-
1
-
-
84936746564
-
Mitochondria, energetics, epigenetics, and cellular responses to stress
-
1 Shaughnessy, D.T., et al. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 122 (2014), 1271–1278.
-
(2014)
Environ. Health Perspect.
, vol.122
, pp. 1271-1278
-
-
Shaughnessy, D.T.1
-
2
-
-
84938739650
-
Evolution of mitochondria as signaling organelles
-
2 Chandel, N.S., Evolution of mitochondria as signaling organelles. Cell Metab. 22 (2015), 204–206.
-
(2015)
Cell Metab.
, vol.22
, pp. 204-206
-
-
Chandel, N.S.1
-
3
-
-
33644629183
-
Coming up for air: HIF-1 and mitochondrial oxygen consumption
-
3 Simon, M.C., Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab. 3 (2006), 150–151.
-
(2006)
Cell Metab.
, vol.3
, pp. 150-151
-
-
Simon, M.C.1
-
4
-
-
84975755192
-
Mitochondrial ROS signaling in organismal homeostasis
-
4 Shadel, G.S., Horvath, T.L., Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (2015), 560–569.
-
(2015)
Cell
, vol.163
, pp. 560-569
-
-
Shadel, G.S.1
Horvath, T.L.2
-
5
-
-
84924358856
-
The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance
-
5 Lee, C., et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21 (2015), 443–454.
-
(2015)
Cell Metab.
, vol.21
, pp. 443-454
-
-
Lee, C.1
-
6
-
-
0038485614
-
Humanin peptide suppresses apoptosis by interfering with Bax activation
-
6 Guo, B., et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423 (2003), 456–461.
-
(2003)
Nature
, vol.423
, pp. 456-461
-
-
Guo, B.1
-
7
-
-
20444372545
-
2 regulates the angiogenic phenotype via PTEN oxidation
-
2 regulates the angiogenic phenotype via PTEN oxidation. J. Biol. Chem. 280 (2005), 16916–16924.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 16916-16924
-
-
Connor, K.M.1
-
8
-
-
0032546955
-
Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor
-
8 Lee, S.R., et al. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273 (1998), 15366–15372.
-
(1998)
J. Biol. Chem.
, vol.273
, pp. 15366-15372
-
-
Lee, S.R.1
-
9
-
-
0035816440
-
Caspases are reversibly inactivated by hydrogen peroxide
-
9 Borutaite, V., Brown, G.C., Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 500 (2001), 114–118.
-
(2001)
FEBS Lett.
, vol.500
, pp. 114-118
-
-
Borutaite, V.1
Brown, G.C.2
-
10
-
-
84856100794
-
Oxidation of CaMKII determines the cardiotoxic effects of aldosterone
-
10 He, B.J., et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat. Med. 17 (2011), 1610–1618.
-
(2011)
Nat. Med.
, vol.17
, pp. 1610-1618
-
-
He, B.J.1
-
11
-
-
84997344872
-
Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis
-
11 Hart, P.C., et al. Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis. Oncotarget 7 (2015), 308–322.
-
(2015)
Oncotarget
, vol.7
, pp. 308-322
-
-
Hart, P.C.1
-
12
-
-
84923169953
-
MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer
-
12 Hart, P.C., et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat. Commun., 6, 2015, 6053.
-
(2015)
Nat. Commun.
, vol.6
, pp. 6053
-
-
Hart, P.C.1
-
13
-
-
70349705635
-
Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways
-
13 Sun, Y., et al. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ. Res. 105 (2009), 676–685.
-
(2009)
Circ. Res.
, vol.105
, pp. 676-685
-
-
Sun, Y.1
-
14
-
-
0037414784
-
20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated
-
14 Demasi, M., et al. 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated. J. Biol. Chem. 278 (2003), 679–685.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 679-685
-
-
Demasi, M.1
-
15
-
-
28744438031
-
2 via an antioxidant response element
-
2 via an antioxidant response element. FASEB J. 19 (2005), 2085–2087.
-
(2005)
FASEB J.
, vol.19
, pp. 2085-2087
-
-
Wilson, L.A.1
-
16
-
-
0029753008
-
Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit
-
16 Huang, L.E., et al. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 271 (1996), 32253–32259.
-
(1996)
J. Biol. Chem.
, vol.271
, pp. 32253-32259
-
-
Huang, L.E.1
-
17
-
-
0034945361
-
Hydrogen peroxide activates NFκB and the interleukin-6 promoter through NFκB-inducing kinase
-
17 Zhang, J., et al. Hydrogen peroxide activates NFκB and the interleukin-6 promoter through NFκB-inducing kinase. Antioxid. Redox Signal. 3 (2001), 493–504.
