메뉴 건너뛰기




Volumn 16, Issue 10, 2016, Pages 1812-1820

3D printing of liquid metals as fugitive inks for fabrication of 3D microfluidic channels

Author keywords

[No Author keywords available]

Indexed keywords

INK; LIQUID METAL DERIVATIVE; METAL DERIVATIVE; UNCLASSIFIED DRUG;

EID: 84971013954     PISSN: 14730197     EISSN: 14730189     Source Type: Journal    
DOI: 10.1039/c6lc00198j     Document Type: Article
Times cited : (186)

References (74)
  • 1
    • 33747117373 scopus 로고    scopus 로고
    • The origins and the future of microfluidics
    • G. M. Whitesides The origins and the future of microfluidics Nature 2006 442 368 373
    • (2006) Nature , vol.442 , pp. 368-373
    • Whitesides, G.M.1
  • 3
    • 0033988843 scopus 로고    scopus 로고
    • Fabrication of microfluidic systems in poly(dimethylsiloxane)
    • J. C. McDonald et al., Fabrication of microfluidic systems in poly(dimethylsiloxane) Electrophoresis 2000 21 27 40
    • (2000) Electrophoresis , vol.21 , pp. 27-40
    • McDonald, J.C.1
  • 4
    • 0037169046 scopus 로고    scopus 로고
    • Chaotic Mixer for Microchannels
    • A. D. Stroock et al., Chaotic Mixer for Microchannels Science 2002 295 647 651
    • (2002) Science , vol.295 , pp. 647-651
    • Stroock, A.D.1
  • 5
    • 0037131390 scopus 로고    scopus 로고
    • Microfluidic Large-Scale Integration
    • T. Thorsen S. J. Maerkl S. R. Quake Microfluidic Large-Scale Integration Science 2002 298 580 584
    • (2002) Science , vol.298 , pp. 580-584
    • Thorsen, T.1    Maerkl, S.J.2    Quake, S.R.3
  • 6
    • 77958135755 scopus 로고    scopus 로고
    • Polymer microvascular network composites
    • S. C. Olugebefola et al., Polymer microvascular network composites J. Compos. Mater. 2010 44 2587 2603
    • (2010) J. Compos. Mater. , vol.44 , pp. 2587-2603
    • Olugebefola, S.C.1
  • 7
    • 0038545277 scopus 로고    scopus 로고
    • Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly
    • D. Therriault S. R. White J. A. Lewis Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly Nat. Mater. 2003 2 265 271
    • (2003) Nat. Mater. , vol.2 , pp. 265-271
    • Therriault, D.1    White, S.R.2    Lewis, J.A.3
  • 8
    • 0037021771 scopus 로고    scopus 로고
    • A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array
    • Y. Mizukami D. Rajniak A. Rajniak M. Nishimura A novel microchip for capillary electrophoresis with acrylic microchannel fabricated on photosensor array Sens. Actuators, B 2002 81 202 209
    • (2002) Sens. Actuators, B , vol.81 , pp. 202-209
    • Mizukami, Y.1    Rajniak, D.2    Rajniak, A.3    Nishimura, M.4
  • 9
    • 0038346507 scopus 로고    scopus 로고
    • Stereolithography on silicon for microfluidics and microsensor packaging
    • L. A. Tse P. J. Hesketh D. W. Rosen J. L. Gole Stereolithography on silicon for microfluidics and microsensor packaging Microsyst. Technol. 2003 9 319 323
    • (2003) Microsyst. Technol. , vol.9 , pp. 319-323
    • Tse, L.A.1    Hesketh, P.J.2    Rosen, D.W.3    Gole, J.L.4
  • 10
    • 84892960140 scopus 로고    scopus 로고
    • Basic microfluidic and soft lithographic techniques
    • ed. Y. Fainman, L. Lee, D. Psaltis and C. Yang, McGraw-Hill, 2010 edn
    • S. K. Tang and G. M. Whitesides, Basic microfluidic and soft lithographic techniques, Optofluidics Fundam. Devices Appl., ed., Y. Fainman, L. Lee, D. Psaltis, and, C. Yang, McGraw-Hill, 2010 edn, 2009
    • (2009) Optofluidics Fundam. Devices Appl.
