-
1
-
-
68149165759
-
A new learning paradigm: learning using privileged information
-
Vapnik V, Vashist A (2009) A new learning paradigm: learning using privileged information. Neural Netw 22(5–6):544–557
-
(2009)
Neural Netw
, vol.22
, Issue.5-6
, pp. 544-557
-
-
Vapnik, V.1
Vashist, A.2
-
5
-
-
85161958858
-
On the theory of learning with privileged information. In: Advances in neural information processing systems
-
Pechyony D, Vapnik V (2010) On the theory of learning with privileged information. In: Advances in neural information processing systems, vol 23
-
(2010)
vol 23
-
-
Pechyony, D.1
Vapnik, V.2
-
6
-
-
84859155232
-
Vapnik V (2010) Smo-style algorithms for learning using privileged information
-
CSREA Press, Providence
-
Pechyony D, Izmailov R, Vashist A, Vapnik V (2010) Smo-style algorithms for learning using privileged information. In: DMIN. CSREA Press, Providence, pp 235–241
-
DMIN
, pp. 235-241
-
-
Pechyony, D.1
Izmailov, R.2
Vashist, A.3
-
7
-
-
0005977840
-
Learning with labeled and unlabeled data
-
Seeger M (2001) Learning with labeled and unlabeled data. Technical report
-
(2001)
Technical report
-
-
Seeger, M.1
-
9
-
-
33745456231
-
Semi-supervised learning literature survey
-
University of Wisconsin, Madison
-
Zhu X (2006) Semi-supervised learning literature survey. Technical Report 15304, University of Wisconsin, Madison
-
(2006)
Technical Report 15304
-
-
Zhu, X.1
-
11
-
-
84937846685
-
Semi-supervised learning by entropy minimization. In: CAP, PUG
-
Grandvalet Y, Bengio Y (2005) Semi-supervised learning by entropy minimization. In: CAP, PUG, pp 281–296
-
(2005)
pp 281–296
-
-
Grandvalet, Y.1
Bengio, Y.2
-
12
-
-
33750729556
-
Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
-
Belkin M, Niyogi P, Sindhwani V (2006) Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. J Mach Learn Res 7:2399–2434
-
(2006)
J Mach Learn Res
, vol.7
, pp. 2399-2434
-
-
Belkin, M.1
Niyogi, P.2
Sindhwani, V.3
-
13
-
-
1942484960
-
Transductive learning via spectral graph partitioning. In: ICML
-
Joachims T (2003) Transductive learning via spectral graph partitioning. In: ICML, pp 290–297
-
(2003)
pp 290–297
-
-
Joachims, T.1
-
14
-
-
84937923396
-
Using manifold structure for partially labelled classification. In: NIPS
-
Belkin M, Niyogi P (2002) Using manifold structure for partially labelled classification. In: NIPS, pp 953–960
-
(2002)
pp 953–960
-
-
Belkin, M.1
Niyogi, P.2
-
15
-
-
1942484430
-
Semi-supervised learning using gaussian fields and harmonic functions. In: ICML
-
Zhu X, Ghahramani Z, Lafferty J (2003) Semi-supervised learning using gaussian fields and harmonic functions. In: ICML, pp 912–919
-
(2003)
pp 912–919
-
-
Zhu, X.1
Ghahramani, Z.2
Lafferty, J.3
-
17
-
-
84866320933
-
Recent advances on support vector machines research
-
Tian Y, Yong S, Xiaohui L (2012) Recent advances on support vector machines research. Technol Econ Dev Econ 18(1): 5–33
-
(2012)
Technol Econ Dev Econ
, vol.18
, Issue.1
, pp. 5-33
-
-
Tian, Y.1
Yong, S.2
Xiaohui, L.3
-
18
-
-
0017714604
-
Oscillation and chaos in physiological control systems
-
Mackey MC, Glass L (1977) Oscillation and chaos in physiological control systems. Science 197(4300):287–289
-
(1977)
Science
, vol.197
, Issue.4300
, pp. 287-289
-
-
Mackey, M.C.1
Glass, L.2
-
19
-
-
84937933885
-
-
Everingham M, Zisserman A, Williams CKI, Van Gool L (2006) The PASCAL visual object classes challenge 2006 (VOC 2006) results.
-
Everingham M, Zisserman A, Williams CKI, Van Gool L (2006) The PASCAL visual object classes challenge 2006 (VOC 2006) results. http://www.pascal-network.org/challenges/VOC/voc2006/results.pdf
-
-
-
-
20
-
-
0035121325
-
An efficient color representation for image retrieval
-
Deng Y, Manjunath BS, Kenney C, Moore MS, Member S, Shin H (2001) An efficient color representation for image retrieval. IEEE Trans Image Process 10:140–147
-
(2001)
IEEE Trans Image Process
, vol.10
, pp. 140-147
-
-
Deng, Y.1
Manjunath, B.S.2
Kenney, C.3
Moore, M.S.4
Member, S.5
Shin, H.6
|