메뉴 건너뛰기




Volumn 41, Issue 7, 2016, Pages 568-577

SOD2 and the Mitochondrial UPR: Partners Regulating Cellular Phenotypic Transitions

Author keywords

[No Author keywords available]

Indexed keywords

ADENOSINE TRIPHOSPHATE; HYDROGEN PEROXIDE; HYPOXIA INDUCIBLE FACTOR; IMMUNOGLOBULIN ENHANCER BINDING PROTEIN; MANGANESE SUPEROXIDE DISMUTASE; REACTIVE OXYGEN METABOLITE; SIRTUIN 3; SIRTUIN 7; TRANSCRIPTION FACTOR NRF1; TRANSCRIPTION FACTOR NRF2; SUPEROXIDE DISMUTASE;

EID: 84970028289     PISSN: 09680004     EISSN: 13624326     Source Type: Journal    
DOI: 10.1016/j.tibs.2016.04.004     Document Type: Review
Times cited : (37)

References (68)
  • 1
    • 84936746564 scopus 로고    scopus 로고
    • Mitochondria, energetics, epigenetics, and cellular responses to stress
    • 1 Shaughnessy, D.T., et al. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ. Health Perspect. 122 (2014), 1271–1278.
    • (2014) Environ. Health Perspect. , vol.122 , pp. 1271-1278
    • Shaughnessy, D.T.1
  • 2
    • 84938739650 scopus 로고    scopus 로고
    • Evolution of mitochondria as signaling organelles
    • 2 Chandel, N.S., Evolution of mitochondria as signaling organelles. Cell Metab. 22 (2015), 204–206.
    • (2015) Cell Metab. , vol.22 , pp. 204-206
    • Chandel, N.S.1
  • 3
    • 33644629183 scopus 로고    scopus 로고
    • Coming up for air: HIF-1 and mitochondrial oxygen consumption
    • 3 Simon, M.C., Coming up for air: HIF-1 and mitochondrial oxygen consumption. Cell Metab. 3 (2006), 150–151.
    • (2006) Cell Metab. , vol.3 , pp. 150-151
    • Simon, M.C.1
  • 4
    • 84975755192 scopus 로고    scopus 로고
    • Mitochondrial ROS signaling in organismal homeostasis
    • 4 Shadel, G.S., Horvath, T.L., Mitochondrial ROS signaling in organismal homeostasis. Cell 163 (2015), 560–569.
    • (2015) Cell , vol.163 , pp. 560-569
    • Shadel, G.S.1    Horvath, T.L.2
  • 5
    • 84924358856 scopus 로고    scopus 로고
    • The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance
    • 5 Lee, C., et al. The mitochondrial-derived peptide MOTS-c promotes metabolic homeostasis and reduces obesity and insulin resistance. Cell Metab. 21 (2015), 443–454.
    • (2015) Cell Metab. , vol.21 , pp. 443-454
    • Lee, C.1
  • 6
    • 0038485614 scopus 로고    scopus 로고
    • Humanin peptide suppresses apoptosis by interfering with Bax activation
    • 6 Guo, B., et al. Humanin peptide suppresses apoptosis by interfering with Bax activation. Nature 423 (2003), 456–461.
    • (2003) Nature , vol.423 , pp. 456-461
    • Guo, B.1
  • 7
    • 20444372545 scopus 로고    scopus 로고
    • 2 regulates the angiogenic phenotype via PTEN oxidation
    • 2 regulates the angiogenic phenotype via PTEN oxidation. J. Biol. Chem. 280 (2005), 16916–16924.
    • (2005) J. Biol. Chem. , vol.280 , pp. 16916-16924
    • Connor, K.M.1
  • 8
    • 0032546955 scopus 로고    scopus 로고
    • Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor
    • 8 Lee, S.R., et al. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor. J. Biol. Chem. 273 (1998), 15366–15372.
    • (1998) J. Biol. Chem. , vol.273 , pp. 15366-15372
    • Lee, S.R.1
  • 9
    • 0035816440 scopus 로고    scopus 로고
    • Caspases are reversibly inactivated by hydrogen peroxide
    • 9 Borutaite, V., Brown, G.C., Caspases are reversibly inactivated by hydrogen peroxide. FEBS Lett. 500 (2001), 114–118.
