메뉴 건너뛰기




Volumn 56, Issue , 2014, Pages 22-34

Ideal regularization for learning kernels from labels

Author keywords

Ideal kernel; Kernel methods; Labels; Regularization; Semi supervised learning; Von Neumann divergence

Indexed keywords

ALGORITHMS; LABELING; SUPERVISED LEARNING;

EID: 84900001495     PISSN: 08936080     EISSN: 18792782     Source Type: Journal    
DOI: 10.1016/j.neunet.2014.04.003     Document Type: Article
Times cited : (19)

References (28)
  • 2
    • 33750729556 scopus 로고    scopus 로고
    • Manifold regularization: a geometric framework for learning from labeled and unlabeled examples
    • Belkin M., Niyogi P., Sindhwani V. Manifold regularization: a geometric framework for learning from labeled and unlabeled examples. The Journal of Machine Learning Research 2006, 7:2399-2434.
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 2399-2434
    • Belkin, M.1    Niyogi, P.2    Sindhwani, V.3
  • 17
    • 79958838559 scopus 로고    scopus 로고
    • Nonlinear nonnegative matrix factorization based on mercer kernel construction
    • Pan B., Lai J., Chen W. Nonlinear nonnegative matrix factorization based on mercer kernel construction. Pattern Recognition 2011, 44:2800-2810.
    • (2011) Pattern Recognition , vol.44 , pp. 2800-2810
    • Pan, B.1    Lai, J.2    Chen, W.3
  • 26
    • 33947693882 scopus 로고    scopus 로고
    • Learning the kernel matrix by maximizing a KFD-based class separability criterion
    • Yeung D., Chang H., Dai G. Learning the kernel matrix by maximizing a KFD-based class separability criterion. Pattern Recognition 2007, 40:2021-2028.
    • (2007) Pattern Recognition , vol.40 , pp. 2021-2028
    • Yeung, D.1    Chang, H.2    Dai, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.