메뉴 건너뛰기




Volumn 8, Issue 3, 2017, Pages 793-805

Adaptive semi-supervised dimensionality reduction based on pairwise constraints weighting and graph optimizing

Author keywords

Adaptive dimensionality reduction; Graph construction optimizing; Pairwise constraints weighting; Semi supervised learning

Indexed keywords

CLUSTERING ALGORITHMS; DATA HANDLING; IMAGE RECOGNITION; SUPERVISED LEARNING;

EID: 85019254461     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-015-0380-3     Document Type: Article
Times cited : (14)

References (31)
  • 4
    • 84929088771 scopus 로고    scopus 로고
    • Linear discriminant analysis for the small sample size problem: an overview
    • Sharma A, Paliwal KK (2015) Linear discriminant analysis for the small sample size problem: an overview. Int J Mach Learn Cybern (IJMLC) 6:443–454
    • (2015) Int J Mach Learn Cybern (IJMLC) , vol.6 , pp. 443-454
    • Sharma, A.1    Paliwal, K.K.2
  • 6
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Song Y, Nie F, Zhang C, Xiang S (2008) A unified framework for semi-supervised dimensionality reduction. Pattern Recognit 41(9):2789–2799
    • (2008) Pattern Recognit , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 7
    • 77952518276 scopus 로고    scopus 로고
    • A unified semi-supervised dimensionality reduction framework for manifold learning
    • Chatpatanasiri R, Kijsirikul B (2010) A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing 73(10–12):1631–1640
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1631-1640
    • Chatpatanasiri, R.1    Kijsirikul, B.2
  • 8
    • 85016118468 scopus 로고    scopus 로고
    • Semi-supervised clustering for gene-expression data in multiobjective optimization framework. Int J Mach Learn Cybern (IJMLC)
    • Alok AK, Saha S, Ekbal A (2015) Semi-supervised clustering for gene-expression data in multiobjective optimization framework. Int J Mach Learn Cybern (IJMLC). doi:10.1007/s13042-015-0335-8
    • (2015) doi:10.1007/s13042-015-0335-8
    • Alok, A.K.1    Saha, S.2    Ekbal, A.3
  • 9
    • 85019264545 scopus 로고    scopus 로고
    • Clustering with instance-level constraints. In: Proceedings of the 17th International Conference on Machine Learning
    • Wagstaff K, Cardie C (2000) Clustering with instance-level constraints. In: Proceedings of the 17th International Conference on Machine Learning, pp 1003–1110
    • (2000) pp 1003–1110
    • Wagstaff, K.1    Cardie, C.2
  • 11
    • 9444294778 scopus 로고    scopus 로고
    • From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: Proceedings of the 19th International Conference on Machine Learning
    • Klein D, Kamvar SD, Manning CD (2002) From instance-level constraints to space-level constraints: making the most of prior knowledge in data clustering. In: Proceedings of the 19th International Conference on Machine Learning, pp 307–314
    • (2002) pp 307–314
    • Klein, D.1    Kamvar, S.D.2    Manning, C.D.3
  • 13
    • 84879571292 scopus 로고    scopus 로고
    • Distance metric learning, with application to clustering with side-information
    • Xing EP, Ng AY, Jordan MI, Russell S (2003) Distance metric learning, with application to clustering with side-information. Adv Neural Inf Process Syst 15:505–512
    • (2003) Adv Neural Inf Process Syst , vol.15 , pp. 505-512
    • Xing, E.P.1    Ng, A.Y.2    Jordan, M.I.3    Russell, S.4
  • 14
    • 85019257520 scopus 로고    scopus 로고
    • Pairwise constraints-guided dimensionality reduction. In: Proceedings of the SDM’06 Workshop on Feature Selection for Data Mining
    • Tang W, Zhong S (2006) Pairwise constraints-guided dimensionality reduction. In: Proceedings of the SDM’06 Workshop on Feature Selection for Data Mining, pp 59–66
    • (2006) pp 59–66
    • Tang, W.1    Zhong, S.2
  • 15
    • 33244489358 scopus 로고    scopus 로고
    • Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints
    • Yeung DY, Chang H (2006) Extending the relevant component analysis algorithm for metric learning using both positive and negative equivalence constraints. Pattern Recognit 39(5):1007–1010
    • (2006) Pattern Recognit , vol.39 , Issue.5 , pp. 1007-1010
    • Yeung, D.Y.1    Chang, H.2
  • 16
    • 51949114601 scopus 로고    scopus 로고
    • Exploiting side information in locality preserving projection. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition
    • An S, Liu W, Venkatesh S (2008) Exploiting side information in locality preserving projection. In: Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp 1–8
    • (2008) pp 1–8
    • An, S.1    Liu, W.2    Venkatesh, S.3
  • 17
