메뉴 건너뛰기




Volumn 313, Issue , 2015, Pages 62-78

A probabilistic learning algorithm for robust modeling using neural networks with random weights

Author keywords

Expectation maximization; Laplace distribution; Neural networks with random weights (NNRWs); Outliers; Probabilistic robust learning

Indexed keywords

APPROXIMATION ALGORITHMS; CLASSIFICATION (OF INFORMATION); LEARNING SYSTEMS; MAXIMUM PRINCIPLE; NEURAL NETWORKS; PROBABILITY DISTRIBUTIONS; STATISTICS;

EID: 84928230663     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.03.039     Document Type: Article
Times cited : (57)

References (42)
  • 4
    • 0028428006 scopus 로고
    • A robust backpropagation learning algorithm for function approximation
    • D.S. Chen, and R.C. Jain A robust backpropagation learning algorithm for function approximation IEEE Trans. Neural Networks 5 3 1994 467 479
    • (1994) IEEE Trans. Neural Networks , vol.5 , Issue.3 , pp. 467-479
    • Chen, D.S.1    Jain, R.C.2
  • 5
    • 0029156915 scopus 로고
    • Robustization of a learning method for RBF networks
    • A. Sanchez, and V. David Robustization of a learning method for RBF networks Neurocomputing 9 1 1995 85 94
    • (1995) Neurocomputing , vol.9 , Issue.1 , pp. 85-94
    • Sanchez, A.1    David, V.2
  • 6
    • 0032142658 scopus 로고    scopus 로고
    • Robust interval regression analysis using neural networks
    • L. Huang, B.L. Zhang, and Q. Huang Robust interval regression analysis using neural networks Fuzzy Sets Syst. 97 3 1998 337 347
    • (1998) Fuzzy Sets Syst. , vol.97 , Issue.3 , pp. 337-347
    • Huang, L.1    Zhang, B.L.2    Huang, Q.3
  • 7
    • 0034271492 scopus 로고    scopus 로고
    • The annealing robust backpropagation (ARBP) learning algorithm
    • C.C. Chuang, S.F. Su, and C.C. Hsiao The annealing robust backpropagation (ARBP) learning algorithm IEEE Trans. Neural Networks 11 2000 1067 1077
    • (2000) IEEE Trans. Neural Networks , vol.11 , pp. 1067-1077
    • Chuang, C.C.1    Su, S.F.2    Hsiao, C.C.3
  • 8
    • 0029777584 scopus 로고    scopus 로고
    • Robust error measure for supervised neural network learning with outliers
    • K. Liano Robust error measure for supervised neural network learning with outliers IEEE Trans. Neural Networks 7 1 1996 246 250
    • (1996) IEEE Trans. Neural Networks , vol.7 , Issue.1 , pp. 246-250
    • Liano, K.1
  • 9
    • 0036825528 scopus 로고    scopus 로고
    • Weighted least squares support vector machines: Robustness and sparse approximation
    • J.A.K. Suykens, J. De Brabanter, L. Lukas, and J. Vandewalle Weighted least squares support vector machines: robustness and sparse approximation Neurocomputing 48 1 2002 85 105
    • (2002) Neurocomputing , vol.48 , Issue.1 , pp. 85-105
    • Suykens, J.A.K.1    De Brabanter, J.2    Lukas, L.3    Vandewalle, J.4
  • 10
    • 0036856978 scopus 로고    scopus 로고
    • Robust support vector regression networks for function approximation with outliers
    • C.C. Chuang, S.F. Su, J.T. Jeng, and C.C. Hsiao Robust support vector regression networks for function approximation with outliers IEEE Trans. Neural Networks 13 6 2002 1322 1330
    • (2002) IEEE Trans. Neural Networks , vol.13 , Issue.6 , pp. 1322-1330
    • Chuang, C.C.1    Su, S.F.2    Jeng, J.T.3    Hsiao, C.C.4
  • 11
    • 55249111553 scopus 로고    scopus 로고
    • Robust least squares-support vector machines for regression with outliers
    • C.C. Chuang, J.T. Jeng, and M.L. Chan Robust least squares-support vector machines for regression with outliers IEEE Int. Conf. Fuzzy Syst. 2008 312 317
    • (2008) IEEE Int. Conf. Fuzzy Syst. , pp. 312-317