    • Tang, S.K.1    Whitesides, G.M.2
  • 11
  • 12
    • 84934294346 scopus 로고    scopus 로고
    • UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection
    • J. Chen et al., UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection Lab Chip 2015 15 3086 3094
    • (2015) Lab Chip , vol.15 , pp. 3086-3094
    • Chen, J.1
  • 14
    • 80051651069 scopus 로고    scopus 로고
    • Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps
    • J. Wu R. Chantiwas A. Amirsadeghi S. A. Soper S. Park Complete plastic nanofluidic devices for DNA analysis via direct imprinting with polymer stamps Lab Chip 2011 11 2984 2989
    • (2011) Lab Chip , vol.11 , pp. 2984-2989
    • Wu, J.1    Chantiwas, R.2    Amirsadeghi, A.3    Soper, S.A.4    Park, S.5
  • 15
    • 0347134477 scopus 로고    scopus 로고
    • Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies
    • S. K. Sia G. M. Whitesides Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies Electrophoresis 2003 24 3563 3576
    • (2003) Electrophoresis , vol.24 , pp. 3563-3576
    • Sia, S.K.1    Whitesides, G.M.2
  • 16
    • 21544455278 scopus 로고    scopus 로고
    • UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems
    • M. A. Roberts J. S. Rossier P. Bercier H. Girault UV Laser Machined Polymer Substrates for the Development of Microdiagnostic Systems Anal. Chem. 1997 69 2035 2042
    • (1997) Anal. Chem. , vol.69 , pp. 2035-2042
    • Roberts, M.A.1    Rossier, J.S.2    Bercier, P.3    Girault, H.4
  • 17
    • 41549088314 scopus 로고    scopus 로고
    • Femtosecond laser micromachining in transparent materials
    • R. R. Gattass E. Mazur Femtosecond laser micromachining in transparent materials Nat. Photonics 2008 2 219 225
    • (2008) Nat. Photonics , vol.2 , pp. 219-225
    • Gattass, R.R.1    Mazur, E.2
  • 18
    • 0034272872 scopus 로고    scopus 로고
    • Semi-disposable microvalves for use with microfabricated devices or microchips
    • P. K. Yuen L. J. Kricka P. Wilding Semi-disposable microvalves for use with microfabricated devices or microchips J. Micromech. Microeng. 2000 10 401
    • (2000) J. Micromech. Microeng. , vol.10 , pp. 401
    • Yuen, P.K.1    Kricka, L.J.2    Wilding, P.3
  • 19
    • 84863260609 scopus 로고    scopus 로고
    • An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation
    • Y.-S. Lin et al., An Aluminum Microfluidic Chip Fabrication Using a Convenient Micromilling Process for Fluorescent Poly(dl-lactide-co-glycolide) Microparticle Generation Sensors 2012 12 1455 1467
    • (2012) Sensors , vol.12 , pp. 1455-1467
    • Lin, Y.-S.1
  • 20
    • 13844308945 scopus 로고    scopus 로고
    • Acoustic micromachining of three-dimensional surfaces for biological applications
    • E. Entcheva H. Bien Acoustic micromachining of three-dimensional surfaces for biological applications Lab Chip 2005 5 179 183
    • (2005) Lab Chip , vol.5 , pp. 179-183
    • Entcheva, E.1    Bien, H.2
  • 22
    • 0034662160 scopus 로고    scopus 로고
    • Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping
    • J. R. Anderson et al., Fabrication of Topologically Complex Three-Dimensional Microfluidic Systems in PDMS by Rapid Prototyping Anal. Chem. 2000 72 3158 3164