-
(2001)
Antioxid. Redox Signal.
, vol.3
, pp. 493-504
-
-
Zhang, J.1
-
18
-
-
84881119066
-
Role of PFKFB3-driven glycolysis in vessel sprouting
-
18 De Bock, K., et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154 (2013), 651–663.
-
(2013)
Cell
, vol.154
, pp. 651-663
-
-
De Bock, K.1
-
19
-
-
84930224849
-
Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes
-
19 Kuppusamy, K.T., et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2785–E2794.
-
(2015)
Proc. Natl. Acad. Sci. U.S.A.
, vol.112
, pp. E2785-E2794
-
-
Kuppusamy, K.T.1
-
20
-
-
84948669098
-
The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
-
20 Sperber, H., et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17 (2015), 1523–1535.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1523-1535
-
-
Sperber, H.1
-
21
-
-
79960945131
-
Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
-
21 Folmes, C.D., et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14 (2011), 264–271.
-
(2011)
Cell Metab.
, vol.14
, pp. 264-271
-
-
Folmes, C.D.1
-
22
-
-
84855490988
-
The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
-
22 Panopoulos, A.D., et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22 (2012), 168–177.
-
(2012)
Cell Res.
, vol.22
, pp. 168-177
-
-
Panopoulos, A.D.1
-
23
-
-
83455235489
-
UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
-
23 Zhang, J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30 (2011), 4860–4873.
-
(2011)
EMBO J.
, vol.30
, pp. 4860-4873
-
-
Zhang, J.1
-
24
-
-
0016681098
-
Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
-
24 Boveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54 (1975), 311–314.
-
(1975)
FEBS Lett.
, vol.54
, pp. 311-314
-
-
Boveris, A.1
Cadenas, E.2
-
25
-
-
0017406503
-
Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria
-
25 Cadenas, E., et al. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180 (1977), 248–257.
-
(1977)
Arch. Biochem. Biophys.
, vol.180
, pp. 248-257
-
-
Cadenas, E.1
-
26
-
-
84911466192
-
Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
-
26 Chouchani, E.T., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515 (2014), 431–435.
-
(2014)
Nature
, vol.515
, pp. 431-435
-
-
Chouchani, E.T.1
-
27
-
-
0027251053
-
The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate
-
27 Buettner, G.R., The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300 (1993), 535–543.
-
(1993)
Arch. Biochem. Biophys.
, vol.300
, pp. 535-543
-
-
Buettner, G.R.1
-
28
-
-
84898542871
-
Redox control of enzymatic functions: the electronics of life's circuitry
-
Published online March 26, 2014
-
28 Bonini, M.G., et al. Redox control of enzymatic functions: the electronics of life's circuitry. IUBMB Life., 2014, 10.1002/iub.1258 Published online March 26, 2014.
-
(2014)
IUBMB Life.
-
-
Bonini, M.G.1
-
29
-
-
84886877514
-
Nutrient-sensing pathways and metabolic regulation in stem cells
-
29 Ochocki, J.D., Simon, M.C., Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol. 203 (2013), 23–33.
-
(2013)
J. Cell Biol.
, vol.203
, pp. 23-33
-
-
Ochocki, J.D.1
Simon, M.C.2
-
30
-
-
84947704464
-
Cancer's fuel choice: new flavors for a picky eater
-
30 DeNicola, G.M., Cantley, L.C., Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 60 (2015), 514–523.
-
(2015)
Mol. Cell
, vol.60
, pp. 514-523
-
-
DeNicola, G.M.1
Cantley, L.C.2
-
31
-
-
0032578458
-
Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
-
31 Chandel, N.S., et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci.U.S.A. 95 (1998), 11715–11720.
-
(1998)
Proc. Natl. Acad. Sci.U.S.A.
, vol.95
, pp. 11715-11720
-
-
Chandel, N.S.1
-
32
-
-
24144444133
-
Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
-
32 Brunelle, J.K., et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1 (2005), 409–414.
-
(2005)
Cell Metab.
, vol.1
, pp. 409-414
-
-
Brunelle, J.K.1
-
33
-
-
44849083150
-
Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation
-
33 Ding, Y., et al. Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation. Am. J. Pathol. 172 (2008), 1529–1541.
-
(2008)
Am. J. Pathol.
, vol.172
, pp. 1529-1541
-
-
Ding, Y.1
-
34
-
-
58249117780
-
The antioxidant defense system Keap1–Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds
-
34 Kobayashi, M., et al. The antioxidant defense system Keap1–Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29 (2009), 493–502.