    • (2001) FEBS Lett. , vol.500 , pp. 114-118
    • Borutaite, V.1    Brown, G.C.2
  • 10
    • 84856100794 scopus 로고    scopus 로고
    • Oxidation of CaMKII determines the cardiotoxic effects of aldosterone
    • 10 He, B.J., et al. Oxidation of CaMKII determines the cardiotoxic effects of aldosterone. Nat. Med. 17 (2011), 1610–1618.
    • (2011) Nat. Med. , vol.17 , pp. 1610-1618
    • He, B.J.1
  • 11
    • 84997344872 scopus 로고    scopus 로고
    • Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis
    • 11 Hart, P.C., et al. Caveolin-1 regulates cancer cell metabolism via scavenging Nrf2 and suppressing MnSOD-driven glycolysis. Oncotarget 7 (2015), 308–322.
    • (2015) Oncotarget , vol.7 , pp. 308-322
    • Hart, P.C.1
  • 12
    • 84923169953 scopus 로고    scopus 로고
    • MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer
    • 12 Hart, P.C., et al. MnSOD upregulation sustains the Warburg effect via mitochondrial ROS and AMPK-dependent signalling in cancer. Nat. Commun., 6, 2015, 6053.
    • (2015) Nat. Commun. , vol.6 , pp. 6053
    • Hart, P.C.1
  • 13
    • 70349705635 scopus 로고    scopus 로고
    • Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways
    • 13 Sun, Y., et al. Phosphorylation of caveolin-1 regulates oxidant-induced pulmonary vascular permeability via paracellular and transcellular pathways. Circ. Res. 105 (2009), 676–685.
    • (2009) Circ. Res. , vol.105 , pp. 676-685
    • Sun, Y.1
  • 14
    • 0037414784 scopus 로고    scopus 로고
    • 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated
    • 14 Demasi, M., et al. 20 S proteasome from Saccharomyces cerevisiae is responsive to redox modifications and is S-glutathionylated. J. Biol. Chem. 278 (2003), 679–685.
    • (2003) J. Biol. Chem. , vol.278 , pp. 679-685
    • Demasi, M.1
  • 15
    • 28744438031 scopus 로고    scopus 로고
    • 2 via an antioxidant response element
    • 2 via an antioxidant response element. FASEB J. 19 (2005), 2085–2087.
    • (2005) FASEB J. , vol.19 , pp. 2085-2087
    • Wilson, L.A.1
  • 16
    • 0029753008 scopus 로고    scopus 로고
    • Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit
    • 16 Huang, L.E., et al. Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J. Biol. Chem. 271 (1996), 32253–32259.
    • (1996) J. Biol. Chem. , vol.271 , pp. 32253-32259
    • Huang, L.E.1
  • 17
    • 0034945361 scopus 로고    scopus 로고
    • Hydrogen peroxide activates NFκB and the interleukin-6 promoter through NFκB-inducing kinase
    • 17 Zhang, J., et al. Hydrogen peroxide activates NFκB and the interleukin-6 promoter through NFκB-inducing kinase. Antioxid. Redox Signal. 3 (2001), 493–504.
    • (2001) Antioxid. Redox Signal. , vol.3 , pp. 493-504
    • Zhang, J.1
  • 18
    • 84881119066 scopus 로고    scopus 로고
    • Role of PFKFB3-driven glycolysis in vessel sprouting
    • 18 De Bock, K., et al. Role of PFKFB3-driven glycolysis in vessel sprouting. Cell 154 (2013), 651–663.
    • (2013) Cell , vol.154 , pp. 651-663
    • De Bock, K.1
  • 19
    • 84930224849 scopus 로고    scopus 로고
    • Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes
    • 19 Kuppusamy, K.T., et al. Let-7 family of microRNA is required for maturation and adult-like metabolism in stem cell-derived cardiomyocytes. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2785–E2794.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E2785-E2794
    • Kuppusamy, K.T.1
  • 20
    • 84948669098 scopus 로고    scopus 로고
    • The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition
    • 20 Sperber, H., et al. The metabolome regulates the epigenetic landscape during naive-to-primed human embryonic stem cell transition. Nat. Cell Biol. 17 (2015), 1523–1535.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1523-1535
    • Sperber, H.1
  • 21
    • 79960945131 scopus 로고    scopus 로고
    • Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming
    • 21 Folmes, C.D., et al. Somatic oxidative bioenergetics transitions into pluripotency-dependent glycolysis to facilitate nuclear reprogramming. Cell Metab. 14 (2011), 264–271.