    • 57749197763 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction. In: Proceedings of the 7th SIAM International Conference on Data Mining
    • Zhang D, Zhou Z, Chen S (2007) Semi-supervised dimensionality reduction. In: Proceedings of the 7th SIAM International Conference on Data Mining, pp 629–634
    • (2007) pp 629–634
    • Zhang, D.1    Zhou, Z.2    Chen, S.3
  • 18
    • 79952022416 scopus 로고    scopus 로고
    • Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification
    • Chen S, Zhang D (2011) Semisupervised dimensionality reduction with pairwise constraints for hyperspectral image classification. IEEE Geosci Remote Sens Lett 8(2):369–373
    • (2011) IEEE Geosci Remote Sens Lett , vol.8 , Issue.2 , pp. 369-373
    • Chen, S.1    Zhang, D.2
  • 19
    • 57349091730 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: Proceedings of the 2008 International Conference on Computer Vision Theory and Applications
    • Cevikalp H, Verbeek J, Jurie F, Klaser A (2008) Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: Proceedings of the 2008 International Conference on Computer Vision Theory and Applications, pp 489–496
    • (2008) pp 489–496
    • Cevikalp, H.1    Verbeek, J.2    Jurie, F.3    Klaser, A.4
  • 21
    • 52349092368 scopus 로고    scopus 로고
    • Neighborhood preserving based semi-supervised dimensionality reduction
    • Wei J, Peng H (2008) Neighborhood preserving based semi-supervised dimensionality reduction. Electron Lett 44(20):1190–1191
    • (2008) Electron Lett , vol.44 , Issue.20 , pp. 1190-1191
    • Wei, J.1    Peng, H.2
  • 22
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500):2323–2327
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2327
    • Roweis, S.T.1    Saul, L.K.2
  • 23
    • 77949265725 scopus 로고    scopus 로고
    • Semi-supervised metric learning using pairwise constraints. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
    • Baghshah MS, Shouraki SB (2009) Semi-supervised metric learning using pairwise constraints. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp 1217–1222
    • (2009) pp 1217–1222
    • Baghshah, M.S.1    Shouraki, S.B.2
  • 24
    • 78751690140 scopus 로고    scopus 로고
    • Knowledge driven dimension reduction for clustering. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence
    • Davidson I (2009) Knowledge driven dimension reduction for clustering. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence, pp 1034–1039
    • (2009) pp 1034–1039
    • Davidson, I.1
  • 25
    • 80555131196 scopus 로고    scopus 로고
    • Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints
    • Yan S, Bouaziz S, Lee D, Barlow J (2012) Semi-supervised dimensionality reduction for analyzing high-dimensional data with constraints. Neurocomputing 76(1):114–124
    • (2012) Neurocomputing , vol.76 , Issue.1 , pp. 114-124
    • Yan, S.1    Bouaziz, S.2    Lee, D.3    Barlow, J.4
  • 26
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian eigenmaps for dimensionality reduction and data representation
    • Belkin M, Niyogi P (2003) Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput 15(6):1373–1396
    • (2003) Neural Comput , vol.15 , Issue.6 , pp. 1373-1396
    • Belkin, M.1    Niyogi, P.2
  • 27
    • 51949086172 scopus 로고    scopus 로고
    • Semi-supervised classification by low density separation. In: Proceedings of the 22nd International Conference on Machine Learning
    • Chapelle O, Zien A (2005) Semi-supervised classification by low density separation. In: Proceedings of the 22nd International Conference on Machine Learning, pp 57–64
    • (2005) pp 57–64
    • Chapelle, O.1    Zien, A.2
  • 28
    • 0347380229 scopus 로고    scopus 로고
    • The CMU pose, illumination, and expression database
    • Sim T, Barker S, Bsat M (2003) The CMU pose, illumination, and expression database. IEEE Trans Pattern Anal Mach Intell 25(12):1615–1618
    • (2003) IEEE Trans Pattern Anal Mach Intell , vol.25 , Issue.12 , pp. 1615-1618
    • Sim, T.1    Barker, S.2    Bsat, M.3
  • 29
    • 0035363672 scopus 로고    scopus 로고
    • From few to many: illumination cone models for face recognition under variable lighting and pose
    • Georghiades AS, Belhumeur PN, Kriegman DJ (2001) From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans Pattern Anal Mach Intell 23(6):643–660
    • (2001) IEEE Trans Pattern Anal Mach Intell , vol.23 , Issue.6 , pp. 643-660
    • Georghiades, A.S.1    Belhumeur, P.N.2    Kriegman, D.J.3
  • 30
    • 0032203257 scopus 로고    scopus 로고
    • Gradient-based learning applied to document recognition
    • LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324
    • (1998) Proc IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.