    • (2000) Anal. Chem. , vol.72 , pp. 3158-3164
    • Anderson, J.R.1
  • 23
    • 17044405517 scopus 로고    scopus 로고
    • Automatic aligning and bonding system of PDMS layer for the fabrication of 3D microfluidic channels
    • J. Y. Kim J. Y. Baek K. A. Lee S. H. Lee Automatic aligning and bonding system of PDMS layer for the fabrication of 3D microfluidic channels Sens. Actuators, A 2005 119 593 598
    • (2005) Sens. Actuators, A , vol.119 , pp. 593-598
    • Kim, J.Y.1    Baek, J.Y.2    Lee, K.A.3    Lee, S.H.4
  • 24
    • 58249090780 scopus 로고    scopus 로고
    • Bonding of thermoplastic polymer microfluidics
    • C.-W. Tsao D. L. DeVoe Bonding of thermoplastic polymer microfluidics Microfluid. Nanofluid. 2008 6 1 16
    • (2008) Microfluid. Nanofluid. , vol.6 , pp. 1-16
    • Tsao, C.-W.1    DeVoe, D.L.2
  • 26
    • 42549125999 scopus 로고    scopus 로고
    • Determining the optimal PDMS-PDMS bonding technique for microfluidic devices
    • M. A. Eddings M. A. Johnson B. K. Gale Determining the optimal PDMS-PDMS bonding technique for microfluidic devices J. Micromech. Microeng. 2008 18 067001
    • (2008) J. Micromech. Microeng. , vol.18 , pp. 067001
    • Eddings, M.A.1    Johnson, M.A.2    Gale, B.K.3
  • 28
    • 0034615958 scopus 로고    scopus 로고
    • Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography
    • M. A. Unger H.-P. Chou T. Thorsen A. Scherer S. R. Quake Monolithic Microfabricated Valves and Pumps by Multilayer Soft Lithography Science 2000 288 113 116
    • (2000) Science , vol.288 , pp. 113-116
    • Unger, M.A.1    Chou, H.-P.2    Thorsen, T.3    Scherer, A.4    Quake, S.R.5
  • 29
    • 0027989015 scopus 로고
    • Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography in IEEE Workshop on Micro Electro Mechanical Systems
    • 10.1109/MEMSYS.1994.555588
    • K. Ikuta, K. Hirowatari and T. Ogata, Three dimensional micro integrated fluid systems (MIFS) fabricated by stereo lithography in IEEE Workshop on Micro Electro Mechanical Systems, Proceedings MEMS '94, 1994, pp. 1-6, 10.1109/MEMSYS.1994.555588
    • (1994) Proceedings MEMS '94 , pp. 1-6
    • Ikuta, K.1    Hirowatari, K.2    Ogata, T.3
  • 30
    • 14744284549 scopus 로고    scopus 로고
    • Development of an Assembly-free Process Based on Virtual Environment for Fabricating 3D Microfluidic Systems Using Microstereolithography Technology
    • H.-W. Kang I. H. Lee D.-W. Cho Development of an Assembly-free Process Based on Virtual Environment for Fabricating 3D Microfluidic Systems Using Microstereolithography Technology J. Eng. Ind. 2005 126 766 771
    • (2005) J. Eng. Ind. , vol.126 , pp. 766-771
    • Kang, H.-W.1    Lee, I.H.2    Cho, D.-W.3
  • 32
    • 84959305990 scopus 로고    scopus 로고
    • 3D printing: An emerging tool for novel microfluidics and lab-on-a-chip applications
    • A. A. Yazdi et al., 3D printing: an emerging tool for novel microfluidics and lab-on-A-chip applications Microfluid. Nanofluid. 2016 20 1 18
    • (2016) Microfluid. Nanofluid. , vol.20 , pp. 1-18
    • Yazdi, A.A.1
  • 34
    • 84953897029 scopus 로고    scopus 로고
    • A simple and low-cost fully 3D-printed non-planar emulsion generator
