메뉴 건너뛰기




Volumn 15, Issue 2, 2016, Pages 109-118

Building a KATalogue of acetyllysine targeting and function

Author keywords

Acetylation; Acetylome; High content screening; KAT; KDAC; Synthetic lethality

Indexed keywords

ACETYLATION; GENETIC MODEL; IMAGE ANALYSIS; MODEL; SACCHAROMYCES CEREVISIAE; BIOTINYLATION; ENZYMOLOGY; GENETICS; GENOMICS; ISOLATION AND PURIFICATION; LETHAL MUTATION; METABOLISM; PROTEIN MICROARRAY; PROTEIN PROCESSING; PROTEOMICS; TANDEM MASS SPECTROMETRY;

EID: 84964804605     PISSN: 20412649     EISSN: 20412657     Source Type: Journal    
DOI: 10.1093/bfgp/elv045     Document Type: Article
Times cited : (16)

References (95)
  • 1
    • 0029984469 scopus 로고    scopus 로고
    • Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation
    • Brownell JE, Zhou J, Ranalli T, et al. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 1996;84:843-51.
    • (1996) Cell , vol.84 , pp. 843-851
    • Brownell, J.E.1    Zhou, J.2    Ranalli, T.3
  • 2
    • 84860371953 scopus 로고    scopus 로고
    • Epigenetic protein families: a new frontier for drug discovery
    • Arrowsmith CH, Bountra C, Fish PV, et al. Epigenetic protein families: a new frontier for drug discovery. Nat Rev Drug Discov 2012;11:384-400.
    • (2012) Nat Rev Drug Discov , vol.11 , pp. 384-400
    • Arrowsmith, C.H.1    Bountra, C.2    Fish, P.V.3
  • 3
    • 84864213113 scopus 로고    scopus 로고
    • Systematic functional prioritization of protein posttranslational modifications
    • Beltrao P, Albanese V, Kenner LR, et al. Systematic functional prioritization of protein posttranslational modifications. Cell 2012;150:413-25.
    • (2012) Cell , vol.150 , pp. 413-425
    • Beltrao, P.1    Albanese, V.2    Kenner, L.R.3
  • 4
    • 84869215170 scopus 로고    scopus 로고
    • Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae
    • Henriksen P, Wagner SA, Weinert BT, et al. Proteome-wide analysis of lysine acetylation suggests its broad regulatory scope in Saccharomyces cerevisiae. Mol Cell Proteomics 2012;11:1510-22.
    • (2012) Mol Cell Proteomics , vol.11 , pp. 1510-1522
    • Henriksen, P.1    Wagner, S.A.2    Weinert, B.T.3
  • 5
    • 79960797509 scopus 로고    scopus 로고
    • Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation
    • Weinert BT, Wagner SA, Horn H, et al. Proteome-wide mapping of the Drosophila acetylome demonstrates a high degree of conservation of lysine acetylation. Sci Signal 2011;4:ra48.
    • (2011) Sci Signal , vol.4
    • Weinert, B.T.1    Wagner, S.A.2    Horn, H.3
  • 6
    • 84920465035 scopus 로고    scopus 로고
    • Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1
    • Downey M, Johnson JR, Davey NE, et al. Acetylome profiling reveals overlap in the regulation of diverse processes by sirtuins, gcn5, and esa1. Mol Cell Proteomics 2015;14:162-76.
    • (2015) Mol Cell Proteomics , vol.14 , pp. 162-176
    • Downey, M.1    Johnson, J.R.2    Davey, N.E.3
  • 7
    • 84898012537 scopus 로고    scopus 로고
    • Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae
    • Weinert BT, Iesmantavicius V, Moustafa T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Mol Syst Biol 2014;10:716.
    • (2014) Mol Syst Biol , vol.10 , pp. 716
    • Weinert, B.T.1    Iesmantavicius, V.2    Moustafa, T.3
  • 8
    • 84862253222 scopus 로고    scopus 로고
    • Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report
    • Chan ET, Cherry JM. Considerations for creating and annotating the budding yeast Genome Map at SGD: a progress report. Database (Oxford) 2012;2012:bar057.
    • (2012) Database (Oxford) , vol.2012
    • Chan, E.T.1    Cherry, J.M.2
  • 9
    • 84912019905 scopus 로고    scopus 로고
    • Protein acetylation and acetyl coenzyme a metabolism in budding yeast
    • Galdieri L, Zhang T, Rogerson D, et al. Protein acetylation and acetyl coenzyme a metabolism in budding yeast. Eukaryot Cell 2014;13:1472-83.
    • (2014) Eukaryot Cell , vol.13 , pp. 1472-1483
    • Galdieri, L.1    Zhang, T.2    Rogerson, D.3
