-
1
-
-
0029984469
-
Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
-
Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843-51.
-
(1996)
Cell
, vol.84
, pp. 843-851
-
-
Brownell, J.E.1
Zhou, J.2
Ranalli, T.3
-
2
-
-
84860371953
-
Epigenetic protein families: a new frontier for drug discovery
-
Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012;11:384-400.
-
(2012)
Nat Rev Drug Discov
, vol.11
, pp. 384-400
-
-
Arrowsmith, C.H.1
Bountra, C.2
Fish, P.V.3
-
3
-
-
84864213113
-
Systematic functional prioritization of protein posttranslational modifications
-
Beltrao P, Albanese V, Kenner LR, et al. Systematic functional prioritization of protein posttranslational modifications. Cell 2012;150:413-25.
-
(2012)
Cell
, vol.150
, pp. 413-425
-
-
Beltrao, P.1
Albanese, V.2
Kenner, L.R.3
-
4
-
-
84869215170
-
Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
-
Henriksen P, Wagner SA, Weinert BT, et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 2012;11:1510-22.
-
(2012)
Mol Cell Proteomics
, vol.11
, pp. 1510-1522
-
-
Henriksen, P.1
Wagner, S.A.2
Weinert, B.T.3
-
5
-
-
79960797509
-
Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
-
Weinert BT, Wagner SA, Horn H, et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 2011;4:ra48.
-
(2011)
Sci Signal
, vol.4
-
-
Weinert, B.T.1
Wagner, S.A.2
Horn, H.3
-
6
-
-
84920465035
-
Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1
-
Downey M, Johnson JR, Davey NE, et al. Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1. Mol Cell Proteomics 2015;14:162-76.
-
(2015)
Mol Cell Proteomics
, vol.14
, pp. 162-176
-
-
Downey, M.1
Johnson, J.R.2
Davey, N.E.3
-
7
-
-
84898012537
-
Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
-
Weinert BT, Iesmantavicius V, Moustafa T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol 2014;10:716.
-
(2014)
Mol Syst Biol
, vol.10
, pp. 716
-
-
Weinert, B.T.1
Iesmantavicius, V.2
Moustafa, T.3
-
8
-
-
84862253222
-
Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report
-
Chan ET, Cherry JM. Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report. Database (Oxford) 2012;2012:bar057.
-
(2012)
Database (Oxford)
, vol.2012
-
-
Chan, E.T.1
Cherry, J.M.2
-
9
-
-
84912019905
-
Protein acetylation and acetyl coenzyme a metabolism in budding yeast
-
Galdieri L, Zhang T, Rogerson D, et al. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell 2014;13:1472-83.
-
(2014)
Eukaryot Cell
, vol.13
, pp. 1472-1483
-
-
Galdieri, L.1
Zhang, T.2
Rogerson, D.3
-
10
-
-
34548231639
-
Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation
-
VanDemark AP, Kasten MM, Ferris E, et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell 2007;27:817-28.
-
(2007)
Mol Cell
, vol.27
, pp. 817-828
-
-
VanDemark, A.P.1
Kasten, M.M.2
Ferris, E.3
-
11
-
-
57349156720
-
Acetylation of Rsc4p by Gcn5p is essential in the absence of histone H3 acetylation
-
Choi JK, Grimes DE, Rowe KM, et al. Acetylation of Rsc4p by Gcn5p is essential in the absence of histone H3 acetylation. Mol Cell Biol 2008;28:6967-72.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 6967-6972
-
-
Choi, J.K.1
Grimes, D.E.2
Rowe, K.M.3
-
12
-
-
79960594763
-
Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress
-
Charles GM, Chen C, Shih SC, et al. Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci USA 2011;108:10620-5.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, pp. 10620-10625
-
-
Charles, G.M.1
Chen, C.2
Shih, S.C.3
-
13
-
-
78650187080
-
Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/ Snf2
-
Kim JH, Saraf A, Florens L, et al. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/ Snf2. Genes Dev 2010;24:2766-71.