    • J. M. Zhang E. Q. Li A. A. Aguirre-Pablo S. T. Thoroddsen A simple and low-cost fully 3D-printed non-planar emulsion generator RSC Adv. 2016 6 2793 2799
    • (2016) RSC Adv. , vol.6 , pp. 2793-2799
    • Zhang, J.M.1    Li, E.Q.2    Aguirre-Pablo, A.A.3    Thoroddsen, S.T.4
  • 35
    • 84896508793 scopus 로고    scopus 로고
    • Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes
    • A. I. Shallan P. Smejkal M. Corban R. M. Guijt M. C. Breadmore Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes Anal. Chem. 2014 86 3124 3130
    • (2014) Anal. Chem. , vol.86 , pp. 3124-3130
    • Shallan, A.I.1    Smejkal, P.2    Corban, M.3    Guijt, R.M.4    Breadmore, M.C.5
  • 36
    • 84946762216 scopus 로고    scopus 로고
    • 3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation
    • D.-K. Kang et al., 3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation Anal. Chem. 2015 87 10770 10778
    • (2015) Anal. Chem. , vol.87 , pp. 10770-10778
    • Kang, D.-K.1
  • 37
    • 84952674111 scopus 로고    scopus 로고
    • Optical approach to resin formulation for 3D printed microfluidics
    • H. Gong M. Beauchamp S. Perry A. T. Woolley G. P. Nordin Optical approach to resin formulation for 3D printed microfluidics RSC Adv. 2015 5 106621 106632
    • (2015) RSC Adv. , vol.5 , pp. 106621-106632
    • Gong, H.1    Beauchamp, M.2    Perry, S.3    Woolley, A.T.4    Nordin, G.P.5
  • 38
    • 84879201823 scopus 로고    scopus 로고
    • A 3D Printed Fluidic Device that Enables Integrated Features
    • K. B. Anderson S. Y. Lockwood R. S. Martin D. M. Spence A 3D Printed Fluidic Device that Enables Integrated Features Anal. Chem. 2013 85 5622 5626
    • (2013) Anal. Chem. , vol.85 , pp. 5622-5626
    • Anderson, K.B.1    Lockwood, S.Y.2    Martin, R.S.3    Spence, D.M.4
  • 39
    • 84908147027 scopus 로고    scopus 로고
    • Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications
    • P. F. O'Neill et al., Advances in three-dimensional rapid prototyping of microfluidic devices for biological applications Biomicrofluidics 2014 8 052112
    • (2014) Biomicrofluidics , vol.8 , pp. 052112
    • O'Neill, P.F.1
  • 40
    • 77951604536 scopus 로고    scopus 로고
    • On-Demand Three-Dimensional Freeform Fabrication of Multi-Layered Hydrogel Scaffold With Fluidic Channels
    • W. Lee et al., On-Demand Three-Dimensional Freeform Fabrication of Multi-Layered Hydrogel Scaffold With Fluidic Channels Biotechnol. Bioeng. 2010 105 1178 1186
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 1178-1186
    • Lee, W.1
  • 41
    • 84901022826 scopus 로고    scopus 로고
    • 3D printed microfluidic devices with integrated versatile and reusable electrodes
    • J. L. Erkal et al., 3D printed microfluidic devices with integrated versatile and reusable electrodes Lab Chip 2014 14 2023 2032
    • (2014) Lab Chip , vol.14 , pp. 2023-2032
    • Erkal, J.L.1
  • 43
    • 84905706976 scopus 로고    scopus 로고
    • 3D-Printed Microfluidic Microdissector for High-Throughput Studies of Cellular Aging
    • E. C. Spivey B. Xhemalce J. B. Shear I. J. Finkelstein 3D-Printed Microfluidic Microdissector for High-Throughput Studies of Cellular Aging Anal. Chem. 2014 86 7406 7412