    • Chuang, C.C.1    Jeng, J.T.2    Chan, M.L.3
  • 12
    • 79952315022 scopus 로고    scopus 로고
    • Multiple classifier systems for robust classifier design in adversarial environments
    • B. Biggio, G. Fumera, and F. Roli Multiple classifier systems for robust classifier design in adversarial environments Int. J. Mach. Learn. Cybernet. 1 1-4 2010 27 41
    • (2010) Int. J. Mach. Learn. Cybernet. , vol.1 , Issue.14 , pp. 27-41
    • Biggio, B.1    Fumera, G.2    Roli, F.3
  • 13
    • 84901207016 scopus 로고    scopus 로고
    • A simple and effective outlier detection algorithm for categorical data
    • X.W. Zhao, J.Y. Liang, and F.Y. Cao A simple and effective outlier detection algorithm for categorical data Int. J. Mach. Learn. Cybernet. 5 3 2014 469 477
    • (2014) Int. J. Mach. Learn. Cybernet. , vol.5 , Issue.3 , pp. 469-477
    • Zhao, X.W.1    Liang, J.Y.2    Cao, F.Y.3
  • 14
    • 79958130313 scopus 로고    scopus 로고
    • Robust tensor subspace learning for anomaly detection
    • J. Li, G. Han, J. Wen, and X.B. Gao Robust tensor subspace learning for anomaly detection Int. J. Mach. Learn. Cybernet. 2 2 2011 89 98
    • (2011) Int. J. Mach. Learn. Cybernet. , vol.2 , Issue.2 , pp. 89-98
    • Li, J.1    Han, G.2    Wen, J.3    Gao, X.B.4
  • 16
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • A.N. Tychonoff Solution of incorrectly formulated problems and the regularization method Soviet 4 1963 1035 1038
    • (1963) Soviet , vol.4 , pp. 1035-1038
    • Tychonoff, A.N.1
  • 17
    • 84890128815 scopus 로고    scopus 로고
    • Sparse algorithms of random weight networks and applications
    • F.L. Cao, Y.P. Tan, and M.M. Cai Sparse algorithms of random weight networks and applications Expert Syst. Appl. 41 2014 2457 2462
    • (2014) Expert Syst. Appl. , vol.41 , pp. 2457-2462
    • Cao, F.L.1    Tan, Y.P.2    Cai, M.M.3
  • 18
    • 84862819230 scopus 로고    scopus 로고
    • l 1-norm for image analysis
    • l 1-norm for image analysis Pattern Recogn. Lett. 33 5 2012 537 542
    • (2012) Pattern Recogn. Lett. , vol.33 , Issue.5 , pp. 537-542
    • Wang, H.X.1
  • 19
    • 33646365077 scopus 로고    scopus 로고
    • l 1-norm solution is also the sparsest solution
    • l 1-norm solution is also the sparsest solution Commun. Pure Appl. Math. 59 2006 797 829
    • (2006) Commun. Pure Appl. Math. , vol.59 , pp. 797-829
    • Donoho, D.L.1
  • 20
    • 55349134896 scopus 로고    scopus 로고
    • l 1-norm minimization problems when the solution may be sparse
    • l 1-norm minimization problems when the solution may be sparse IEEE Trans. Inform. Theory 54 2008 4789 4812
    • (2008) IEEE Trans. Inform. Theory , vol.54 , pp. 4789-4812
    • Donoho, D.L.1    Tsaig, Y.2
  • 21
    • 33745179218 scopus 로고    scopus 로고
    • l 1 norm factorization in the presence of outliers and missing data by alternative convex programming
    • l 1 norm factorization in the presence of outliers and missing data by alternative convex programming IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. 1 2005 739 746
    • (2005) IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recogn. , vol.1 , pp. 739-746
    • Ke, Q.1    Kanade, T.2
  • 23
    • 84867841972 scopus 로고    scopus 로고
    • A probabilistic approach to robust matrix factorization
    • Springer Berlin, Heidelberg
    • N.Y. Wang, T.S. Yao, J.D. Wang, and D.Y. Yeung A probabilistic approach to robust matrix factorization Computer Vision-ECCV 2012 2012 Springer Berlin, Heidelberg 126 139
    • (2012) Computer Vision-ECCV 2012 , pp. 126-139
    • Wang, N.Y.1    Yao, T.S.2    Wang, J.D.3    Yeung, D.Y.4
  • 28
    • 0026868102 scopus 로고