-
(2010)
Genes Dev
, vol.24
, pp. 2766-2771
-
-
Kim, J.H.1
Saraf, A.2
Florens, L.3
-
14
-
-
84884592847
-
Integration of multiple nutrient cues and regulation of lifespan by ribosomal transcription factor Ifh1
-
Cai L, McCormick MA, Kennedy BK, et al. Integration of multiple nutrient cues and regulation of lifespan by ribosomal transcription factor Ifh1. Cell Rep 2013;4:1063-71.
-
(2013)
Cell Rep
, vol.4
, pp. 1063-1071
-
-
Cai, L.1
McCormick, M.A.2
Kennedy, B.K.3
-
15
-
-
84883758231
-
Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1
-
Downey M, Knight B, Vashisht AA, et al. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 2013;23:1638-48.
-
(2013)
Curr Biol
, vol.23
, pp. 1638-1648
-
-
Downey, M.1
Knight, B.2
Vashisht, A.A.3
-
16
-
-
62149143727
-
Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis
-
Lin YY, Lu JY, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 2009;136:1073-84.
-
(2009)
Cell
, vol.136
, pp. 1073-1084
-
-
Lin, Y.Y.1
Lu, J.Y.2
Zhang, J.3
-
17
-
-
80052939858
-
Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction
-
Lu JY, Lin YY, Sheu JC, et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011;146:969-79.
-
(2011)
Cell
, vol.146
, pp. 969-979
-
-
Lu, J.Y.1
Lin, Y.Y.2
Sheu, J.C.3
-
18
-
-
48249142388
-
A molecular determinant for the establishment of sister chromatid cohesion
-
Unal E, Heidinger-Pauli JM, Kim W, et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 2008;321:566-9.
-
(2008)
Science
, vol.321
, pp. 566-569
-
-
Unal, E.1
Heidinger-Pauli, J.M.2
Kim, W.3
-
19
-
-
62549149415
-
Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity
-
Rowland BD, Roig MB, Nishino T, et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell 2009;33:763-74.
-
(2009)
Mol Cell
, vol.33
, pp. 763-774
-
-
Rowland, B.D.1
Roig, M.B.2
Nishino, T.3
-
20
-
-
77956509746
-
An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion
-
Beckouet F, Hu B, Roig MB, et al. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol Cell 2010;39:689-99.
-
(2010)
Mol Cell
, vol.39
, pp. 689-699
-
-
Beckouet, F.1
Hu, B.2
Roig, M.B.3
-
21
-
-
62549130668
-
Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion- establishing reaction
-
Sutani T, Kawaguchi T, Kanno R, et al. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion- establishing reaction. Curr Biol 2009;19:492-7.
-
(2009)
Curr Biol
, vol.19
, pp. 492-497
-
-
Sutani, T.1
Kawaguchi, T.2
Kanno, R.3
-
22
-
-
77956501610
-
Hos1 deacetylates Smc3 to close the cohesin acetylation cycle
-
Borges V, Lehane C, Lopez-Serra L, et al. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol Cell 2010;39:677-88.
-
(2010)
Mol Cell
, vol.39
, pp. 677-688
-
-
Borges, V.1
Lehane, C.2
Lopez-Serra, L.3
-
23
-
-
77957240557
-
Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin
-
Xiong B, Lu S, Gerton JL. Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol 2010;20:1660-5.
-
(2010)
Curr Biol
, vol.20
, pp. 1660-1665
-
-
Xiong, B.1
Lu, S.2
Gerton, J.L.3
-
24
-
-
65549132836
-
Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage
-
Heidinger-Pauli JM, Unal E, Koshland D. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell 2009;34:311-21.
-
(2009)
Mol Cell
, vol.34
, pp. 311-321
-
-
Heidinger-Pauli, J.M.1
Unal, E.2
Koshland, D.3
-
25
-
-
84863511126
-
Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization
-
Ghosh S, Gardner JM, Smoyer CJ, et al. Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol Biol Cell 2012;23:2546-59.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 2546-2559
-
-
Ghosh, S.1
Gardner, J.M.2
Smoyer, C.J.3
-
26
-
-
84886935092
-
Deacetylase Rpd3 facilitates checkpoint adaptation by preventing Rad53 overactivation
-
Tao R, Xue H, Zhang J, et al. Deacetylase Rpd3 facilitates checkpoint adaptation by preventing Rad53 overactivation. Mol Cell Biol 2013;33:4212-24.
