:2 (1992), 173–181.
    • (1992) Fuzzy Sets Syst. , vol.47 , Issue.2 , pp. 173-181
    • Sakawa, M.1    Yano, H.2
  • 33
    • 84922746025 scopus 로고    scopus 로고
    • Distributed learning for random vector functional-link networks
    • [33] Scardapane, S., Wang, D.H., Panella, M., Uncini, A., Distributed learning for random vector functional-link networks. Inf. Sci. 301 (2015), 271–284.
    • (2015) Inf. Sci. , vol.301 , pp. 271-284
    • Scardapane, S.1    Wang, D.H.2    Panella, M.3    Uncini, A.4
  • 35
    • 0020207081 scopus 로고
    • Linear regression analysis with fuzzy model. IEEE transactions on systems
    • [35] Tanaka, H., Uejima, S., Asai, K., Linear regression analysis with fuzzy model. IEEE transactions on systems. Man Cybern. 12:6 (1982), 903–907.
    • (1982) Man Cybern. , vol.12 , Issue.6 , pp. 903-907
    • Tanaka, H.1    Uejima, S.2    Asai, K.3
  • 36
    • 84942864553 scopus 로고    scopus 로고
    • Uncertainty in learning from big data-editorial
    • [36] Wang, X.Z., Uncertainty in learning from big data-editorial. J. Intell. Fuzzy Syst. 28:5 (2015), 2329–2330.
    • (2015) J. Intell. Fuzzy Syst. , vol.28 , Issue.5 , pp. 2329-2330
    • Wang, X.Z.1
  • 37
    • 84944558821 scopus 로고    scopus 로고
    • Fuzziness based sample categorization for classifier performance improvement
    • [37] Wang, X.Z., Ashfaq, R.A.R., Fu, A.M., Fuzziness based sample categorization for classifier performance improvement. J. Intell. Fuzzy Syst. 29:3 (2015), 1185–1196.
    • (2015) J. Intell. Fuzzy Syst. , vol.29 , Issue.3 , pp. 1185-1196
    • Wang, X.Z.1    Ashfaq, R.A.R.2    Fu, A.M.3
  • 38
    • 44049110979 scopus 로고
    • Fuzzy linear regression analysis
    • [38] Wang, X.Z., Ha, M.H., Fuzzy linear regression analysis. Fuzzy Sets Syst. 51:2 (1992), 179–188.
    • (1992) Fuzzy Sets Syst. , vol.51 , Issue.2 , pp. 179-188
    • Wang, X.Z.1    Ha, M.H.2
  • 39
    • 0000267255 scopus 로고    scopus 로고
    • On the handling of fuzziness for continuous-valued attributes in decision tree generation
    • [39] Wang, X.Z., Hong, J.R., On the handling of fuzziness for continuous-valued attributes in decision tree generation. Fuzzy Sets Syst. 99:3 (1998), 283–290.
    • (1998) Fuzzy Sets Syst. , vol.99 , Issue.3 , pp. 283-290
    • Wang, X.Z.1    Hong, J.R.2
  • 40
    • 0001325256 scopus 로고    scopus 로고
    • Insight of a fuzzy regression model
    • [40] Wang, H.F., Tsaur, R.C., Insight of a fuzzy regression model. Fuzzy Sets Syst. 112:3 (2000), 355–369.
    • (2000) Fuzzy Sets Syst. , vol.112 , Issue.3 , pp. 355-369
    • Wang, H.F.1    Tsaur, R.C.2
  • 41
    • 84975259875 scopus 로고    scopus 로고
    • A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning
    • [41] Wang, X.Z., Xing, H.J., Li, Y., Hua, Q., Dong, C.R., Pedrycz, W., A study on relationship between generalization abilities and fuzziness of base classifiers in ensemble learning. IEEE Trans. Fuzzy Syst. 23:5 (2015), 1638–1654.
    • (2015) IEEE Trans. Fuzzy Syst. , vol.23 , Issue.5 , pp. 1638-1654
    • Wang, X.Z.1    Xing, H.J.2    Li, Y.3    Hua, Q.4    Dong, C.R.5    Pedrycz, W.6
  • 42
    • 0041703886 scopus 로고    scopus 로고
    • Linear regression analysis for fuzzy input and output data using the extension principle
    • [42] Wu, H.C., Linear regression analysis for fuzzy input and output data using the extension principle. Comput. Math. Appl. 45:12 (2003), 1849–1859.
    • (2003) Comput. Math. Appl. , vol.45 , Issue.12 , pp. 1849-1859
    • Wu, H.C.1
  • 43
    • 0037117193 scopus 로고    scopus 로고
    • Fuzzy least-squares linear regression analysis for fuzzy input-output data
    • [43] Yang, M.S., Lin, T.S., Fuzzy least-squares linear regression analysis for fuzzy input-output data. Fuzzy Sets Syst. 126:3 (2002), 389–399.
    • (2002) Fuzzy Sets Syst. , vol.126 , Issue.3 , pp. 389-399
    • Yang, M.S.1    Lin, T.S.2
  • 44
    • 84937816021 scopus 로고    scopus 로고
    • Joint representation and pattern learning for robust face recognition
    • [44] Yang, M., Zhu, P.F., Liu, F., Shen, L.L., Joint representation and pattern learning for robust face recognition. Neurocomputing 168 (2015), 70–80.
    • (2015) Neurocomputing , vol.168 , pp. 70-80
    • Yang, M.1    Zhu, P.F.2    Liu, F.3    Shen, L.L.4
  • 45
    • 0000570996 scopus 로고    scopus 로고
    • A linear regression model using triangular fuzzy number coefficients
    • [45] Yen, K.K., Ghoshray, S., Roig, G., A linear regression model using triangular fuzzy number coefficients. Fuzzy Sets Syst. 106:2 (1999), 167–177.