  • 10
    • 34548231639 scopus 로고    scopus 로고
    • Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation
    • VanDemark AP, Kasten MM, Ferris E, et al. Autoregulation of the rsc4 tandem bromodomain by gcn5 acetylation. Mol Cell 2007;27:817-28.
    • (2007) Mol Cell , vol.27 , pp. 817-828
    • VanDemark, A.P.1    Kasten, M.M.2    Ferris, E.3
  • 11
    • 57349156720 scopus 로고    scopus 로고
    • Acetylation of Rsc4p by Gcn5p is essential in the absence of histone H3 acetylation
    • Choi JK, Grimes DE, Rowe KM, et al. Acetylation of Rsc4p by Gcn5p is essential in the absence of histone H3 acetylation. Mol Cell Biol 2008;28:6967-72.
    • (2008) Mol Cell Biol , vol.28 , pp. 6967-6972
    • Choi, J.K.1    Grimes, D.E.2    Rowe, K.M.3
  • 12
    • 79960594763 scopus 로고    scopus 로고
    • Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress
    • Charles GM, Chen C, Shih SC, et al. Site-specific acetylation mark on an essential chromatin-remodeling complex promotes resistance to replication stress. Proc Natl Acad Sci USA 2011;108:10620-5.
    • (2011) Proc Natl Acad Sci USA , vol.108 , pp. 10620-10625
    • Charles, G.M.1    Chen, C.2    Shih, S.C.3
  • 13
    • 78650187080 scopus 로고    scopus 로고
    • Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/ Snf2
    • Kim JH, Saraf A, Florens L, et al. Gcn5 regulates the dissociation of SWI/SNF from chromatin by acetylation of Swi2/ Snf2. Genes Dev 2010;24:2766-71.
    • (2010) Genes Dev , vol.24 , pp. 2766-2771
    • Kim, J.H.1    Saraf, A.2    Florens, L.3
  • 14
    • 84884592847 scopus 로고    scopus 로고
    • Integration of multiple nutrient cues and regulation of lifespan by ribosomal transcription factor Ifh1
    • Cai L, McCormick MA, Kennedy BK, et al. Integration of multiple nutrient cues and regulation of lifespan by ribosomal transcription factor Ifh1. Cell Rep 2013;4:1063-71.
    • (2013) Cell Rep , vol.4 , pp. 1063-1071
    • Cai, L.1    McCormick, M.A.2    Kennedy, B.K.3
  • 15
    • 84883758231 scopus 로고    scopus 로고
    • Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1
    • Downey M, Knight B, Vashisht AA, et al. Gcn5 and sirtuins regulate acetylation of the ribosomal protein transcription factor Ifh1. Curr Biol 2013;23:1638-48.
    • (2013) Curr Biol , vol.23 , pp. 1638-1648
    • Downey, M.1    Knight, B.2    Vashisht, A.A.3
  • 16
    • 62149143727 scopus 로고    scopus 로고
    • Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis
    • Lin YY, Lu JY, Zhang J, et al. Protein acetylation microarray reveals that NuA4 controls key metabolic target regulating gluconeogenesis. Cell 2009;136:1073-84.
    • (2009) Cell , vol.136 , pp. 1073-1084
    • Lin, Y.Y.1    Lu, J.Y.2    Zhang, J.3
  • 17
    • 80052939858 scopus 로고    scopus 로고
    • Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction
    • Lu JY, Lin YY, Sheu JC, et al. Acetylation of yeast AMPK controls intrinsic aging independently of caloric restriction. Cell 2011;146:969-79.
    • (2011) Cell , vol.146 , pp. 969-979
    • Lu, J.Y.1    Lin, Y.Y.2    Sheu, J.C.3
  • 18
    • 48249142388 scopus 로고    scopus 로고
    • A molecular determinant for the establishment of sister chromatid cohesion
    • Unal E, Heidinger-Pauli JM, Kim W, et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 2008;321:566-9.
    • (2008) Science , vol.321 , pp. 566-569
    • Unal, E.1    Heidinger-Pauli, J.M.2    Kim, W.3
  • 19
    • 62549149415 scopus 로고    scopus 로고
    • Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity
    • Rowland BD, Roig MB, Nishino T, et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol Cell 2009;33:763-74.
    • (2009) Mol Cell , vol.33 , pp. 763-774
    • Rowland, B.D.1    Roig, M.B.2    Nishino, T.3
  • 20
    • 77956509746 scopus 로고    scopus 로고
    • An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion
    • Beckouet F, Hu B, Roig MB, et al. An Smc3 acetylation cycle is essential for establishment of sister chromatid cohesion. Mol Cell 2010;39:689-99.