-
(2013)
Mol Cell Biol
, vol.33
, pp. 4212-4224
-
-
Tao, R.1
Xue, H.2
Zhang, J.3
-
27
-
-
84860355892
-
Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p
-
Mallory MJ, Law MJ, Sterner DE, et al. Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p. Mol Biol Cell 2012;23:1609-17.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 1609-1617
-
-
Mallory, M.J.1
Law, M.J.2
Sterner, D.E.3
-
28
-
-
84892954807
-
Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast
-
Law MJ, Mallory MJ, Dunbrack RL, Jr., et al. Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Mol Cell Biol 2014;34:631-42.
-
(2014)
Mol Cell Biol
, vol.34
, pp. 631-642
-
-
Law, M.J.1
Mallory, M.J.2
Dunbrack, R.L.3
-
29
-
-
48749114997
-
A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation
-
Lin YY, Qi Y, Lu JY, et al. A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 2008;22:2062-74.
-
(2008)
Genes Dev
, vol.22
, pp. 2062-2074
-
-
Lin, Y.Y.1
Qi, Y.2
Lu, J.Y.3
-
30
-
-
84860848452
-
Exploring the yeast acetylome using functional genomics
-
Kaluarachchi Duffy S, Friesen H, Baryshnikova A, et al. Exploring the yeast acetylome using functional genomics. Cell 2012;149:936-48.
-
(2012)
Cell
, vol.149
, pp. 936-948
-
-
Kaluarachchi Duffy, S.1
Friesen, H.2
Baryshnikova, A.3
-
31
-
-
80053450838
-
Regulation of septin dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4
-
Mitchell L, Lau A, Lambert JP, et al. Regulation of septin dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4. PLoS One 2011;6:e25336.
-
(2011)
PLoS One
, vol.6
, pp. e25336
-
-
Mitchell, L.1
Lau, A.2
Lambert, J.P.3
-
32
-
-
84860203624
-
Function and molecular mechanism of acetylation in autophagy regulation
-
Yi C, Ma M, Ran L, et al. Function and molecular mechanism of acetylation in autophagy regulation. Science 2012;336:474-7.
-
(2012)
Science
, vol.336
, pp. 474-477
-
-
Yi, C.1
Ma, M.2
Ran, L.3
-
33
-
-
77956054446
-
Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe
-
Baryshnikova A, Costanzo M, Dixon S, et al. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods Enzymol 2010;470:145-79.
-
(2010)
Methods Enzymol
, vol.470
, pp. 145-179
-
-
Baryshnikova, A.1
Costanzo, M.2
Dixon, S.3
-
34
-
-
84921891433
-
Synthetic genetic array analysis for global mapping of genetic networks in yeast
-
Kuzmin E, Sharifpoor S, Baryshnikova A, et al. Synthetic genetic array analysis for global mapping of genetic networks in yeast. Methods Mol Biol 2014;1205:143-68.
-
(2014)
Methods Mol Biol
, vol.1205
, pp. 143-168
-
-
Kuzmin, E.1
Sharifpoor, S.2
Baryshnikova, A.3
-
35
-
-
0035861532
-
Systematic genetic analysis with ordered arrays of yeast deletion mutants
-
Tong AH, Evangelista M, Parsons AB, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001;294:2364-8.
-
(2001)
Science
, vol.294
, pp. 2364-2368
-
-
Tong, A.H.1
Evangelista, M.2
Parsons, A.B.3
-
36
-
-
10744230485
-
Global mapping of the yeast genetic interaction network
-
Tong AH, Lesage G, Bader GD, et al. Global mapping of the yeast genetic interaction network. Science 2004;303:808- 13.
-
(2004)
Science
, vol.303
, pp. 808-813
-
-
Tong, A.H.1
Lesage, G.2
Bader, G.D.3
-
37
-
-
33644778778
-
A DNA integrity network in the yeast Saccharomyces cerevisiae
-
Pan X, Ye P, Yuan DS, et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006;124:1069-81.
