메뉴 건너뛰기




Volumn 3, Issue 3, 2012, Pages 247-258

A novel semisupervised SVM for pixel classification of remote sensing imagery

Author keywords

Quadratic programming; Remote sensing satellite images; Semisupervised classification; Support vector machines

Indexed keywords

ACCURACY LEVEL; CLUSTER VALIDITY INDICES; DATA SETS; DYNAMIC THRESHOLDING; F-MEASURE; FEATURE VECTORS; HIGH DIMENSIONAL SPACES; IMAGE DATA; LABELED DATA; LAND COVER; LEARNING SCHEMES; PIXEL CLASSIFICATION; REMOTE SENSING IMAGERY; REMOTE SENSING SATELLITES; SEMI-SUPERVISED; SEMI-SUPERVISED CLASSIFICATION; SEPARATING HYPERPLANE; SUPPORT VECTOR MACHINE CLASSIFICATION TECHNIQUES; UNLABELED SAMPLES;

EID: 84865766722     PISSN: 18688071     EISSN: 1868808X     Source Type: Journal    
DOI: 10.1007/s13042-011-0059-3     Document Type: Article
Times cited : (15)

References (35)
  • 2
    • 0035248083 scopus 로고    scopus 로고
    • Pixel classification using variable string genetic algorithms with chromosome differentiation
    • Bandyopadhyay S, Pal SK (2001) Pixel classification using variable string genetic algorithms with chromosome differentiation. IEEE Trans Geosci Remote Sens 39(2): 303-308.
    • (2001) IEEE Trans Geosci Remote Sens , vol.39 , Issue.2 , pp. 303-308
    • Bandyopadhyay, S.1    Pal, S.K.2
  • 3
    • 34247466658 scopus 로고    scopus 로고
    • Multiobjective genetic clustering for pixel classification in remote sensing imagery
    • Bandyopadhyay S, Maulik U, Mukhopadhyay A (2007) Multiobjective genetic clustering for pixel classification in remote sensing imagery. IEEE Trans Geosci Remote Sens 45(5): 1506-1511.
    • (2007) IEEE Trans Geosci Remote Sens , vol.45 , Issue.5 , pp. 1506-1511
    • Bandyopadhyay, S.1    Maulik, U.2    Mukhopadhyay, A.3
  • 4
    • 0036604864 scopus 로고    scopus 로고
    • Genetic clustering for automatic evolution of clusters and application to image classification
    • Bandyopadhyay S, Maulik U (2002) Genetic clustering for automatic evolution of clusters and application to image classification. Pattern Recognit 35(2): 1197-1208.
    • (2002) Pattern Recognit , vol.35 , Issue.2 , pp. 1197-1208
    • Bandyopadhyay, S.1    Maulik, U.2
  • 5
    • 16444386461 scopus 로고    scopus 로고
    • Quality assessment and cluster maps without ground truth knowledge
    • Baraldi A, Bruzzone L, Blonda P (2005) Quality assessment and cluster maps without ground truth knowledge. IEEE Trans Geosci Remote Sens 43(4): 857-873.
    • (2005) IEEE Trans Geosci Remote Sens , vol.43 , Issue.4 , pp. 857-873
    • Baraldi, A.1    Bruzzone, L.2    Blonda, P.3
  • 9
    • 33750819329 scopus 로고    scopus 로고
    • A novel transductive SVM for semisupervised classification of remote-sensing images
    • Bruzzone L, Chi M, Marconcini M (2006) A novel transductive SVM for semisupervised classification of remote-sensing images. IEEE Trans Geosci Remote Sens 44(11): 3363-3373.
    • (2006) IEEE Trans Geosci Remote Sens , vol.44 , Issue.11 , pp. 3363-3373
    • Bruzzone, L.1    Chi, M.2    Marconcini, M.3
  • 10
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Knowl Discov Data Min 2: 121-167.
    • (1998) Knowl Discov Data Min , vol.2 , pp. 121-167
    • Burges, C.J.C.1
  • 11
    • 39049145967 scopus 로고    scopus 로고
    • Semi-supervised graph-based hyperspectral image classification
    • Camps-Valls G, Bandos T, Zhou D (2007) Semi-supervised graph-based hyperspectral image classification. IEEE Trans Geosci Remote Sens 45(10): 3044-3054.
    • (2007) IEEE Trans Geosci Remote Sens , vol.45 , Issue.10 , pp. 3044-3054
    • Camps-Valls, G.1    Bandos, T.2    Zhou, D.3
  • 12
    • 0038731227 scopus 로고    scopus 로고
    • Learning with progressive transductive support vector machine
    • Chen Y, Wang G, Dong S (2003) Learning with progressive transductive support vector machine. Pattern Recognit Lett 34(12): 1845-1855.
    • (2003) Pattern Recognit Lett , vol.34 , Issue.12 , pp. 1845-1855
    • Chen, Y.1    Wang, G.2    Dong, S.3
  • 13
    • 12844275025 scopus 로고    scopus 로고
    • A semilabeled-sample driven bagging technique for ill-posed classification problem
    • Chi M, Bruzzone L (2005) A semilabeled-sample driven bagging technique for ill-posed classification problem. IEEE Trans Geosci Remote Sens Lett 2(1): 69-73.
    • (2005) IEEE Trans Geosci Remote Sens Lett , vol.2 , Issue.1 , pp. 69-73
    • Chi, M.1    Bruzzone, L.2
  • 14
    • 34249810956 scopus 로고    scopus 로고
