메뉴 건너뛰기




Volumn 74, Issue 5, 2011, Pages 812-819

Local margin based semi-supervised discriminant embedding for visual recognition

Author keywords

Dimensionality reduction; Manifold learning; Margin; Semi supervised learning

Indexed keywords

ADJACENCY GRAPHS; CLASSIFICATION TASKS; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; DISCRIMINANT EMBEDDING; GEOMETRIC STRUCTURE; HIGH DIMENSIONAL DATA; HIGH-DIMENSIONAL; K-NEAREST NEIGHBORS; MANIFOLD LEARNING; MANIFOLD LEARNING ALGORITHM; MARGIN; SEMI-SUPERVISED; SEMI-SUPERVISED LEARNING; UNLABELED SAMPLES; VISUAL RECOGNITION;

EID: 78650749488     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2010.11.004     Document Type: Article
Times cited : (13)

References (24)
  • 3
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • MIT Press
    • Belkin M., Niyogi P. Laplacian eigenmaps and spectral techniques for embedding and clustering. Advances in Neural Information Processing Systems 2001, vol. 14:585-591. MIT Press.
    • (2001) Advances in Neural Information Processing Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 4
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • Roweis S.T., Saul L.K. Nonlinear dimensionality reduction by locally linear embedding. Science 2000, 290(5500):2323-2326.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.T.1    Saul, L.K.2
  • 5
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J., Silva V., Langford J. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(5500):2319-2323.
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 6
    • 14544307975 scopus 로고    scopus 로고
    • Principal manifolds and nonlinear dimension reduction via local tangent space alignment
    • Zhang Z., Zha H. Principal manifolds and nonlinear dimension reduction via local tangent space alignment. SIAM Journal of Scientific Computing 2004, 26(1):313-338.
    • (2004) SIAM Journal of Scientific Computing , vol.26 , Issue.1 , pp. 313-338
    • Zhang, Z.1    Zha, H.2
  • 8
    • 33746824651 scopus 로고    scopus 로고
    • Discriminant neighborhood embedding for classification
    • Zhang W., Xue X., Lu H., Guo Y. Discriminant neighborhood embedding for classification. Pattern Recognition 2006, 39(11):2240-2243.
    • (2006) Pattern Recognition , vol.39 , Issue.11 , pp. 2240-2243
    • Zhang, W.1    Xue, X.2    Lu, H.3    Guo, Y.4
  • 11
    • 56749103988 scopus 로고    scopus 로고
    • A graph based subspace semi-supervised learning framework for dimensionality reduction
    • Springer, Berlin, Heidelberg
    • Yang W., Zhang S., Liang W. A graph based subspace semi-supervised learning framework for dimensionality reduction. Computer Vision C ECCV 2008, Lecture Notes in Computer Science 2008, vol. 5303:664-677. Springer, Berlin, Heidelberg.
    • (2008) Computer Vision C ECCV 2008, Lecture Notes in Computer Science , vol.5303 , pp. 664-677
    • Yang, W.1    Zhang, S.2    Liang, W.3
  • 12
    • 48649090541 scopus 로고    scopus 로고
    • Semi-supervised sub-manifold discriminant analysis
    • Song Y., Nie F., Zhang C. Semi-supervised sub-manifold discriminant analysis. Pattern Recognition Letters 2008, 29(13):1806-1813.
    • (2008) Pattern Recognition Letters , vol.29 , Issue.13 , pp. 1806-1813
    • Song, Y.1    Nie, F.2    Zhang, C.3
  • 13
    • 44649132677 scopus 로고    scopus 로고
    • A unified framework for semi-supervised dimensionality reduction
    • Song Y., Nie F., Zhang C., Xiang S. A unified framework for semi-supervised dimensionality reduction. Pattern Recognition 2008, 41(9):2789-2799.
    • (2008) Pattern Recognition , vol.41 , Issue.9 , pp. 2789-2799
    • Song, Y.1    Nie, F.2    Zhang, C.3    Xiang, S.4
  • 14
    • 35148833127 scopus 로고    scopus 로고
    • Integrating global and local structures: a least squares framework for dimensionality reduction
    • IEEE
    • Chen J., Ye J., Li Q. Integrating global and local structures: a least squares framework for dimensionality reduction. IEEE Conference on Computer Vision and Pattern Recognition 2007, 1-8. IEEE.
    • (2007) IEEE Conference on Computer Vision and Pattern Recognition , pp. 1-8
    • Chen, J.1    Ye, J.2    Li, Q.3
  • 16
    • 77952518276 scopus 로고    scopus 로고
    • A unified semi-supervised dimensionality reduction framework for manifold learning
    • Chatpatanasiri R., Kijsirikul B. A unified semi-supervised dimensionality reduction framework for manifold learning. Neurocomputing 2010, 73(10-12):1631-1640.
    • (2010) Neurocomputing , vol.73 , Issue.10-12 , pp. 1631-1640
    • Chatpatanasiri, R.1    Kijsirikul, B.2
  • 17
    • 77952423823 scopus 로고    scopus 로고
    • Semi-supervised local Fisher discriminant analysis for dimensionality reduction
    • Sugiyama M., Idé T., Nakajima S., Sese J. Semi-supervised local Fisher discriminant analysis for dimensionality reduction. Machine Learning 2010, 78(1):35-61.
    • (2010) Machine Learning , vol.78 , Issue.1 , pp. 35-61
    • Sugiyama, M.1    Idé, T.2    Nakajima, S.3    Sese, J.4
  • 18
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis
    • Sugiyama M. Dimensionality reduction of multimodal labeled data by local Fisher discriminant analysis. Journal of Machine Learning Research 2007, 8:1027-1061.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1027-1061
    • Sugiyama, M.1
  • 21


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.