-
(2006)
Cell
, vol.124
, pp. 1069-1081
-
-
Pan, X.1
Ye, P.2
Yuan, D.S.3
-
39
-
-
46149100263
-
Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109
-
Fillingham J, Recht J, Silva AC, et al. Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 2008;28:4342-53.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 4342-4353
-
-
Fillingham, J.1
Recht, J.2
Silva, A.C.3
-
40
-
-
74549184412
-
The polarisome is required for segregation and retrograde transport of protein aggregates
-
Liu B, Larsson L, Caballero A, et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 2010;140:257-67.
-
(2010)
Cell
, vol.140
, pp. 257-267
-
-
Liu, B.1
Larsson, L.2
Caballero, A.3
-
41
-
-
41149083933
-
Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity
-
Mitchell L, Lambert JP, Gerdes M, et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 2008;28:2244-56.
-
(2008)
Mol Cell Biol
, vol.28
, pp. 2244-2256
-
-
Mitchell, L.1
Lambert, J.P.2
Gerdes, M.3
-
43
-
-
75549091259
-
DRYGIN: a database of quantitative genetic interaction networks in yeast
-
Koh JL, Ding H, Costanzo M, et al. DRYGIN: a database of quantitative genetic interaction networks in yeast. Nucleic Acids Res 2010;38:D502-7.
-
(2010)
Nucleic Acids Res
, vol.38
, pp. D502-D507
-
-
Koh, J.L.1
Ding, H.2
Costanzo, M.3
-
44
-
-
34147217542
-
Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
-
Collins SR, Miller KM, Maas NL, et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007;446:806-10.
-
(2007)
Nature
, vol.446
, pp. 806-810
-
-
Collins, S.R.1
Miller, K.M.2
Maas, N.L.3
-
45
-
-
84903268527
-
Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling
-
Rossetto D, Cramet M, Wang AY, et al. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling. EMBO J 2014;33:1397-415.
-
(2014)
EMBO J
, vol.33
, pp. 1397-1415
-
-
Rossetto, D.1
Cramet, M.2
Wang, A.Y.3
-
46
-
-
84954244849
-
TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing
-
Bhat W, Ahmad S, Cote J. TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing. RNA Biol 2015;12:486-9.
-
(2015)
RNA Biol
, vol.12
, pp. 486-489
-
-
Bhat, W.1
Ahmad, S.2
Cote, J.3
-
47
-
-
84922232260
-
A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/ TIP60 for nucleosome transactions
-
Cheng X, Cote J. A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/ TIP60 for nucleosome transactions. Transcription 2014;5:e995571.
-
(2014)
Transcription
, vol.5
, pp. e995571
-
-
Cheng, X.1
Cote, J.2
-
48
-
-
3142536716
-
Exploration of essential gene functions via titratable promoter alleles
-
Mnaimneh S, Davierwala AP, Haynes J, et al. Exploration of essential gene functions via titratable promoter alleles. Cell 2004;118:31-44.
-
(2004)
Cell
, vol.118
, pp. 31-44
-
-
Mnaimneh, S.1
Davierwala, A.P.2
Haynes, J.3
-
49
-
-
31544482407
-
Mapping pathways and phenotypes by systematic gene overexpression
-
Sopko R, Huang D, Preston N, et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 2006;21:319-30.
-
(2006)
Mol Cell
, vol.21
, pp. 319-330
-
-
Sopko, R.1
Huang, D.2
Preston, N.3
-
50
-
-
70349774419
-
Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast
-
Huang D, Kaluarachchi S, van Dyk D, et al. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast. PLoS Biol 2009;7:e1000188.
-
(2009)
PLoS Biol
, vol.7
, pp. e1000188
-
-
Huang, D.1
Kaluarachchi, S.2
van Dyk, D.3
-
51
-
-
84859520339
-
Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
-
Sharifpoor S, van Dyk D, Costanzo M, et al. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 2012;22:791-801.
-
(2012)
Genome Res
, vol.22
, pp. 791-801
-
-
Sharifpoor, S.1
van Dyk, D.2
Costanzo, M.3
-
52
-
-
35649013877
-
Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast
-
Sopko R, Huang D, Smith JC, et al. Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J 2007;26:4487-500.
-
(2007)
EMBO J
, vol.26
, pp. 4487-4500
-
-
Sopko, R.1
Huang, D.2
Smith, J.C.3
-
53
-
-
33746605307
-
Phenotypic activation to discover biological pathways and kinase substrates
-
Sopko R, Papp B, Oliver SG, et al. Phenotypic activation to discover biological pathways and kinase substrates. Cell Cycle 2006;5:1397-402.