    • (2011) Cell Metab. , vol.14 , pp. 264-271
    • Folmes, C.D.1
  • 22
    • 84855490988 scopus 로고    scopus 로고
    • The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming
    • 22 Panopoulos, A.D., et al. The metabolome of induced pluripotent stem cells reveals metabolic changes occurring in somatic cell reprogramming. Cell Res. 22 (2012), 168–177.
    • (2012) Cell Res. , vol.22 , pp. 168-177
    • Panopoulos, A.D.1
  • 23
    • 83455235489 scopus 로고    scopus 로고
    • UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells
    • 23 Zhang, J., et al. UCP2 regulates energy metabolism and differentiation potential of human pluripotent stem cells. EMBO J. 30 (2011), 4860–4873.
    • (2011) EMBO J. , vol.30 , pp. 4860-4873
    • Zhang, J.1
  • 24
    • 0016681098 scopus 로고
    • Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration
    • 24 Boveris, A., Cadenas, E., Mitochondrial production of superoxide anions and its relationship to the antimycin insensitive respiration. FEBS Lett. 54 (1975), 311–314.
    • (1975) FEBS Lett. , vol.54 , pp. 311-314
    • Boveris, A.1    Cadenas, E.2
  • 25
    • 0017406503 scopus 로고
    • Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria
    • 25 Cadenas, E., et al. Production of superoxide radicals and hydrogen peroxide by NADH-ubiquinone reductase and ubiquinol-cytochrome c reductase from beef-heart mitochondria. Arch. Biochem. Biophys. 180 (1977), 248–257.
    • (1977) Arch. Biochem. Biophys. , vol.180 , pp. 248-257
    • Cadenas, E.1
  • 26
    • 84911466192 scopus 로고    scopus 로고
    • Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS
    • 26 Chouchani, E.T., et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515 (2014), 431–435.
    • (2014) Nature , vol.515 , pp. 431-435
    • Chouchani, E.T.1
  • 27
    • 0027251053 scopus 로고
    • The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate
    • 27 Buettner, G.R., The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch. Biochem. Biophys. 300 (1993), 535–543.
    • (1993) Arch. Biochem. Biophys. , vol.300 , pp. 535-543
    • Buettner, G.R.1
  • 28
    • 84898542871 scopus 로고    scopus 로고
    • Redox control of enzymatic functions: the electronics of life's circuitry
    • Published online March 26, 2014
    • 28 Bonini, M.G., et al. Redox control of enzymatic functions: the electronics of life's circuitry. IUBMB Life., 2014, 10.1002/iub.1258 Published online March 26, 2014.
    • (2014) IUBMB Life.
    • Bonini, M.G.1
  • 29
    • 84886877514 scopus 로고    scopus 로고
    • Nutrient-sensing pathways and metabolic regulation in stem cells
    • 29 Ochocki, J.D., Simon, M.C., Nutrient-sensing pathways and metabolic regulation in stem cells. J. Cell Biol. 203 (2013), 23–33.
    • (2013) J. Cell Biol. , vol.203 , pp. 23-33
    • Ochocki, J.D.1    Simon, M.C.2
  • 30
    • 84947704464 scopus 로고    scopus 로고
    • Cancer's fuel choice: new flavors for a picky eater
    • 30 DeNicola, G.M., Cantley, L.C., Cancer's fuel choice: new flavors for a picky eater. Mol. Cell 60 (2015), 514–523.
    • (2015) Mol. Cell , vol.60 , pp. 514-523
    • DeNicola, G.M.1    Cantley, L.C.2
  • 31
    • 0032578458 scopus 로고    scopus 로고
    • Mitochondrial reactive oxygen species trigger hypoxia-induced transcription
    • 31 Chandel, N.S., et al. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci.U.S.A. 95 (1998), 11715–11720.
    • (1998) Proc. Natl. Acad. Sci.U.S.A. , vol.95 , pp. 11715-11720
    • Chandel, N.S.1
  • 32
    • 24144444133 scopus 로고    scopus 로고
    • Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation
    • 32 Brunelle, J.K., et al. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1 (2005), 409–414.
