-
4
-
-
0028428006
-
A robust backpropagation learning algorithm for function approximation
-
D.S. Chen, and R.C. Jain A robust backpropagation learning algorithm for function approximation IEEE Trans. Neural Networks 5 3 1994 467 479
-
(1994)
IEEE Trans. Neural Networks
, vol.5
, Issue.3
, pp. 467-479
-
-
Chen, D.S.1
Jain, R.C.2
-
5
-
-
0029156915
-
Robustization of a learning method for RBF networks
-
A. Sanchez, and V. David Robustization of a learning method for RBF networks Neurocomputing 9 1 1995 85 94
-
(1995)
Neurocomputing
, vol.9
, Issue.1
, pp. 85-94
-
-
Sanchez, A.1
David, V.2
-
6
-
-
0032142658
-
Robust interval regression analysis using neural networks
-
L. Huang, B.L. Zhang, and Q. Huang Robust interval regression analysis using neural networks Fuzzy Sets Syst. 97 3 1998 337 347
-
(1998)
Fuzzy Sets Syst.
, vol.97
, Issue.3
, pp. 337-347
-
-
Huang, L.1
Zhang, B.L.2
Huang, Q.3
-
7
-
-
0034271492
-
The annealing robust backpropagation (ARBP) learning algorithm
-
C.C. Chuang, S.F. Su, and C.C. Hsiao The annealing robust backpropagation (ARBP) learning algorithm IEEE Trans. Neural Networks 11 2000 1067 1077
-
(2000)
IEEE Trans. Neural Networks
, vol.11
, pp. 1067-1077
-
-
Chuang, C.C.1
Su, S.F.2
Hsiao, C.C.3
-
8
-
-
0029777584
-
Robust error measure for supervised neural network learning with outliers
-
K. Liano Robust error measure for supervised neural network learning with outliers IEEE Trans. Neural Networks 7 1 1996 246 250
-
(1996)
IEEE Trans. Neural Networks
, vol.7
, Issue.1
, pp. 246-250
-
-
Liano, K.1
-
9
-
-
0036825528
-
Weighted least squares support vector machines: Robustness and sparse approximation
-
J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle Weighted least squares support vector machines: robustness and sparse approximation Neurocomputing 48 1 2002 85 105
-
(2002)
Neurocomputing
, vol.48
, Issue.1
, pp. 85-105
-
-
Suykens, J.A.K.1
De Brabanter, J.2
Lukas, L.3
Vandewalle, J.4
-
10
-
-
0036856978
-
Robust support vector regression networks for function approximation with outliers
-
C.C. Chuang, S.F. Su, J.T. Jeng, and C.C. Hsiao Robust support vector regression networks for function approximation with outliers IEEE Trans. Neural Networks 13 6 2002 1322 1330
-
(2002)
IEEE Trans. Neural Networks
, vol.13
, Issue.6
, pp. 1322-1330
-
-
Chuang, C.C.1
Su, S.F.2
Jeng, J.T.3
Hsiao, C.C.4
-
11
-
-
55249111553
-
Robust least squares-support vector machines for regression with outliers
-
C.C. Chuang, J.T. Jeng, and M.L. Chan Robust least squares-support vector machines for regression with outliers IEEE Int. Conf. Fuzzy Syst. 2008 312 317
-
(2008)
IEEE Int. Conf. Fuzzy Syst.
, pp. 312-317
-
-
Chuang, C.C.1
Jeng, J.T.2
Chan, M.L.3
-
12
-
-
79952315022
-
Multiple classifier systems for robust classifier design in adversarial environments
-
B. Biggio, G. Fumera, and F. Roli Multiple classifier systems for robust classifier design in adversarial environments Int. J. Mach. Learn. Cybernet. 1 1-4 2010 27 41
-
(2010)
Int. J. Mach. Learn. Cybernet.
, vol.1
, Issue.14
, pp. 27-41
-
-
Biggio, B.1
Fumera, G.2
Roli, F.3
-
13
-
-
84901207016
-
A simple and effective outlier detection algorithm for categorical data
-
X.W. Zhao, J.Y. Liang, and F.Y. Cao A simple and effective outlier detection algorithm for categorical data Int. J. Mach. Learn. Cybernet. 5 3 2014 469 477
-
(2014)
Int. J. Mach. Learn. Cybernet.
, vol.5
, Issue.3
, pp. 469-477
-
-
Zhao, X.W.1
Liang, J.Y.2
Cao, F.Y.3
-
14
-
-
79958130313
-
Robust tensor subspace learning for anomaly detection
-
J. Li, G. Han, J. Wen, and X.B. Gao Robust tensor subspace learning for anomaly detection Int. J. Mach. Learn. Cybernet. 2 2 2011 89 98
-
(2011)
Int. J. Mach. Learn. Cybernet.