-
(2006)
Cell Cycle
, vol.5
, pp. 1397-1402
-
-
Sopko, R.1
Papp, B.2
Oliver, S.G.3
-
54
-
-
70749160910
-
A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2
-
Liu C, van Dyk D, Li Y, et al. A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2. BMC Biol 2009;7:75.
-
(2009)
BMC Biol
, vol.7
, pp. 75
-
-
Liu, C.1
van Dyk, D.2
Li, Y.3
-
55
-
-
84883146045
-
Functional analysis with a barcoder yeast gene overexpression system
-
Douglas AC, Smith AM, Sharifpoor S, et al. Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2012;2:1279-89.
-
(2012)
G3 (Bethesda)
, vol.2
, pp. 1279-1289
-
-
Douglas, A.C.1
Smith, A.M.2
Sharifpoor, S.3
-
56
-
-
79958081747
-
Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell
-
Magtanong L, Ho CH, Barker SL, et al. Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 2011;29:505-11.
-
(2011)
Nat Biotechnol
, vol.29
, pp. 505-511
-
-
Magtanong, L.1
Ho, C.H.2
Barker, S.L.3
-
57
-
-
25444489018
-
Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation
-
Measday V, Baetz K, Guzzo J, et al. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci USA 2005;102:13956-61.
-
(2005)
Proc Natl Acad Sci USA
, vol.102
, pp. 13956-13961
-
-
Measday, V.1
Baetz, K.2
Guzzo, J.3
-
58
-
-
0035860499
-
Global analysis of protein activities using proteome chips
-
Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science 2001;293:2101-5.
-
(2001)
Science
, vol.293
, pp. 2101-2105
-
-
Zhu, H.1
Bilgin, M.2
Bangham, R.3
-
59
-
-
0142184341
-
Global analysis of protein localization in budding yeast
-
Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature 2003;425:686-91.
-
(2003)
Nature
, vol.425
, pp. 686-691
-
-
Huh, W.K.1
Falvo, J.V.2
Gerke, L.C.3
-
60
-
-
84855973755
-
Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection
-
Chong YT, Cox MJ, Andrews B. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection. Adv Exp Med Biol 2012;736:169-78.
-
(2012)
Adv Exp Med Biol
, vol.736
, pp. 169-178
-
-
Chong, Y.T.1
Cox, M.J.2
Andrews, B.3
-
61
-
-
84876305060
-
A novel single-cell screening platform reveals proteome plasticity during yeast stress responses
-
Breker M, Gymrek M, Schuldiner M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 2013;200:839-50.
-
(2013)
J Cell Biol
, vol.200
, pp. 839-850
-
-
Breker, M.1
Gymrek, M.2
Schuldiner, M.3
-
62
-
-
84930684870
-
Yeast proteome dynamics from single cell imaging and automated analysis
-
Chong YT, Koh JL, Friesen H, et al. Yeast proteome dynamics from single cell imaging and automated analysis. Cell 2015;161:1413-24.
-
(2015)
Cell
, vol.161
, pp. 1413-1424
-
-
Chong, Y.T.1
Koh, J.L.2
Friesen, H.3
-
63
-
-
84865715286
-
Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
-
Tkach JM, Yimit A, Lee AY, et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 2012;14:966-76.
-
(2012)
Nat Cell Biol
, vol.14
, pp. 966-976
-
-
Tkach, J.M.1
Yimit, A.2
Lee, A.Y.3
-
64
-
-
75749095658
-
Integrating highthroughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
-
Vizeacoumar FJ, van Dyk N, F SV, et al. Integrating highthroughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 2010;188:69-81.
-
(2010)
J Cell Biol
, vol.188
, pp. 69-81
-
-
Vizeacoumar, F.J.1
van Dyk, N.F.S.V.2
-
65
-
-
84879349589
-
Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
-
Buchan JR, Kolaitis RM, Taylor JP, et al. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013;153:1461-74.