    • (2014) Anal. Chem. , vol.86 , pp. 7406-7412
    • Spivey, E.C.1    Xhemalce, B.2    Shear, J.B.3    Finkelstein, I.J.4
  • 44
    • 84924984183 scopus 로고    scopus 로고
    • 3D printed molds for non-planar PDMS microfluidic channels
    • Y. Hwang O. H. Paydar R. N. Candler 3D printed molds for non-planar PDMS microfluidic channels Sens. Actuators, A 2015 226 137 142
    • (2015) Sens. Actuators, A , vol.226 , pp. 137-142
    • Hwang, Y.1    Paydar, O.H.2    Candler, R.N.3
  • 45
    • 84940047332 scopus 로고    scopus 로고
    • 3D printed microfluidics for biological applications
    • C. M. B. Ho S. H. Ng K. H. H. Li Y.-J. Yoon 3D printed microfluidics for biological applications Lab Chip 2015 15 3627 3637
    • (2015) Lab Chip , vol.15 , pp. 3627-3637
    • Ho, C.M.B.1    Ng, S.H.2    Li, K.H.H.3    Yoon, Y.-J.4
  • 46
    • 84971012864 scopus 로고    scopus 로고
    • Monolithically integrated Helmholtz coils by 3-dimensional printing
    • L. Li R. Abedini-Nassab B. B. Yellen Monolithically integrated Helmholtz coils by 3-dimensional printing Appl. Phys. Lett. 2014 104 253505
    • (2014) Appl. Phys. Lett. , vol.104 , pp. 253505
    • Li, L.1    Abedini-Nassab, R.2    Yellen, B.B.3
  • 48
    • 27744509818 scopus 로고    scopus 로고
    • Fabrication of two-and three-dimensional periodic structures by multi-exposure of two-beam interference technique
    • N. D. Lai W. P. Liang J. H. Lin C. C. Hsu C. H. Lin Fabrication of two-and three-dimensional periodic structures by multi-exposure of two-beam interference technique Opt. Express 2005 13 9605 9611
    • (2005) Opt. Express , vol.13 , pp. 9605-9611
    • Lai, N.D.1    Liang, W.P.2    Lin, J.H.3    Hsu, C.C.4    Lin, C.H.5
  • 50
    • 33645138130 scopus 로고    scopus 로고
    • Improved inclined multi-lithography using water as exposure medium and its 3D mixing microchannel application
    • H. Sato D. Yagyu S. Ito S. Shoji Improved inclined multi-lithography using water as exposure medium and its 3D mixing microchannel application Sens. Actuators, A 2006 128 183 190
    • (2006) Sens. Actuators, A , vol.128 , pp. 183-190
    • Sato, H.1    Yagyu, D.2    Ito, S.3    Shoji, S.4
  • 52
    • 84866355664 scopus 로고    scopus 로고
    • Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues
    • J. S. Miller et al., Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues Nat. Mater. 2012 11 768 774
    • (2012) Nat. Mater. , vol.11 , pp. 768-774
    • Miller, J.S.1
  • 53
    • 84924972351 scopus 로고    scopus 로고
    • Monolithic Multilayer Microfluidics via Sacrificial Molding of 3D-Printed Isomalt
    • R. Bhargava M. K. Gelber Monolithic Multilayer Microfluidics via Sacrificial Molding of 3D-Printed Isomalt Lab Chip 2015 15 1736 1741
    • (2015) Lab Chip , vol.15 , pp. 1736-1741
    • Bhargava, R.1    Gelber, M.K.2
  • 55
    • 79955830199 scopus 로고    scopus 로고
    • Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes
    • H. Zhang X. Yu P. V. Braun Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes Nat. Nanotechnol. 2011 6 277 281
    • (2011) Nat. Nanotechnol. , vol.6 , pp. 277-281
    • Zhang, H.1    Yu, X.2    Braun, P.V.3
  • 56
    • 84857982323 scopus 로고    scopus 로고