, vol.2
, Issue.2
, pp. 89-98
-
-
Li, J.1
Han, G.2
Wen, J.3
Gao, X.B.4
-
16
-
-
0001300994
-
Solution of incorrectly formulated problems and the regularization method
-
A.N. Tychonoff Solution of incorrectly formulated problems and the regularization method Soviet 4 1963 1035 1038
-
(1963)
Soviet
, vol.4
, pp. 1035-1038
-
-
Tychonoff, A.N.1
-
17
-
-
84890128815
-
Sparse algorithms of random weight networks and applications
-
F.L. Cao, Y.P. Tan, and M.M. Cai Sparse algorithms of random weight networks and applications Expert Syst. Appl. 41 2014 2457 2462
-
(2014)
Expert Syst. Appl.
, vol.41
, pp. 2457-2462
-
-
Cao, F.L.1
Tan, Y.P.2
Cai, M.M.3
-
18
-
-
84862819230
-
l 1-norm for image analysis
-
l 1-norm for image analysis Pattern Recogn. Lett. 33 5 2012 537 542
-
(2012)
Pattern Recogn. Lett.
, vol.33
, Issue.5
, pp. 537-542
-
-
Wang, H.X.1
-
19
-
-
33646365077
-
l 1-norm solution is also the sparsest solution
-
l 1-norm solution is also the sparsest solution Commun. Pure Appl. Math. 59 2006 797 829
-
(2006)
Commun. Pure Appl. Math.
, vol.59
, pp. 797-829
-
-
Donoho, D.L.1
-
20
-
-
55349134896
-
l 1-norm minimization problems when the solution may be sparse
-
l 1-norm minimization problems when the solution may be sparse IEEE Trans. Inform. Theory 54 2008 4789 4812
-
(2008)
IEEE Trans. Inform. Theory
, vol.54
, pp. 4789-4812
-
-
Donoho, D.L.1
Tsaig, Y.2
-
21
-
-
33745179218
-
l 1 norm factorization in the presence of outliers and missing data by alternative convex programming
-
l 1 norm factorization in the presence of outliers and missing data by alternative convex programming IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1 2005 739 746
-
(2005)
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn.
, vol.1
, pp. 739-746
-
-
Ke, Q.1
Kanade, T.2
-
23
-
-
84867841972
-
A probabilistic approach to robust matrix factorization
-
Springer Berlin, Heidelberg
-
N.Y. Wang, T.S. Yao, J.D. Wang, and D.Y. Yeung A probabilistic approach to robust matrix factorization Computer Vision-ECCV 2012 2012 Springer Berlin, Heidelberg 126 139
-
(2012)
Computer Vision-ECCV 2012
, pp. 126-139
-
-
Wang, N.Y.1
Yao, T.S.2
Wang, J.D.3
Yeung, D.Y.4
-
26
-
-
85051374302
-
Feed forward neural networks with random weights
-
W.F. Schmidt, M.A. Kraaijveld, R.P.W. Duin, Feed forward neural networks with random weights, in: Proceedings of 11th IAPR International Conference on Pattern Recognition Methodology and Systems, vol. 2, 1992, pp. 1-4.
-
(1992)
Proceedings of 11th IAPR International Conference on Pattern Recognition Methodology and Systems
, vol.2
, pp. 1-4
-
-
Schmidt, W.F.1
Kraaijveld, M.A.2
Duin, R.P.W.3
-
28
-
-
0026868102
-
Functional-link net computing: Theory, system architecture, and functionalities
-
Y.H. Pao, and Y. Takefuji Functional-link net computing: theory, system architecture, and functionalities IEEE Computer 25 5 1992 76 79
-
(1992)
IEEE Computer
, vol.25
, Issue.5
, pp. 76-79
-
-
Pao, Y.H.1
Takefuji, Y.2
-
29
-
-
0028420218
-
Learning and generalization characteristics of the random vector functional-link net
-
Y.H. Pao, G.H. Park, and D.J. Sobajic Learning and generalization characteristics of the random vector functional-link net Neurocomputing 6 2 1994 163 180
-
(1994)
Neurocomputing
, vol.6
, Issue.2
, pp. 163-180
-
-
Pao, Y.H.1
Park, G.H.2
Sobajic, D.J.3
-
30
-
-
0029403793
-
Stochastic choice of basis functions in adaptive function approximation and the functional-link net
-
B. Igelnik, and Y.H. Pao Stochastic choice of basis functions in adaptive function approximation and the functional-link net IEEE Trans. Neural Networks 6 6 1995 1320 1329
-
(1995)
IEEE Trans. Neural Networks
, vol.6
, Issue.6
, pp. 1320-1329
-
-
Igelnik, B.1
Pao, Y.H.2
-
31
-
-
0032028728
-
The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
-
P.L. Bartlett The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network IEEE Trans. Inform. Theory 44 2 1998 525 536
-
(1998)
IEEE Trans. Inform. Theory
, vol.44
, Issue.2
, pp. 525-536
-
-
Bartlett, P.L.1
-
32
-
-
29144439194
-
Decoding by linear programming
-
E.J. Candès, and T. Tao Decoding by linear programming IEEE Trans. Inform. Theory 51 12 2005 4203 4215
-
(2005)
IEEE Trans. Inform. Theory
, vol.51
, Issue.12
, pp. 4203-4215
-
-
Candès, E.J.1
Tao, T.2
-
34
-
-
0029291966
-
Sparse approximate solutions to linear systems
-
B.K. Natarajan Sparse approximate solutions to linear systems SIAM J. Comput. 24 2 1995 227 234
-
(1995)
SIAM J. Comput.