    • (2005) Cell Metab. , vol.1 , pp. 409-414
    • Brunelle, J.K.1
  • 33
    • 44849083150 scopus 로고    scopus 로고
    • Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation
    • 33 Ding, Y., et al. Endogenous hydrogen peroxide regulates glutathione redox via nuclear factor erythroid 2-related factor 2 downstream of phosphatidylinositol 3-kinase during muscle differentiation. Am. J. Pathol. 172 (2008), 1529–1541.
    • (2008) Am. J. Pathol. , vol.172 , pp. 1529-1541
    • Ding, Y.1
  • 34
    • 58249117780 scopus 로고    scopus 로고
    • The antioxidant defense system Keap1–Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds
    • 34 Kobayashi, M., et al. The antioxidant defense system Keap1–Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29 (2009), 493–502.
    • (2009) Mol. Cell. Biol. , vol.29 , pp. 493-502
    • Kobayashi, M.1
  • 35
    • 53049109525 scopus 로고    scopus 로고
    • Dynein light chain LC8 negatively regulates NF-κB through the redox-dependent interaction with IκBα
    • 35 Jung, Y., et al. Dynein light chain LC8 negatively regulates NF-κB through the redox-dependent interaction with IκBα. J. Biol. Chem. 283 (2008), 23863–23871.
    • (2008) J. Biol. Chem. , vol.283 , pp. 23863-23871
    • Jung, Y.1
  • 36
    • 33644990327 scopus 로고    scopus 로고
    • 2-mediated activation of NFκB-inducing kinase
    • 2-mediated activation of NFκB-inducing kinase. J. Biol. Chem. 281 (2006), 1495–1505.
    • (2006) J. Biol. Chem. , vol.281 , pp. 1495-1505
    • Li, Q.1    Engelhardt, J.F.2
  • 37
    • 79959908506 scopus 로고    scopus 로고
    • HIF induces human embryonic stem cell markers in cancer cells
    • 37 Mathieu, J., et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer Res. 71 (2011), 4640–4652.
    • (2011) Cancer Res. , vol.71 , pp. 4640-4652
    • Mathieu, J.1
  • 38
    • 84862776944 scopus 로고    scopus 로고
    • From stem cells to cancer stem cells: HIF takes the stage
    • 38 Lee, K.E., Simon, M.C., From stem cells to cancer stem cells: HIF takes the stage. Curr. Opin. Cell Biol. 24 (2012), 232–235.
    • (2012) Curr. Opin. Cell Biol. , vol.24 , pp. 232-235
    • Lee, K.E.1    Simon, M.C.2
  • 39
    • 77953859606 scopus 로고    scopus 로고
    • NF-κB as a critical link between inflammation and cancer
    • 39 Karin, M., NF-κB as a critical link between inflammation and cancer. Cold Spring Harb. Perspect. Biol., 1, 2009, a000141.
    • (2009) Cold Spring Harb. Perspect. Biol. , vol.1 , pp. a000141
    • Karin, M.1
  • 40
    • 79952121979 scopus 로고    scopus 로고
    • Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion
    • 40 Iliopoulos, D., et al. Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc. Natl. Acad. Sci. U.S.A. 108 (2011), 1397–1402.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 1397-1402
    • Iliopoulos, D.1
  • 41
    • 80053531658 scopus 로고    scopus 로고
    • Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots
    • 41 Korkaya, H., et al. Regulation of cancer stem cells by cytokine networks: attacking cancer's inflammatory roots. Clin. Cancer Res. 17 (2011), 6125–6129.
    • (2011) Clin. Cancer Res. , vol.17 , pp. 6125-6129
    • Korkaya, H.1
  • 42
    • 84908094625 scopus 로고    scopus 로고
    • Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells
    • 42 Jang, J., et al. Nrf2, a regulator of the proteasome, controls self-renewal and pluripotency in human embryonic stem cells. Stem Cells 32 (2014), 2616–2625.
    • (2014) Stem Cells , vol.32 , pp. 2616-2625
    • Jang, J.1
  • 43
    • 84927732079 scopus 로고    scopus 로고
    • Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness
    • 43 Katajisto, P., et al. Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness. Science 348 (2015), 340–343.
    • (2015) Science , vol.348 , pp. 340-343
    • Katajisto, P.1
  • 45
    • 0037009521 scopus 로고    scopus 로고
    • A mitochondrial specific stress response in mammalian cells
    • 45 Zhao, Q., et al. A mitochondrial specific stress response in mammalian cells. EMBO J. 21 (2002), 4411–4419.