    • (1999) Fuzzy Sets Syst. , vol.106 , Issue.2 , pp. 167-177
    • Yen, K.K.1    Ghoshray, S.2    Roig, G.3
  • 46
    • 84906935098 scopus 로고    scopus 로고
    • A mapreduce based parallel SVM for large-scale predicting protein-protein interactions
    • [46] You, Z.H., Yu, J.Z., Zhu, L., Li, S., Wen, Z.K., A mapreduce based parallel SVM for large-scale predicting protein-protein interactions. Neurocomputing 145 (2014), 37–43.
    • (2014) Neurocomputing , vol.145 , pp. 37-43
    • You, Z.H.1    Yu, J.Z.2    Zhu, L.3    Li, S.4    Wen, Z.K.5
  • 47
    • 84944797292 scopus 로고    scopus 로고
    • Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set
    • (Suppl 15): S9
    • [47] You, Z.H., Zhu, L., Zheng, C.H., Yu, H.J., Deng, S.P., Ji, Z., Prediction of protein-protein interactions from amino acid sequences using a novel multi-scale continuous and discontinuous feature set. BMC Bioinform., 15, 2014 (Suppl 15): S9.
    • (2014) BMC Bioinform. , vol.15
    • You, Z.H.1    Zhu, L.2    Zheng, C.H.3    Yu, H.J.4    Deng, S.P.5    Ji, Z.6
  • 48
    • 84868095525 scopus 로고    scopus 로고
    • Learning rates of least-square regularized regression with strongly mixing observations
    • [48] Zhang, Y.Q., Cao, F.L., Yan, C.W., Learning rates of least-square regularized regression with strongly mixing observations. Int. J. Mach. Learn. Cybern. 3:4 (2012), 277–283.
    • (2012) Int. J. Mach. Learn. Cybern. , vol.3 , Issue.4 , pp. 277-283
    • Zhang, Y.Q.1    Cao, F.L.2    Yan, C.W.3
  • 49
    • 30344476977 scopus 로고    scopus 로고
    • Fuzzy nonlinear regression with fuzzified radial basis function network
    • [49] Zhang, D., Deng, L.F., Cai, K.Y., So, A., Fuzzy nonlinear regression with fuzzified radial basis function network. IEEE Trans. Fuzzy Syst. 13:6 (2005), 742–760.
    • (2005) IEEE Trans. Fuzzy Syst. , vol.13 , Issue.6 , pp. 742-760
    • Zhang, D.1    Deng, L.F.2    Cai, K.Y.3    So, A.4
  • 50
    • 84951823694 scopus 로고    scopus 로고
    • A comprehensive evaluation of random vector functional link networks, Inf
    • Sci., (2015), in press. doi:
    • [50] L. Zhang, P.N. Suganthan, A comprehensive evaluation of random vector functional link networks, Inf. Sci., (2015), in press. doi: 10.1016/j.ins.2015.09.025.
    • Zhang, L.1    Suganthan, P.N.2
  • 51
    • 84926246788 scopus 로고    scopus 로고
    • A local learning algorithm for random weights networks
    • [51] Zhao, J.W., Wang, Z.H., Cao, F.L., Wang, D.H., A local learning algorithm for random weights networks. Knowl. Based Syst. 74 (2015), 159–166.
    • (2015) Knowl. Based Syst. , vol.74 , pp. 159-166
    • Zhao, J.W.1    Wang, Z.H.2    Cao, F.L.3    Wang, D.H.4
  • 52
    • 80052061786 scopus 로고    scopus 로고
    • Gradient descent algorithms for quantile regression with smooth approximation
    • [52] Zheng, S.F., Gradient descent algorithms for quantile regression with smooth approximation. Int. J. Mach. Learn. Cybern. 2:3 (2011), 191–207.
    • (2011) Int. J. Mach. Learn. Cybern. , vol.2 , Issue.3 , pp. 191-207
    • Zheng, S.F.1
  • 53
    • 84921052011 scopus 로고    scopus 로고
    • A fast algorithm for training support vector regression via smoothed primal function minimization
    • [53] Zheng, S.F., A fast algorithm for training support vector regression via smoothed primal function minimization. Int. J. Mach. Learn. Cybern. 6:1 (2015), 155–166.
    • (2015) Int. J. Mach. Learn. Cybern. , vol.6 , Issue.1 , pp. 155-166
    • Zheng, S.F.1
  • 54
    • 84941560101 scopus 로고    scopus 로고
    • Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections
    • [54] Zhou, P., Yuan, M., Wang, H., Wang, Z., Chai, T.Y., Multivariable dynamic modeling for molten iron quality using online sequential random vector functional-link networks with self-feedback connections. Inf. Sci. 325 (2015), 237–255.
    • (2015) Inf. Sci. , vol.325 , pp. 237-255
    • Zhou, P.1    Yuan, M.2    Wang, H.3    Wang, Z.4    Chai, T.Y.5
  • 55
    • 84922430338 scopus 로고    scopus 로고
    • Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework
    • [55] Zhu, Z.X., Jia, S., He, S., Sun, Y.W., Ji, Z., Shen, L.L., Three-dimensional Gabor feature extraction for hyperspectral imagery classification using a memetic framework. Inf. Sci. 298 (2015), 274–287.
    • (2015) Inf. Sci. , vol.298 , pp. 274-287
    • Zhu, Z.X.1    Jia, S.2    He, S.3    Sun, Y.W.4    Ji, Z.5    Shen, L.L.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.