-
(2013)
Cell
, vol.153
, pp. 1461-1474
-
-
Buchan, J.R.1
Kolaitis, R.M.2
Taylor, J.P.3
-
66
-
-
84859375205
-
The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells
-
Liu IC, Chiu SW, Lee HY, et al. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol Biol Cell 2012;23:1231-42.
-
(2012)
Mol Biol Cell
, vol.23
, pp. 1231-1242
-
-
Liu, I.C.1
Chiu, S.W.2
Lee, H.Y.3
-
67
-
-
84930845786
-
CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
-
Koh JL, Chong YT, Friesen H, et al. CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 (Bethesda) 2015;5:1223-32.
-
(2015)
G3 (Bethesda)
, vol.5
, pp. 1223-1232
-
-
Koh, J.L.1
Chong, Y.T.2
Friesen, H.3
-
69
-
-
84876885763
-
mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases
-
Mitchell L, Huard S, Cotrut M, et al. mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci USA 2013;110:E1641-50.
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, pp. E1641-E1650
-
-
Mitchell, L.1
Huard, S.2
Cotrut, M.3
-
70
-
-
0034628508
-
A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
-
Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000;403:623-7.
-
(2000)
Nature
, vol.403
, pp. 623-627
-
-
Uetz, P.1
Giot, L.2
Cagney, G.3
-
71
-
-
33645453254
-
Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
-
Krogan NJ, Cagney G, Yu H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006;440:637-43.
-
(2006)
Nature
, vol.440
, pp. 637-643
-
-
Krogan, N.J.1
Cagney, G.2
Yu, H.3
-
72
-
-
0037050004
-
Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
-
Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415:180-3.
-
(2002)
Nature
, vol.415
, pp. 180-183
-
-
Ho, Y.1
Gruhler, A.2
Heilbut, A.3
-
73
-
-
79960080101
-
Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes
-
Lee KK, Sardiu ME, Swanson SK, et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 2011;7:503.
-
(2011)
Mol Syst Biol
, vol.7
, pp. 503
-
-
Lee, K.K.1
Sardiu, M.E.2
Swanson, S.K.3
-
74
-
-
84908505994
-
Mapping the deubiquitination module within the SAGA complex
-
Durand A, Bonnet J, Fournier M, et al. Mapping the deubiquitination module within the SAGA complex. Structure 2014;22:1553-9.
-
(2014)
Structure
, vol.22
, pp. 1553-1559
-
-
Durand, A.1
Bonnet, J.2
Fournier, M.3
-
75
-
-
84927721217
-
Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex
-
Setiaputra D, Ross JD, Lu S, et al. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex. J Biol Chem 2015;290:10057-70.
-
(2015)
J Biol Chem
, vol.290
, pp. 10057-10070
-
-
Setiaputra, D.1
Ross, J.D.2
Lu, S.3
-
76
-
-
84922249668
-
Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex
-
Han Y, Luo J, Ranish J, et al. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 2014;33:2534-46.
-
(2014)
EMBO J
, vol.33
, pp. 2534-2546
-
-
Han, Y.1
Luo, J.2
Ranish, J.3
-
77
-
-
77149120797
-
Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
-
Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010;327:1004-7.
-
(2010)
Science
, vol.327
, pp. 1004-1007
-
-
Wang, Q.1
Zhang, Y.2
Yang, C.3
-
78
-
-
33746992118
-
Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
-
Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006;23:607-18.
-
(2006)
Mol Cell
, vol.23
, pp. 607-618
-
-
Kim, S.C.1
Sprung, R.2
Chen, Y.3
-
79
-
-
68949212379
-
Lysine acetylation targets protein complexes and co-regulates major cellular functions
-
Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40.
-
(2009)
Science
, vol.325
, pp. 834-840
-
-
Choudhary, C.1
Kumar, C.2
Gnad, F.3
-
80
-
-
84936992221
-
Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p
-
Madsen CT, Sylvestersen KB, Young C, et al. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nat Commun 2015;6:7726.
-
(2015)
Nat Commun
, vol.6
, pp. 7726
-
-
Madsen, C.T.1
Sylvestersen, K.B.2
Young, C.3
-
81
-
-
69549124552
-
Proteome-wide prediction of acetylation substrates
-
Basu A, Rose KL, Zhang J, et al. Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci USA 2009;106:13785-90.