    • (2010) Mol Cell , vol.39 , pp. 689-699
    • Beckouet, F.1    Hu, B.2    Roig, M.B.3
  • 21
    • 62549130668 scopus 로고    scopus 로고
    • Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion- establishing reaction
    • Sutani T, Kawaguchi T, Kanno R, et al. Budding yeast Wpl1(Rad61)-Pds5 complex counteracts sister chromatid cohesion- establishing reaction. Curr Biol 2009;19:492-7.
    • (2009) Curr Biol , vol.19 , pp. 492-497
    • Sutani, T.1    Kawaguchi, T.2    Kanno, R.3
  • 22
    • 77956501610 scopus 로고    scopus 로고
    • Hos1 deacetylates Smc3 to close the cohesin acetylation cycle
    • Borges V, Lehane C, Lopez-Serra L, et al. Hos1 deacetylates Smc3 to close the cohesin acetylation cycle. Mol Cell 2010;39:677-88.
    • (2010) Mol Cell , vol.39 , pp. 677-688
    • Borges, V.1    Lehane, C.2    Lopez-Serra, L.3
  • 23
    • 77957240557 scopus 로고    scopus 로고
    • Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin
    • Xiong B, Lu S, Gerton JL. Hos1 is a lysine deacetylase for the Smc3 subunit of cohesin. Curr Biol 2010;20:1660-5.
    • (2010) Curr Biol , vol.20 , pp. 1660-1665
    • Xiong, B.1    Lu, S.2    Gerton, J.L.3
  • 24
    • 65549132836 scopus 로고    scopus 로고
    • Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage
    • Heidinger-Pauli JM, Unal E, Koshland D. Distinct targets of the Eco1 acetyltransferase modulate cohesion in S phase and in response to DNA damage. Mol Cell 2009;34:311-21.
    • (2009) Mol Cell , vol.34 , pp. 311-321
    • Heidinger-Pauli, J.M.1    Unal, E.2    Koshland, D.3
  • 25
    • 84863511126 scopus 로고    scopus 로고
    • Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization
    • Ghosh S, Gardner JM, Smoyer CJ, et al. Acetylation of the SUN protein Mps3 by Eco1 regulates its function in nuclear organization. Mol Biol Cell 2012;23:2546-59.
    • (2012) Mol Biol Cell , vol.23 , pp. 2546-2559
    • Ghosh, S.1    Gardner, J.M.2    Smoyer, C.J.3
  • 26
    • 84886935092 scopus 로고    scopus 로고
    • Deacetylase Rpd3 facilitates checkpoint adaptation by preventing Rad53 overactivation
    • Tao R, Xue H, Zhang J, et al. Deacetylase Rpd3 facilitates checkpoint adaptation by preventing Rad53 overactivation. Mol Cell Biol 2013;33:4212-24.
    • (2013) Mol Cell Biol , vol.33 , pp. 4212-4224
    • Tao, R.1    Xue, H.2    Zhang, J.3
  • 27
    • 84860355892 scopus 로고    scopus 로고
    • Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p
    • Mallory MJ, Law MJ, Sterner DE, et al. Gcn5p-dependent acetylation induces degradation of the meiotic transcriptional repressor Ume6p. Mol Biol Cell 2012;23:1609-17.
    • (2012) Mol Biol Cell , vol.23 , pp. 1609-1617
    • Mallory, M.J.1    Law, M.J.2    Sterner, D.E.3
  • 28
    • 84892954807 scopus 로고    scopus 로고
    • Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast
    • Law MJ, Mallory MJ, Dunbrack RL, Jr., et al. Acetylation of the transcriptional repressor Ume6p allows efficient promoter release and timely induction of the meiotic transient transcription program in yeast. Mol Cell Biol 2014;34:631-42.
    • (2014) Mol Cell Biol , vol.34 , pp. 631-642
    • Law, M.J.1    Mallory, M.J.2    Dunbrack, R.L.3
  • 29
    • 48749114997 scopus 로고    scopus 로고
    • A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation
    • Lin YY, Qi Y, Lu JY, et al. A comprehensive synthetic genetic interaction network governing yeast histone acetylation and deacetylation. Genes Dev 2008;22:2062-74.
    • (2008) Genes Dev , vol.22 , pp. 2062-2074
    • Lin, Y.Y.1    Qi, Y.2    Lu, J.Y.3
  • 30
    • 84860848452 scopus 로고    scopus 로고
    • Exploring the yeast acetylome using functional genomics
    • Kaluarachchi Duffy S, Friesen H, Baryshnikova A, et al. Exploring the yeast acetylome using functional genomics. Cell 2012;149:936-48.
    • (2012) Cell , vol.149 , pp. 936-948
    • Kaluarachchi Duffy, S.1    Friesen, H.2    Baryshnikova, A.3
  • 31
    • 80053450838 scopus 로고    scopus 로고