-
(2009)
Mol. Cell. Biol.
, vol.29
, pp. 493-502
-
-
Kobayashi, M.1
-
35
-
-
53049109525
-
Dynein light chain LC8 negatively regulates NF-κB through the redox-dependent interaction with IκBα
-
35 Jung, Y., et al. Dynein light chain LC8 negatively regulates NF-κB through the redox-dependent interaction with IκBα. J. Biol. Chem. 283 (2008), 23863–23871.
-
(2008)
J. Biol. Chem.
, vol.283
, pp. 23863-23871
-
-
Jung, Y.1
-
36
-
-
33644990327
-
2-mediated activation of NFκB-inducing kinase
-
2-mediated activation of NFκB-inducing kinase. J. Biol. Chem. 281 (2006), 1495–1505.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 1495-1505
-
-
Li, Q.1
Engelhardt, J.F.2
-
37
-
-
79959908506
-
HIF induces human embryonic stem cell markers in cancer cells
-
37 Mathieu, J., et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 71 (2011), 4640–4652.
-
(2011)
Cancer Res.
, vol.71
, pp. 4640-4652
-
-
Mathieu, J.1
-
38
-
-
84862776944
-
From stem cells to cancer stem cells: HIF takes the stage
-
38 Lee, K.E., Simon, M.C., From stem cells to cancer stem cells: HIF takes the stage. Curr. Opin. Cell Biol. 24 (2012), 232–235.
-
(2012)
Curr. Opin. Cell Biol.
, vol.24
, pp. 232-235
-
-
Lee, K.E.1
Simon, M.C.2
-
39
-
-
77953859606
-
NF-κB as a critical link between inflammation and cancer
-
39 Karin, M., NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol., 1, 2009, a000141.
-
(2009)
Cold Spring Harb. Perspect. Biol.
, vol.1
, pp. a000141
-
-
Karin, M.1
-
40
-
-
79952121979
-
Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion
-
40 Iliopoulos, D., et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 1397–1402.
-
(2011)
Proc. Natl. Acad. Sci. U.S.A.
, vol.108
, pp. 1397-1402
-
-
Iliopoulos, D.1
-
41
-
-
80053531658
-
Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots
-
41 Korkaya, H., et al. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin. Cancer Res. 17 (2011), 6125–6129.
-
(2011)
Clin. Cancer Res.
, vol.17
, pp. 6125-6129
-
-
Korkaya, H.1
-
42
-
-
84908094625
-
Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells
-
42 Jang, J., et al. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 32 (2014), 2616–2625.
-
(2014)
Stem Cells
, vol.32
, pp. 2616-2625
-
-
Jang, J.1
-
43
-
-
84927732079
-
Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness
-
43 Katajisto, P., et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348 (2015), 340–343.
-
(2015)
Science
, vol.348
, pp. 340-343
-
-
Katajisto, P.1
-
45
-
-
0037009521
-
A mitochondrial specific stress response in mammalian cells
-
45 Zhao, Q., et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21 (2002), 4411–4419.
-
(2002)
EMBO J.
, vol.21
, pp. 4411-4419
-
-
Zhao, Q.1
-
46
-
-
33748901113
-
Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response
-
46 Benedetti, C., et al. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174 (2006), 229–239.
-
(2006)
Genetics
, vol.174
, pp. 229-239
-
-
Benedetti, C.1
-
47
-
-
34848861368
-
ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans
-
47 Haynes, C.M., et al. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13 (2007), 467–480.
-
(2007)
Dev. Cell
, vol.13
, pp. 467-480
-
-
Haynes, C.M.1
-
49
-
-
33845656956
-
Mitochondrial retrograde signaling
-
49 Liu, Z., Butow, R.A., Mitochondrial retrograde signaling. Annu. Rev. Genet. 40 (2006), 159–185.
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 159-185
-
-
Liu, Z.1
Butow, R.A.2
-
50
-
-
84896499806
-
The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease
-
50 Jovaisaite, V., et al. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol. 217 (2014), 137–143.
-
(2014)
J. Exp. Biol.
, vol.217
, pp. 137-143
-
-
Jovaisaite, V.1
-
51
-
-
84905822745
-
Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans
-
51 Bennett, C.F., et al. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat. Commun., 5, 2014, 3483.
-
(2014)
Nat. Commun.
, vol.5
, pp. 3483
-
-
Bennett, C.F.1
-
52
-
-
84880517634
-
+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
-
+/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154 (2013), 430–441.