    • Functional-link net computing: Theory, system architecture, and functionalities
    • Y.H. Pao, and Y. Takefuji Functional-link net computing: theory, system architecture, and functionalities IEEE Computer 25 5 1992 76 79
    • (1992) IEEE Computer , vol.25 , Issue.5 , pp. 76-79
    • Pao, Y.H.1    Takefuji, Y.2
  • 29
    • 0028420218 scopus 로고
    • Learning and generalization characteristics of the random vector functional-link net
    • Y.H. Pao, G.H. Park, and D.J. Sobajic Learning and generalization characteristics of the random vector functional-link net Neurocomputing 6 2 1994 163 180
    • (1994) Neurocomputing , vol.6 , Issue.2 , pp. 163-180
    • Pao, Y.H.1    Park, G.H.2    Sobajic, D.J.3
  • 30
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • B. Igelnik, and Y.H. Pao Stochastic choice of basis functions in adaptive function approximation and the functional-link net IEEE Trans. Neural Networks 6 6 1995 1320 1329
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.H.2
  • 31
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: The size of the weights is more important than the size of the network
    • P.L. Bartlett The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network IEEE Trans. Inform. Theory 44 2 1998 525 536
    • (1998) IEEE Trans. Inform. Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 32
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • E.J. Candès, and T. Tao Decoding by linear programming IEEE Trans. Inform. Theory 51 12 2005 4203 4215
    • (2005) IEEE Trans. Inform. Theory , vol.51 , Issue.12 , pp. 4203-4215
    • Candès, E.J.1    Tao, T.2
  • 34
    • 0029291966 scopus 로고
    • Sparse approximate solutions to linear systems
    • B.K. Natarajan Sparse approximate solutions to linear systems SIAM J. Comput. 24 2 1995 227 234
    • (1995) SIAM J. Comput. , vol.24 , Issue.2 , pp. 227-234
    • Natarajan, B.K.1
  • 36
    • 0000217030 scopus 로고
    • Normal/independent distributions and their applications in robust regression
    • K. Lange, and J.S. Sinsheime Normal/independent distributions and their applications in robust regression J. Comput. Graph. Stat. 2 2 1993 175 198
    • (1993) J. Comput. Graph. Stat. , vol.2 , Issue.2 , pp. 175-198
    • Lange, K.1    Sinsheime, J.S.2
  • 38
    • 84864944646 scopus 로고    scopus 로고
    • EP-GIG priors and applications in Bayesian sparse learning
    • Z.H. Zhang, S.S. Wang, D.H. Liu, and M.I. Jordan EP-GIG priors and applications in Bayesian sparse learning J. Mach. Learn. Res. 13 1 2012 2031 2061
    • (2012) J. Mach. Learn. Res. , vol.13 , Issue.1 , pp. 2031-2061
    • Zhang, Z.H.1    Wang, S.S.2    Liu, D.H.3    Jordan, M.I.4
  • 40
    • 84886567160 scopus 로고    scopus 로고
    • School of Information and Computer Science, University of California, Irvine
    • K. Bache, M. Lichman, UCI Machine Learning Repository, School of Information and Computer Science, University of California, Irvine, 2013. < http://archive.ics.uci.edu/ml >.
    • (2013) UCI Machine Learning Repository
    • Bache, K.1    Lichman, M.2
  • 41
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demsar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demsar, J.1
  • 42
    • 84988306242 scopus 로고    scopus 로고
    • Non-naive Bayesian classifiers for classification problems with continuous attributes
    • X.Z. Wang, Y.L. He, and D.D. Wang Non-naive Bayesian classifiers for classification problems with continuous attributes IEEE Trans. Cybernet. 44 1 2014 21 39
    • (2014) IEEE Trans. Cybernet. , vol.44 , Issue.1 , pp. 21-39
    • Wang, X.Z.1    He, Y.L.2    Wang, D.D.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.