-
(2009)
Proc Natl Acad Sci USA
, vol.106
, pp. 13785-13790
-
-
Basu, A.1
Rose, K.L.2
Zhang, J.3
-
82
-
-
84904632581
-
Accurate in silico identification of species-specific acetylation sites by integrating protein sequence- derived and functional features
-
Li Y, Wang M, Wang H, et al. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence- derived and functional features. Sci Rep 2014;4:5765.
-
(2014)
Sci Rep
, vol.4
, pp. 5765
-
-
Li, Y.1
Wang, M.2
Wang, H.3
-
83
-
-
84928211218
-
Engineered bromodomains to explore the acetylproteome
-
Bryson BD, Del Rosario AM, Gootenberg JS, et al. Engineered bromodomains to explore the acetylproteome. Proteomics 2015;15:1470-5.
-
(2015)
Proteomics
, vol.15
, pp. 1470-1475
-
-
Bryson, B.D.1
Del Rosario, A.M.2
Gootenberg, J.S.3
-
85
-
-
84860014259
-
Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2
-
Bheda P, Swatkoski S, Fiedler KL, et al. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci USA 2012;109:E916-25.
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, pp. E916-E925
-
-
Bheda, P.1
Swatkoski, S.2
Fiedler, K.L.3
-
86
-
-
29144468972
-
Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
-
Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 2005;20:971-8.
-
(2005)
Mol Cell
, vol.20
, pp. 971-978
-
-
Joshi, A.A.1
Struhl, K.2
-
87
-
-
33746953633
-
Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression
-
Lindstrom KC, Vary JC, Jr., Parthun MR, et al. Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression. Mol Cell Biol 2006;26:6117-29.
-
(2006)
Mol Cell Biol
, vol.26
, pp. 6117-6129
-
-
Lindstrom, K.C.1
Vary, J.C.2
Parthun, M.R.3
-
88
-
-
80052232255
-
Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners
-
Sadeh A, Movshovich N, Volokh M, et al. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Mol Biol Cell 2011;22:3127-38.
-
(2011)
Mol Biol Cell
, vol.22
, pp. 3127-3138
-
-
Sadeh, A.1
Movshovich, N.2
Volokh, M.3
-
89
-
-
34248640428
-
Lysine propionylation and butyrylation are novel post-translational modifications in histones
-
Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 2007;6:812-19.
-
(2007)
Mol Cell Proteomics
, vol.6
, pp. 812-819
-
-
Chen, Y.1
Sprung, R.2
Tang, Y.3
-
90
-
-
61849108746
-
Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software
-
Zhang K, Chen Y, Zhang Z, et al. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 2009;8:900-6.
-
(2009)
J Proteome Res
, vol.8
, pp. 900-906
-
-
Zhang, K.1
Chen, Y.2
Zhang, Z.3
-
91
-
-
84883307077
-
Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
-
Weinert BT, Scholz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 2013;4:842-51.
-
(2013)
Cell Rep
, vol.4
, pp. 842-851
-
-
Weinert, B.T.1
Scholz, C.2
Wagner, S.A.3
-
92
-
-
84928169791
-
Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation
-
Sabari BR, Tang Z, Huang H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 2015;58:203-15.
-
(2015)
Mol Cell
, vol.58
, pp. 203-215
-
-
Sabari, B.R.1
Tang, Z.2
Huang, H.3
-
93
-
-
34248595983
-
Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NADp cleavage
-
Smith BC, Denu JM. Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NADp cleavage. J Am Chem Soc 2007;129:5802-3.
-
(2007)
J Am Chem Soc
, vol.129
, pp. 5802-5803
-
-
Smith, B.C.1
Denu, J.M.2
-
94
-
-
37549067781
-
Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
-
Smith BC, Denu JM. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J Biol Chem 2007;282:37256-65.
-
(2007)
J Biol Chem
, vol.282
, pp. 37256-37265
-
-
Smith, B.C.1
Denu, J.M.2
-
95
-
-
46449118856
-
Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP.
-
Tang Y, Holbert MA, Wurtele H, et al. Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nat Struct Mol Biol 2008;15:738-45.
-
(2008)
Nat Struct Mol Biol
, vol.15
, pp. 738-745
-
-
Tang, Y.1
Holbert, M.A.2
Wurtele, H.3
|