-
(2013)
Cell
, vol.154
, pp. 430-441
-
-
Mouchiroud, L.1
-
53
-
-
84892989225
-
SirT3 regulates the mitochondrial unfolded protein response
-
53 Papa, L., Germain, D., SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell. Biol. 34 (2014), 699–710.
-
(2014)
Mol. Cell. Biol.
, vol.34
, pp. 699-710
-
-
Papa, L.1
Germain, D.2
-
54
-
-
74049094817
-
-
Kim, H.S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52
-
54 Kim, H.S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52.
-
-
-
-
55
-
-
84887486172
-
The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
-
55 Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
-
(2013)
Autophagy
, vol.9
, pp. 1750-1757
-
-
Jin, S.M.1
Youle, R.J.2
-
56
-
-
79955549674
-
Estrogen receptor mediates a distinct mitochondrial unfolded protein response
-
56 Papa, L., Germain, D., Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J. Cell Sci. 124 (2011), 1396–1402.
-
(2011)
J. Cell Sci.
, vol.124
, pp. 1396-1402
-
-
Papa, L.1
Germain, D.2
-
57
-
-
84940797231
-
Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3
-
57 Rimmele, P., et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16 (2015), 1164–1176.
-
(2015)
EMBO Rep.
, vol.16
, pp. 1164-1176
-
-
Rimmele, P.1
-
58
-
-
84925265469
-
Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
-
58 Mohrin, M., et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347 (2015), 1374–1377.
-
(2015)
Science
, vol.347
, pp. 1374-1377
-
-
Mohrin, M.1
-
59
-
-
84856739946
-
Hypoxia-inducible factors in physiology and medicine
-
59 Semenza, G.L., Hypoxia-inducible factors in physiology and medicine. Cell 148 (2012), 399–408.
-
(2012)
Cell
, vol.148
, pp. 399-408
-
-
Semenza, G.L.1
-
60
-
-
78649364332
-
Hypoxia-inducible factors and the response to hypoxic stress
-
60 Majmundar, A.J., et al. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40 (2010), 294–309.
-
(2010)
Mol. Cell
, vol.40
, pp. 294-309
-
-
Majmundar, A.J.1
-
61
-
-
0034682786
-
Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing
-
61 Chandel, N.S., et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275 (2000), 25130–25138.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 25130-25138
-
-
Chandel, N.S.1
-
62
-
-
84982281641
-
MnSOD acetylation and dys-regulation, due to loss of SIRT3 activity, promotes a Luminal B-like breast carcinogenic permissive phenotype
-
Published online April 15, 2016
-
62 Zou, X., et al. MnSOD acetylation and dys-regulation, due to loss of SIRT3 activity, promotes a Luminal B-like breast carcinogenic permissive phenotype. Antioxid. Redox Signal., 2016, 10.1089/ars.2016.6641 Published online April 15, 2016.
-
(2016)
Antioxid. Redox Signal.
-
-
Zou, X.1
-
63
-
-
84864398931
-
Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity
-
63 Zhu, Y., et al. Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radic. Biol. Med. 53 (2012), 828–833.
-
(2012)
Free Radic. Biol. Med.
, vol.53
, pp. 828-833
-
-
Zhu, Y.1
-
64
-
-
79959541505
-
Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress
-
64 Ozden, O., et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3 (2011), 102–107.
-
(2011)
Aging (Albany NY)
, vol.3
, pp. 102-107
-
-
Ozden, O.1
-
65
-
-
78650248160
-
Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
-
65 Tao, R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40 (2010), 893–904.
-
(2010)
Mol. Cell
, vol.40
, pp. 893-904
-
-
Tao, R.1
-
66
-
-
84923616310
-
CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection
-
66 Jin, C., et al. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection. Free Radic. Biol. Med. 81 (2015), 77–87.
-
(2015)
Free Radic. Biol. Med.
, vol.81
, pp. 77-87
-
-
Jin, C.1
-
67
-
-
84871922397
-
The peroxidase activity of mitochondrial superoxide dismutase
-
67 Ansenberger-Fricano, K., et al. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic. Biol. Med. 54 (2013), 116–124.
-
(2013)
Free Radic. Biol. Med.
, vol.54
, pp. 116-124
-
-
Ansenberger-Fricano, K.1
-
68
-
-
84930507864
-
Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria
-
68 Ganini, D., et al. Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria. Biochim. Biophys. Acta 1850 (2015), 1795–1805.
-
(2015)
Biochim. Biophys. Acta
, vol.1850
, pp. 1795-1805
-
-
Ganini, D.1
|