메뉴 건너뛰기




Volumn 301, Issue , 2015, Pages 271-284

Distributed learning for Random Vector Functional-Link networks

Author keywords

Consensus; Distributed; Distributed learning; Functional Link; Optimization; Random; Vector

Indexed keywords

COMPUTATIONAL EFFICIENCY; LEARNING SYSTEMS; OPTIMIZATION; VECTORS;

EID: 84922746025     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2015.01.007     Document Type: Article
Times cited : (142)

References (43)
  • 1
    • 84894439375 scopus 로고    scopus 로고
    • Fast decorrelated neural network ensembles with random weights
    • M. Alhamdoosh, and D. Wang Fast decorrelated neural network ensembles with random weights Inf. Sci. 264 2014 104 117
    • (2014) Inf. Sci. , vol.264 , pp. 104-117
    • Alhamdoosh, M.1    Wang, D.2
  • 2
    • 77956877124 scopus 로고    scopus 로고
    • The internet of things: A survey
    • L. Atzori, A. Iera, and G. Morabito The internet of things: a survey Comput. Networks 54 15 2010 2787 2805
    • (2010) Comput. Networks , vol.54 , Issue.15 , pp. 2787-2805
    • Atzori, L.1    Iera, A.2    Morabito, G.3
  • 3
    • 0023581508 scopus 로고
    • Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems
    • ACM
    • B. Awerbuch Optimal distributed algorithms for minimum weight spanning tree, counting, leader election, and related problems Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing 1987 ACM 230 240
    • (1987) Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing , pp. 230-240
    • Awerbuch, B.1
  • 5
    • 84904609053 scopus 로고    scopus 로고
    • Distributed detection and estimation in wireless sensor networks
    • R. Chellapa, S. Theodoridis, Elsevier
    • S. Barbarossa, S. Sardellitti, and P. Di Lorenzo Distributed detection and estimation in wireless sensor networks R. Chellapa, S. Theodoridis, E-Reference Signal Processing 2013 Elsevier 329 408
    • (2013) E-Reference Signal Processing , pp. 329-408
    • Barbarossa, S.1    Sardellitti, S.2    Di Lorenzo, P.3
  • 6
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein Distributed optimization and statistical learning via the alternating direction method of multipliers Found. Trends® Mach. Learn. 3 1 2011 1 122
    • (2011) Found. Trends® Mach. Learn. , vol.3 , Issue.1 , pp. 1-122
    • Boyd, S.1    Parikh, N.2    Chu, E.3    Peleato, B.4    Eckstein, J.5
  • 7
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L. Breiman Bagging predictors Mach. Learn. 24 2 1996 123 140
    • (1996) Mach. Learn. , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 37549003336 scopus 로고    scopus 로고
    • Mapreduce: Simplified data processing on large clusters
    • J. Dean, and S. Ghemawat Mapreduce: simplified data processing on large clusters Commun. ACM 51 1 2008 107 113
    • (2008) Commun. ACM , vol.51 , Issue.1 , pp. 107-113
    • Dean, J.1    Ghemawat, S.2
  • 14
    • 77953526250 scopus 로고    scopus 로고
    • Consensus-based distributed support vector machines
    • P.A. Forero, A. Cano, and G.B. Giannakis Consensus-based distributed support vector machines J. Mach. Learn. Res. 11 2010 1663 1707
    • (2010) J. Mach. Learn. Res. , vol.11 , pp. 1663-1707
    • Forero, P.A.1    Cano, A.2    Giannakis, G.B.3
  • 16
    • 84885840172 scopus 로고    scopus 로고
    • Distributed machine learning in networks by consensus
    • L. Georgopoulos, and M. Hasler Distributed machine learning in networks by consensus Neurocomputing 124 2014 2 12
    • (2014) Neurocomputing , vol.124 , pp. 2-12
    • Georgopoulos, L.1    Hasler, M.2
  • 17
    • 0029403793 scopus 로고
    • Stochastic choice of basis functions in adaptive function approximation and the functional-link net
    • B. Igelnik, and Y.-H. Pao Stochastic choice of basis functions in adaptive function approximation and the functional-link net IEEE Trans. Neural Networks 6 6 1995 1320 1329
    • (1995) IEEE Trans. Neural Networks , vol.6 , Issue.6 , pp. 1320-1329
    • Igelnik, B.1    Pao, Y.-H.2
  • 21
    • 84879287760 scopus 로고    scopus 로고
    • Sparse distributed learning based on diffusion adaptation
    • P. Lorenzo, and A.H. Sayed Sparse distributed learning based on diffusion adaptation IEEE Trans. Signal Process. 61 6 2013 1419 1433
    • (2013) IEEE Trans. Signal Process. , vol.61 , Issue.6 , pp. 1419-1433