    • Semi-supervised classification hyperspectral images by SVMs optimized in the primal
    • Chi M, Bruzzone L (2007) Semi-supervised classification hyperspectral images by SVMs optimized in the primal. IEEE Trans Geosci Remote Sens Lett 45(6): 1870-1880.
    • (2007) IEEE Trans Geosci Remote Sens Lett , vol.45 , Issue.6 , pp. 1870-1880
    • Chi, M.1    Bruzzone, L.2
  • 15
    • 3242688826 scopus 로고    scopus 로고
    • Mapping vegetation in a heterogeneous mountain range land using landsat data: an alternative method to define and classify land-cover units
    • Cingolani AM, Renison D, Cabido MR (2004) Mapping vegetation in a heterogeneous mountain range land using landsat data: an alternative method to define and classify land-cover units. Remote Sens Environ 92: 84-97.
    • (2004) Remote Sens Environ , vol.92 , pp. 84-97
    • Cingolani, A.M.1    Renison, D.2    Cabido, M.R.3
  • 17
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • Dempster A, Laird N, Rubin D (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39: 1-38.
    • (1977) J R Stat Soc B , vol.39 , pp. 1-38
    • Dempster, A.1    Laird, N.2    Rubin, D.3
  • 18
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognition
    • Hughes GF (1968) On the mean accuracy of statistical pattern recognition. IEEE Trans Inf Theory IT-14(1): 55-63.
    • (1968) IEEE Trans Inf Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.F.1
  • 19
    • 0001938951 scopus 로고    scopus 로고
    • Transductive inference for text classification using support vector machines
    • Joachims T (1999) Transductive inference for text classification using support vector machines. In: Proc. ICML, pp 200-209.
    • (1999) Proc. ICML , pp. 200-209
    • Joachims, T.1
  • 20
    • 79952937863 scopus 로고    scopus 로고
    • Adaptive least square support vector machines filter for hand tremor canceling in microsurgery
    • Liu Z, Wu Q, Zhang U, Philip Chen CL (2011) Adaptive least square support vector machines filter for hand tremor canceling in microsurgery. Int J Mach Learn Cybern 2: 37-47.
    • (2011) Int J Mach Learn Cybern , vol.2 , pp. 37-47
    • Liu, Z.1    Wu, Q.2    Zhang, U.3    Philip Chen, C.L.4
  • 21
    • 0036937614 scopus 로고    scopus 로고
    • Performance evaluation of some clustering algorithms and validity indices
    • Maulik U, Bandyopadhyay S (2002) Performance evaluation of some clustering algorithms and validity indices. IEEE Trans Pattern Anal Mach Intel 24(12): 1650-1654.
    • (2002) IEEE Trans Pattern Anal Mach Intel , vol.24 , Issue.12 , pp. 1650-1654
    • Maulik, U.1    Bandyopadhyay, S.2
  • 22
    • 0003408496 scopus 로고    scopus 로고
    • Department of Information and Computer Science, University of California, Irvine, CA
    • Merz CJ, Murphy PM, Aha DW (1997) UCI repository of machine learning databases. Department of Information and Computer Science, University of California, Irvine, CA. http://www. ics. uci. edu/mlearn/~MLRepository. html.
    • (1997) UCI repository of machine learning databases
    • Merz, C.J.1    Murphy, P.M.2    Aha, D.W.3
  • 23
    • 0031630992 scopus 로고    scopus 로고
    • Learning to classify text from labeled and unlabeled documents
    • Nigam K, McCallum A, Thrun S, Mitchell TM (1998) Learning to classify text from labeled and unlabeled documents. In: AAAI/IAAI, 792.
    • (1998) AAAI/IAAI , pp. 792
    • Nigam, K.1    McCallum, A.2    Thrun, S.3    Mitchell, T.M.4
  • 24
    • 0032095724 scopus 로고    scopus 로고
    • Support vector machines for 3-D object recognition
    • Pontil M, Verri A (1998) Support vector machines for 3-D object recognition. IEEE Trans Pattern Anal Mach Intel 20: 637-646.
    • (1998) IEEE Trans Pattern Anal Mach Intel , vol.20 , pp. 637-646
    • Pontil, M.1    Verri, A.2
  • 27
    • 0028499630 scopus 로고
    • The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenemenon
    • Shahshahani BM, Landgrebe DA (1994) The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenemenon. IEEE Trans Geosci Remote Sens 32(5): 1087-1095.
    • (1994) IEEE Trans Geosci Remote Sens , vol.32 , Issue.5 , pp. 1087-1095
    • Shahshahani, B.M.1    Landgrebe, D.A.2
  • 28
    • 79952312481 scopus 로고    scopus 로고
    • Margin based active learning for structure predictions
    • Small K, Roth D (2010) Margin based active learning for structure predictions. Int J Mach Learn Cybern 1: 3-25.
    • (2010) Int J Mach Learn Cybern , vol.1 , pp. 3-25
    • Small, K.1    Roth, D.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.