    • (2002) EMBO J. , vol.21 , pp. 4411-4419
    • Zhao, Q.1
  • 46
    • 33748901113 scopus 로고    scopus 로고
    • Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response
    • 46 Benedetti, C., et al. Ubiquitin-like protein 5 positively regulates chaperone gene expression in the mitochondrial unfolded protein response. Genetics 174 (2006), 229–239.
    • (2006) Genetics , vol.174 , pp. 229-239
    • Benedetti, C.1
  • 47
    • 34848861368 scopus 로고    scopus 로고
    • ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans
    • 47 Haynes, C.M., et al. ClpP mediates activation of a mitochondrial unfolded protein response in C. elegans. Dev. Cell 13 (2007), 467–480.
    • (2007) Dev. Cell , vol.13 , pp. 467-480
    • Haynes, C.M.1
  • 49
    • 33845656956 scopus 로고    scopus 로고
    • Mitochondrial retrograde signaling
    • 49 Liu, Z., Butow, R.A., Mitochondrial retrograde signaling. Annu. Rev. Genet. 40 (2006), 159–185.
    • (2006) Annu. Rev. Genet. , vol.40 , pp. 159-185
    • Liu, Z.1    Butow, R.A.2
  • 50
    • 84896499806 scopus 로고    scopus 로고
    • The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease
    • 50 Jovaisaite, V., et al. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J. Exp. Biol. 217 (2014), 137–143.
    • (2014) J. Exp. Biol. , vol.217 , pp. 137-143
    • Jovaisaite, V.1
  • 51
    • 84905822745 scopus 로고    scopus 로고
    • Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans
    • 51 Bennett, C.F., et al. Activation of the mitochondrial unfolded protein response does not predict longevity in Caenorhabditis elegans. Nat. Commun., 5, 2014, 3483.
    • (2014) Nat. Commun. , vol.5 , pp. 3483
    • Bennett, C.F.1
  • 52
    • 84880517634 scopus 로고    scopus 로고
    • +/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling
    • +/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell 154 (2013), 430–441.
    • (2013) Cell , vol.154 , pp. 430-441
    • Mouchiroud, L.1
  • 53
    • 84892989225 scopus 로고    scopus 로고
    • SirT3 regulates the mitochondrial unfolded protein response
    • 53 Papa, L., Germain, D., SirT3 regulates the mitochondrial unfolded protein response. Mol. Cell. Biol. 34 (2014), 699–710.
    • (2014) Mol. Cell. Biol. , vol.34 , pp. 699-710
    • Papa, L.1    Germain, D.2
  • 54
    • 74049094817 scopus 로고    scopus 로고
    • Kim, H.S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52
    • 54 Kim, H.S. et al. SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress. Cancer Cell 17, 41–52.
  • 55
    • 84887486172 scopus 로고    scopus 로고
    • The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria
    • 55 Jin, S.M., Youle, R.J., The accumulation of misfolded proteins in the mitochondrial matrix is sensed by PINK1 to induce PARK2/Parkin-mediated mitophagy of polarized mitochondria. Autophagy 9 (2013), 1750–1757.
    • (2013) Autophagy , vol.9 , pp. 1750-1757
    • Jin, S.M.1    Youle, R.J.2
  • 56
    • 79955549674 scopus 로고    scopus 로고
    • Estrogen receptor mediates a distinct mitochondrial unfolded protein response
    • 56 Papa, L., Germain, D., Estrogen receptor mediates a distinct mitochondrial unfolded protein response. J. Cell Sci. 124 (2011), 1396–1402.
    • (2011) J. Cell Sci. , vol.124 , pp. 1396-1402
    • Papa, L.1    Germain, D.2
  • 57
    • 84940797231 scopus 로고    scopus 로고
    • Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3
    • 57 Rimmele, P., et al. Mitochondrial metabolism in hematopoietic stem cells requires functional FOXO3. EMBO Rep. 16 (2015), 1164–1176.
    • (2015) EMBO Rep. , vol.16 , pp. 1164-1176
    • Rimmele, P.1
  • 58
    • 84925265469 scopus 로고    scopus 로고
    • Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
    • 58 Mohrin, M., et al. Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347 (2015), 1374–1377.