, vol.24
, Issue.2
, pp. 227-234
-
-
Natarajan, B.K.1
-
35
-
-
0003939997
-
-
Springer
-
S. Kotz, T.J. Kozubowski, and K. Podgorski The Laplace Distribution and Generalizations: A Revisit With Applications to Communications, Exonomics, Engineering, and Finance 2001 Springer
-
(2001)
The Laplace Distribution and Generalizations: A Revisit with Applications to Communications, Exonomics, Engineering, and Finance
-
-
Kotz, S.1
Kozubowski, T.J.2
Podgorski, K.3
-
36
-
-
0000217030
-
Normal/independent distributions and their applications in robust regression
-
K. Lange, and J.S. Sinsheime Normal/independent distributions and their applications in robust regression J. Comput. Graph. Stat. 2 2 1993 175 198
-
(1993)
J. Comput. Graph. Stat.
, vol.2
, Issue.2
, pp. 175-198
-
-
Lange, K.1
Sinsheime, J.S.2
-
37
-
-
0002629270
-
Maximum likelihood from incomplete data via the em algorithm
-
A.P. Dempster, N.M. Laird, and D.B. Rubin Maximum likelihood from incomplete data via the EM algorithm J. Roy. Stat. Soc., Ser. B (Methodol.) 39 1 1977 1 38
-
(1977)
J. Roy. Stat. Soc., Ser. B (Methodol.)
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
38
-
-
84864944646
-
EP-GIG priors and applications in Bayesian sparse learning
-
Z.H. Zhang, S.S. Wang, D.H. Liu, and M.I. Jordan EP-GIG priors and applications in Bayesian sparse learning J. Mach. Learn. Res. 13 1 2012 2031 2061
-
(2012)
J. Mach. Learn. Res.
, vol.13
, Issue.1
, pp. 2031-2061
-
-
Zhang, Z.H.1
Wang, S.S.2
Liu, D.H.3
Jordan, M.I.4
-
39
-
-
84899013173
-
Support vector regression machines
-
H. Drucker, C.J. C Burges, L. Kaufman, A. Smola, and V. Vapnik Support vector regression machines Adv. Neural Inform. Process. Syst. 9 1997 155 161
-
(1997)
Adv. Neural Inform. Process. Syst.
, vol.9
, pp. 155-161
-
-
Drucker, H.1
Burges C J, C.2
Kaufman, L.3
Smola, A.4
Vapnik, V.5
-
40
-
-
84886567160
-
-
School of Information and Computer Science, University of California, Irvine
-
K. Bache, M. Lichman, UCI Machine Learning Repository, School of Information and Computer Science, University of California, Irvine, 2013. < http://archive.ics.uci.edu/ml >.
-
(2013)
UCI Machine Learning Repository
-
-
Bache, K.1
Lichman, M.2
-
41
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
J. Demsar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 1-30
-
-
Demsar, J.1
-
42
-
-
84988306242
-
Non-naive Bayesian classifiers for classification problems with continuous attributes
-
X.Z. Wang, Y.L. He, and D.D. Wang Non-naive Bayesian classifiers for classification problems with continuous attributes IEEE Trans. Cybernet. 44 1 2014 21 39
-
(2014)
IEEE Trans. Cybernet.
, vol.44
, Issue.1
, pp. 21-39
-
-
Wang, X.Z.1
He, Y.L.2
Wang, D.D.3
|