    • A three-dimensional microvascular gas exchange unit for carbon dioxide capture
    • D. T. Nguyen Y. T. Leho A. P. Esser-Kahn A three-dimensional microvascular gas exchange unit for carbon dioxide capture Lab Chip 2012 12 1246 1250
    • (2012) Lab Chip , vol.12 , pp. 1246-1250
    • Nguyen, D.T.1    Leho, Y.T.2    Esser-Kahn, A.P.3
  • 57
    • 80051755217 scopus 로고    scopus 로고
    • Three-Dimensional Microvascular Fiber-Reinforced Composites
    • A. P. Esser-Kahn et al., Three-Dimensional Microvascular Fiber-Reinforced Composites Adv. Mater. 2011 23 3654 3658
    • (2011) Adv. Mater. , vol.23 , pp. 3654-3658
    • Esser-Kahn, A.P.1
  • 58
    • 84925455866 scopus 로고    scopus 로고
    • Inkjet print microchannels based on liquid template
    • Y. Guo L. Li F. Li H. Zhou Y. Song Inkjet print microchannels based on liquid template Lab Chip 2015 15 1759 1764
    • (2015) Lab Chip , vol.15 , pp. 1759-1764
    • Guo, Y.1    Li, L.2    Li, F.3    Zhou, H.4    Song, Y.5
  • 59
    • 85028158588 scopus 로고    scopus 로고
    • Multidimensional Vascularized Polymers using Degradable Sacrificial Templates
    • R. C. R. Gergely et al., Multidimensional Vascularized Polymers using Degradable Sacrificial Templates Adv. Funct. Mater. 2015 25 1043 1052
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 1043-1052
    • Gergely, R.C.R.1
  • 60
    • 84884908294 scopus 로고    scopus 로고
    • 3D Printing of Free Standing Liquid Metal Microstructures
    • C. Ladd J.-H. So J. Muth M. D. Dickey 3D Printing of Free Standing Liquid Metal Microstructures Adv. Mater. 2013 25 5081 5085
    • (2013) Adv. Mater. , vol.25 , pp. 5081-5085
    • Ladd, C.1    So, J.-H.2    Muth, J.3    Dickey, M.D.4
  • 61
    • 84905728339 scopus 로고    scopus 로고
    • 3-D Printing of Liquid Metals for Stretchable and Flexible Conductors
    • 90831D1-10 in
    • C. Trlica, D. P. Parekh, L. Panich, C. Ladd and M. D. Dickey, 3-D Printing of Liquid Metals for Stretchable and Flexible Conductors, in Proceedings of SPIE, 2014, vol. 9083 90831D1-10
    • (2014) Proceedings of SPIE , vol.9083
    • Trlica, C.1    Parekh, D.P.2    Panich, L.3    Ladd, C.4    Dickey, M.D.5
  • 62
    • 37549043162 scopus 로고    scopus 로고
    • Eutectic Gallium-Indium (EGaIn): A Moldable Liquid Metal for Electrical Characterization of Self-Assembled Monolayers
    • R. C. Chiechi E. A. Weiss M. D. Dickey G. M. Whitesides Eutectic Gallium-Indium (EGaIn): A Moldable Liquid Metal for Electrical Characterization of Self-Assembled Monolayers Angew. Chem., Int. Ed. 2008 47 142 144
    • (2008) Angew. Chem., Int. Ed. , vol.47 , pp. 142-144
    • Chiechi, R.C.1    Weiss, E.A.2    Dickey, M.D.3    Whitesides, G.M.4
  • 63
    • 42549111682 scopus 로고    scopus 로고
    • Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature
    • M. D. Dickey et al., Eutectic gallium-indium (EGaIn): A liquid metal alloy for the formation of stable structures in microchannels at room temperature Adv. Funct. Mater. 2008 18 1097 1104
    • (2008) Adv. Funct. Mater. , vol.18 , pp. 1097-1104
    • Dickey, M.D.1
  • 64
    • 37549042121 scopus 로고
    • Resistivity and surface tension of the eutectic alloy of gallium and indium