    • (2015) Science , vol.347 , pp. 1374-1377
    • Mohrin, M.1
  • 59
    • 84856739946 scopus 로고    scopus 로고
    • Hypoxia-inducible factors in physiology and medicine
    • 59 Semenza, G.L., Hypoxia-inducible factors in physiology and medicine. Cell 148 (2012), 399–408.
    • (2012) Cell , vol.148 , pp. 399-408
    • Semenza, G.L.1
  • 60
    • 78649364332 scopus 로고    scopus 로고
    • Hypoxia-inducible factors and the response to hypoxic stress
    • 60 Majmundar, A.J., et al. Hypoxia-inducible factors and the response to hypoxic stress. Mol. Cell 40 (2010), 294–309.
    • (2010) Mol. Cell , vol.40 , pp. 294-309
    • Majmundar, A.J.1
  • 61
    • 0034682786 scopus 로고    scopus 로고
    • Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing
    • 61 Chandel, N.S., et al. Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1α during hypoxia: a mechanism of O2 sensing. J. Biol. Chem. 275 (2000), 25130–25138.
    • (2000) J. Biol. Chem. , vol.275 , pp. 25130-25138
    • Chandel, N.S.1
  • 62
    • 84982281641 scopus 로고    scopus 로고
    • MnSOD acetylation and dys-regulation, due to loss of SIRT3 activity, promotes a Luminal B-like breast carcinogenic permissive phenotype
    • Published online April 15, 2016
    • 62 Zou, X., et al. MnSOD acetylation and dys-regulation, due to loss of SIRT3 activity, promotes a Luminal B-like breast carcinogenic permissive phenotype. Antioxid. Redox Signal., 2016, 10.1089/ars.2016.6641 Published online April 15, 2016.
    • (2016) Antioxid. Redox Signal.
    • Zou, X.1
  • 63
    • 84864398931 scopus 로고    scopus 로고
    • Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity
    • 63 Zhu, Y., et al. Exploring the electrostatic repulsion model in the role of Sirt3 in directing MnSOD acetylation status and enzymatic activity. Free Radic. Biol. Med. 53 (2012), 828–833.
    • (2012) Free Radic. Biol. Med. , vol.53 , pp. 828-833
    • Zhu, Y.1
  • 64
    • 79959541505 scopus 로고    scopus 로고
    • Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress
    • 64 Ozden, O., et al. Acetylation of MnSOD directs enzymatic activity responding to cellular nutrient status or oxidative stress. Aging (Albany NY) 3 (2011), 102–107.
    • (2011) Aging (Albany NY) , vol.3 , pp. 102-107
    • Ozden, O.1
  • 65
    • 78650248160 scopus 로고    scopus 로고
    • Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress
    • 65 Tao, R., et al. Sirt3-mediated deacetylation of evolutionarily conserved lysine 122 regulates MnSOD activity in response to stress. Mol. Cell 40 (2010), 893–904.
    • (2010) Mol. Cell , vol.40 , pp. 893-904
    • Tao, R.1
  • 66
    • 84923616310 scopus 로고    scopus 로고
    • CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection
    • 66 Jin, C., et al. CDK4-mediated MnSOD activation and mitochondrial homeostasis in radioadaptive protection. Free Radic. Biol. Med. 81 (2015), 77–87.
    • (2015) Free Radic. Biol. Med. , vol.81 , pp. 77-87
    • Jin, C.1
  • 67
    • 84871922397 scopus 로고    scopus 로고
    • The peroxidase activity of mitochondrial superoxide dismutase
    • 67 Ansenberger-Fricano, K., et al. The peroxidase activity of mitochondrial superoxide dismutase. Free Radic. Biol. Med. 54 (2013), 116–124.
    • (2013) Free Radic. Biol. Med. , vol.54 , pp. 116-124
    • Ansenberger-Fricano, K.1
  • 68
    • 84930507864 scopus 로고    scopus 로고
    • Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria
    • 68 Ganini, D., et al. Iron incorporation into MnSOD A (bacterial Mn-dependent superoxide dismutase) leads to the formation of a peroxidase/catalase implicated in oxidative damage to bacteria. Biochim. Biophys. Acta 1850 (2015), 1795–1805.
    • (2015) Biochim. Biophys. Acta , vol.1850 , pp. 1795-1805
    • Ganini, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.