-
1
-
-
33747919813
-
-
S. J. French, D. J. Saunders, G. W. Ingle, J. Phys. Chem. 1938, 42, 265.
-
(1938)
J. Phys. Chem
, vol.42
, pp. 265
-
-
French, S.J.1
Saunders, D.J.2
Ingle, G.W.3
-
3
-
-
33646126947
-
-
A. D. Pasquier, S. Miller, M. Chhowalla, Solar Energy Mater. Solar Cells 2006, 90, 1828.
-
(2006)
Solar Energy Mater. Solar Cells
, vol.90
, pp. 1828
-
-
Pasquier, A.D.1
Miller, S.2
Chhowalla, M.3
-
4
-
-
37549042898
-
-
E. J. Lous, P. W. M. Blom, L. W. Molenkamp, D. M. d. Leeuw, J. Appl. Phys. 1997, 81.
-
(1997)
J. Appl. Phys
, vol.81
-
-
Lous, E.J.1
Blom, P.W.M.2
Molenkamp, L.W.3
Leeuw, D.M.D.4
-
5
-
-
4444345507
-
-
C. P. Rhodes, J. W. Long, M. S. Doescher, J. J. Fontanella, D. R. Rolison, J. Phys. Chem. B 2004, 108, 13079.
-
(2004)
J. Phys. Chem. B
, vol.108
, pp. 13079
-
-
Rhodes, C.P.1
Long, J.W.2
Doescher, M.S.3
Fontanella, J.J.4
Rolison, D.R.5
-
6
-
-
34848879214
-
-
E. A. Weiss, G. K. Kaufman, J. K. Kriebel, Z. Li, R. Schalek, G. M. Whitesides, Langmuir 2007, 23, 9686.
-
(2007)
Langmuir
, vol.23
, pp. 9686
-
-
Weiss, E.A.1
Kaufman, G.K.2
Kriebel, J.K.3
Li, Z.4
Schalek, R.5
Whitesides, G.M.6
-
7
-
-
28244436257
-
-
Eds, M. A. Reed, T. Lee, American Scientific Publishers, Valencia
-
J. Chen, T. Lee, J. Su, W. Wang, M. A. Reed, A. M. Rawlett, M. Kozaki, Y. Yao, R. C. Jagessar, S. M. Dirk, D. W. Price, J. M. Tour, D. S. Grubisha, D. W. Bennett in Molecular Nanoelectronics (Eds.: M. A. Reed, T. Lee), American Scientific Publishers, Valencia, 2003, p. 1.
-
(2003)
Molecular Nanoelectronics
, pp. 1
-
-
Chen, J.1
Lee, T.2
Su, J.3
Wang, W.4
Reed, M.A.5
Rawlett, A.M.6
Kozaki, M.7
Yao, Y.8
Jagessar, R.C.9
Dirk, S.M.10
Price, D.W.11
Tour, J.M.12
Grubisha, D.S.13
Bennett, D.W.14
-
8
-
-
34547116198
-
-
T.-W. Kim, G. Wang, H. Lee, T. Lee, Nanotechnology 2007, 18, 315204.
-
(2007)
Nanotechnology
, vol.18
, pp. 315204
-
-
Kim, T.-W.1
Wang, G.2
Lee, H.3
Lee, T.4
-
10
-
-
33947268715
-
-
F. Milani, C. Grave, V. Ferri, P. Samori, M. A. Rampi, Chem. Phys. Phys. Chem. 2007, 8, 515.
-
(2007)
Chem. Phys. Phys. Chem
, vol.8
, pp. 515
-
-
Milani, F.1
Grave, C.2
Ferri, V.3
Samori, P.4
Rampi, M.A.5
-
11
-
-
33744788417
-
-
H. B. Akkerman, P. W. M. Blom, D. M. d. Leeuw, B. d. Boer, Nature 2006, 441, 69.
-
(2006)