    • D. Zrnic D. S. Swatik Resistivity and surface tension of the eutectic alloy of gallium and indium J. Less-Common Met. 1969 18 67 68
    • (1969) J. Less-Common Met. , vol.18 , pp. 67-68
    • Zrnic, D.1    Swatik, D.S.2
  • 65
    • 0002033106 scopus 로고
    • On the Capillary Phenomena of Jets
    • L. Rayleigh On the Capillary Phenomena of Jets Proc. R. Soc. London 1879 29 71 97
    • (1879) Proc. R. Soc. London , vol.29 , pp. 71-97
    • Rayleigh, L.1
  • 66
    • 84910154292 scopus 로고    scopus 로고
    • Emerging Applications of Liquid Metals Featuring Surface Oxides
    • M. D. Dickey Emerging Applications of Liquid Metals Featuring Surface Oxides ACS Appl. Mater. Interfaces 2014 6 18369 18379
    • (2014) ACS Appl. Mater. Interfaces , vol.6 , pp. 18369-18379
    • Dickey, M.D.1
  • 68
    • 84902362002 scopus 로고    scopus 로고
    • Direct Writing of Gallium-Indium Alloy for Stretchable Electronics
    • J. W. Boley E. L. White G. T.-C. Chiu R. K. Kramer Direct Writing of Gallium-Indium Alloy for Stretchable Electronics Adv. Funct. Mater. 2014 24 3501 3507
    • (2014) Adv. Funct. Mater. , vol.24 , pp. 3501-3507
    • Boley, J.W.1    White, E.L.2    Chiu, G.T.-C.3    Kramer, R.K.4
  • 69
    • 84961336839 scopus 로고    scopus 로고
    • Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels
    • M. R. Khan C. Trlica M. D. Dickey Recapillarity: Electrochemically Controlled Capillary Withdrawal of a Liquid Metal Alloy from Microchannels Adv. Funct. Mater. 2015 25 671 678
    • (2015) Adv. Funct. Mater. , vol.25 , pp. 671-678
    • Khan, M.R.1    Trlica, C.2    Dickey, M.D.3
  • 70
  • 71
    • 68149099898 scopus 로고    scopus 로고
    • An integrated microfluidic device for large-scale in situ click chemistry screening
    • Y. Wang et al., An integrated microfluidic device for large-scale in situ click chemistry screening Lab Chip 2009 9 2281 2285
    • (2009) Lab Chip , vol.9 , pp. 2281-2285
    • Wang, Y.1
  • 72
    • 21644441288 scopus 로고    scopus 로고
    • Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat
    • F. K. Balagaddé L. You C. L. Hansen F. H. Arnold S. R. Quake Long-Term Monitoring of Bacteria Undergoing Programmed Population Control in a Microchemostat Science 2005 309 137 140
    • (2005) Science , vol.309 , pp. 137-140
    • Balagaddé, F.K.1    You, L.2    Hansen, C.L.3    Arnold, F.H.4    Quake, S.R.5
  • 73
    • 79952253421 scopus 로고    scopus 로고
    • Inherently aligned microfluidic electrodes composed of liquid metal
    • J.-H. So M. D. Dickey Inherently aligned microfluidic electrodes composed of liquid metal Lab Chip 2011 11 905 911
    • (2011) Lab Chip , vol.11 , pp. 905-911
    • So, J.-H.1    Dickey, M.D.2
  • 74
    • 84875179070 scopus 로고    scopus 로고
    • Self-Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics
    • E. Palleau S. Reece S. C. Desai M. E. Smith M. D. Dickey Self-Healing Stretchable Wires for Reconfigurable Circuit Wiring and 3D Microfluidics Adv. Mater. 2013 25 1589 1592
    • (2013) Adv. Mater. , vol.25 , pp. 1589-1592
    • Palleau, E.1    Reece, S.2    Desai, S.C.3    Smith, M.E.4    Dickey, M.D.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.