    • Lorenzo, P.1    Sayed, A.H.2
  • 22
    • 51349151126 scopus 로고    scopus 로고
    • Big data: How do your data grow?
    • C. Lynch Big data: how do your data grow? Nature 455 7209 2008 28 29
    • (2008) Nature , vol.455 , Issue.7209 , pp. 28-29
    • Lynch, C.1
  • 24
    • 79955855934 scopus 로고    scopus 로고
    • Laplacian support vector machines trained in the primal
    • S. Melacci, and M. Belkin Laplacian support vector machines trained in the primal J. Mach. Learn. Res. 12 2011 1149 1184
    • (2011) J. Mach. Learn. Res. , vol.12 , pp. 1149-1184
    • Melacci, S.1    Belkin, M.2
  • 25
    • 15544385732 scopus 로고    scopus 로고
    • Automatic feature extraction for classifying audio data
    • I. Mierswa, and K. Morik Automatic feature extraction for classifying audio data Mach. Learn. 58 2-3 2005 127 149
    • (2005) Mach. Learn. , vol.58 , Issue.23 , pp. 127-149
    • Mierswa, I.1    Morik, K.2
  • 28
    • 64149119332 scopus 로고    scopus 로고
    • Consensus and cooperation in networked multi-agent systems
    • R. Olfati-Saber, J.A. Fax, and R.M. Murray Consensus and cooperation in networked multi-agent systems Proc. IEEE 95 1 2007 215 233
    • (2007) Proc. IEEE , vol.95 , Issue.1 , pp. 215-233
    • Olfati-Saber, R.1    Fax, J.A.2    Murray, R.M.3
  • 30
    • 0026868102 scopus 로고
    • Functional-link net computing: Theory, system architecture, and functionalities
    • Y.-H. Pao, and Y. Takefuji Functional-link net computing: theory, system architecture, and functionalities Computer 25 5 1992 76 79
    • (1992) Computer , vol.25 , Issue.5 , pp. 76-79
    • Pao, Y.-H.1    Takefuji, Y.2
  • 31
    • 33144479374 scopus 로고    scopus 로고
    • Consistency in models for distributed learning under communication constraints
    • J.B. Predd, S.R. Kulkarni, and H.V. Poor Consistency in models for distributed learning under communication constraints IEEE Trans. Inf. Theory 52 1 2006 52 63
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.1 , pp. 52-63
    • Predd, J.B.1    Kulkarni, S.R.2    Poor, H.V.3
  • 33
    • 0037341461 scopus 로고    scopus 로고
    • Pervasive computing: A paradigm for the 21st century
    • D. Saha, and A. Mukherjee Pervasive computing: a paradigm for the 21st century Computer 36 3 2003 25 31
    • (2003) Computer , vol.36 , Issue.3 , pp. 25-31
    • Saha, D.1    Mukherjee, A.2
  • 34
    • 84897483887 scopus 로고    scopus 로고
    • Adaptive networks
    • A.H. Sayed Adaptive networks Proc. IEEE 102 4 2014 460 497
    • (2014) Proc. IEEE , vol.102 , Issue.4 , pp. 460-497
    • Sayed, A.H.1
  • 38
    • 85032752433 scopus 로고    scopus 로고
    • Modeling and optimization for big data analytics: (Statistical) learning tools for our era of data deluge
    • K. Slavakis, G. Giannakis, and G. Mateos Modeling and optimization for big data analytics: (statistical) learning tools for our era of data deluge IEEE Signal Process. Mag. 31 5 2014 18 31
    • (2014) IEEE Signal Process. Mag. , vol.31 , Issue.5 , pp. 18-31
    • Slavakis, K.1    Giannakis, G.2    Mateos, G.3
  • 39
    • 84884248937 scopus 로고    scopus 로고
    • Video game telemetry as a critical tool in the study of complex skill learning
    • J.J. Thompson, M.R. Blair, L. Chen, and A.J. Henrey Video game telemetry as a critical tool in the study of complex skill learning PLoS One 8 9 2013 e75129
    • (2013) PLoS One , vol.8 , Issue.9 , pp. e75129
    • Thompson, J.J.1    Blair, M.R.2    Chen, L.3    Henrey, A.J.4
  • 42
    • 84907859966 scopus 로고    scopus 로고
    • Consensus acceleration in a class of predictive networks
    • H. Zhang, and Z. Chen Consensus acceleration in a class of predictive networks IEEE Trans. Neural Networks Learn. Syst. 25 10 2014 1921 1927
    • (2014) IEEE Trans. Neural Networks Learn. Syst. , vol.25 , Issue.10 , pp. 1921-1927
    • Zhang, H.1    Chen, Z.2
  • 43
    • 84868628924 scopus 로고    scopus 로고
    • Divergence-based feature selection for separate classes
    • Y. Zhang, S. Li, T. Wang, and Z. Zhang Divergence-based feature selection for separate classes Neurocomputing 101 2013 32 42
    • (2013) Neurocomputing , vol.101 , pp. 32-42
    • Zhang, Y.1    Li, S.2    Wang, T.3    Zhang, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.