Nature
, vol.441
, pp. 69
-
-
Akkerman, H.B.1
Blom, P.W.M.2
Leeuw, D.M.D.3
Boer, B.D.4
-
12
-
-
24944499533
-
-
C. Schoenenberger, J. Jorritsma, J. A. M. Sondag-Huethorst, L. G. J. Fokkink, J. Phys. Chem. 1995, 99, 3259.
-
(1995)
J. Phys. Chem
, vol.99
, pp. 3259
-
-
Schoenenberger, C.1
Jorritsma, J.2
Sondag-Huethorst, J.A.M.3
Fokkink, L.G.J.4
-
13
-
-
34247127494
-
-
E. A. Weiss, R. C. Chiechi, G. K. Kaufman, J. K. Kriebel, Z. Li, M. Duati, M. A. Rampi, G. M. Whitesides, J. Am. Chem. Soc. 2007, 129, 4336.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 4336
-
-
Weiss, E.A.1
Chiechi, R.C.2
Kaufman, G.K.3
Kriebel, J.K.4
Li, Z.5
Duati, M.6
Rampi, M.A.7
Whitesides, G.M.8
-
15
-
-
34250845844
-
-
Hg has been used as a top contact for monolayers of alkanes on Si; these monolayers are formed, however, through the covalent attachment of alkenes to Si rather than the dynamic equilibria that are involved in the formation of SAMs on metals; see
-
Hg has been used as a top contact for monolayers of alkanes on Si; these monolayers are formed, however, through the covalent attachment of alkenes to Si rather than the dynamic equilibria that are involved in the formation of SAMs on metals; see: O. Seitz et al., J. Am. Chem. Soc. 2007, 129, 7494.
-
(2007)
J. Am. Chem. Soc
, vol.129
, pp. 7494
-
-
Seitz, O.1
-
16
-
-
37549008033
-
-
unpublished results
-
M. D. Dickey, R. C. Chiechi, R. J. Larsen, E. A. Weiss, D. A. Weitz, G. M. Whitesides, Adv. Funct. Mater., unpublished results.
-
Adv. Funct. Mater
-
-
Dickey, M.D.1
Chiechi, R.C.2
Larsen, R.J.3
Weiss, E.A.4
Weitz, D.A.5
Whitesides, G.M.6
-
17
-
-
0010944096
-
-1: A. Bondi
-
-1: A. Bondi, Chem. Rev. 1953, 52, 417.
-
(1953)
Chem. Rev
, vol.52
, pp. 417
-
-
-
18
-
-
37549071563
-
-
The origin of the sudden change in the shape of the J-V trace in Figure 2a between V, ±0.05 is probably a switch from the low-bias regime (e V ≪ Φ) to the intermediate- bias regime (e V < Φ, whereby Φ is the height of the tunneling barrier imposed by the organic monolayer (within the often-used Simmons model, In the low-bias regime, J depends only linearly on V, but, in the intermediate bias regime, J depends exponentially on V as a result of the so-called barrier-lowering effect of the applied bias. We did not acquire data in small enough intervals of V to capture the shape of the J-V response in this region; the transition from low- to intermediate-bias regimes therefore appears as a discontinuity in the plot in Figure 2a; see: Chen et al. in Molecular Nanoelectronics Eds, M. A. Reed, T. Lee, American Scientific Publishers, Valencia, 2003
-
The origin of the sudden change in the shape of the J-V trace in Figure 2a between V = ±0.05 is probably a switch from the "low-bias regime" (e V ≪ Φ) to the "intermediate- bias regime" (e V < Φ), whereby Φ is the height of the tunneling barrier imposed by the organic monolayer (within the often-used Simmons model). In the low-bias regime, J depends only linearly on V, but, in the intermediate bias regime, J depends exponentially on V as a result of the so-called "barrier-lowering effect" of the applied bias. We did not acquire data in small enough intervals of V to capture the shape of the J-V response in this region; the transition from low- to intermediate-bias regimes therefore appears as a discontinuity in the plot in Figure 2a; see: Chen et al. in Molecular Nanoelectronics (Eds.: M. A. Reed, T. Lee), American Scientific Publishers, Valencia, 2003, pp. 1-76.
-
-
-
-
19
-
-
37549002992
-
-
in press
-
E. A. Weiss, R. C. Chiechi, S. M. Geyer, V. J. Porter, D. C. Bell, M. G. Bawendi, G. M. Whitesides, J. Am. Chem. Soc., in press.
-
J. Am. Chem. Soc
-
-
Weiss, E.A.1
Chiechi, R.C.2
Geyer, S.M.3
Porter, V.J.4
Bell, D.C.5
Bawendi, M.G.6
Whitesides, G.M.7
|