    • Regulation of septin dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4
    • Mitchell L, Lau A, Lambert JP, et al. Regulation of septin dynamics by the Saccharomyces cerevisiae Lysine Acetyltransferase NuA4. PLoS One 2011;6:e25336.
    • (2011) PLoS One , vol.6 , pp. e25336
    • Mitchell, L.1    Lau, A.2    Lambert, J.P.3
  • 32
    • 84860203624 scopus 로고    scopus 로고
    • Function and molecular mechanism of acetylation in autophagy regulation
    • Yi C, Ma M, Ran L, et al. Function and molecular mechanism of acetylation in autophagy regulation. Science 2012;336:474-7.
    • (2012) Science , vol.336 , pp. 474-477
    • Yi, C.1    Ma, M.2    Ran, L.3
  • 33
    • 77956054446 scopus 로고    scopus 로고
    • Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe
    • Baryshnikova A, Costanzo M, Dixon S, et al. Synthetic genetic array (SGA) analysis in Saccharomyces cerevisiae and Schizosaccharomyces pombe. Methods Enzymol 2010;470:145-79.
    • (2010) Methods Enzymol , vol.470 , pp. 145-179
    • Baryshnikova, A.1    Costanzo, M.2    Dixon, S.3
  • 34
    • 84921891433 scopus 로고    scopus 로고
    • Synthetic genetic array analysis for global mapping of genetic networks in yeast
    • Kuzmin E, Sharifpoor S, Baryshnikova A, et al. Synthetic genetic array analysis for global mapping of genetic networks in yeast. Methods Mol Biol 2014;1205:143-68.
    • (2014) Methods Mol Biol , vol.1205 , pp. 143-168
    • Kuzmin, E.1    Sharifpoor, S.2    Baryshnikova, A.3
  • 35
    • 0035861532 scopus 로고    scopus 로고
    • Systematic genetic analysis with ordered arrays of yeast deletion mutants
    • Tong AH, Evangelista M, Parsons AB, et al. Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 2001;294:2364-8.
    • (2001) Science , vol.294 , pp. 2364-2368
    • Tong, A.H.1    Evangelista, M.2    Parsons, A.B.3
  • 36
    • 10744230485 scopus 로고    scopus 로고
    • Global mapping of the yeast genetic interaction network
    • Tong AH, Lesage G, Bader GD, et al. Global mapping of the yeast genetic interaction network. Science 2004;303:808- 13.
    • (2004) Science , vol.303 , pp. 808-813
    • Tong, A.H.1    Lesage, G.2    Bader, G.D.3
  • 37
    • 33644778778 scopus 로고    scopus 로고
    • A DNA integrity network in the yeast Saccharomyces cerevisiae
    • Pan X, Ye P, Yuan DS, et al. A DNA integrity network in the yeast Saccharomyces cerevisiae. Cell 2006;124:1069-81.
    • (2006) Cell , vol.124 , pp. 1069-1081
    • Pan, X.1    Ye, P.2    Yuan, D.S.3
  • 38
  • 39
    • 46149100263 scopus 로고    scopus 로고
    • Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109
    • Fillingham J, Recht J, Silva AC, et al. Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 2008;28:4342-53.
    • (2008) Mol Cell Biol , vol.28 , pp. 4342-4353
    • Fillingham, J.1    Recht, J.2    Silva, A.C.3
  • 40
    • 74549184412 scopus 로고    scopus 로고
    • The polarisome is required for segregation and retrograde transport of protein aggregates
    • Liu B, Larsson L, Caballero A, et al. The polarisome is required for segregation and retrograde transport of protein aggregates. Cell 2010;140:257-67.
    • (2010) Cell , vol.140 , pp. 257-267
    • Liu, B.1    Larsson, L.2    Caballero, A.3
  • 41
    • 41149083933 scopus 로고    scopus 로고
    • Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity
    • Mitchell L, Lambert JP, Gerdes M, et al. Functional dissection of the NuA4 histone acetyltransferase reveals its role as a genetic hub and that Eaf1 is essential for complex integrity. Mol Cell Biol 2008;28:2244-56.
    • (2008) Mol Cell Biol , vol.28 , pp. 2244-2256
    • Mitchell, L.1    Lambert, J.P.2    Gerdes, M.3
  • 43
    • 75549091259 scopus 로고    scopus 로고
    • DRYGIN: a database of quantitative genetic interaction networks in yeast
    • Koh JL, Ding H, Costanzo M, et al. DRYGIN: a database of quantitative genetic interaction networks in yeast. Nucleic Acids Res 2010;38:D502-7.
    • (2010) Nucleic Acids Res , vol.38 , pp. D502-D507
    • Koh, J.L.1    Ding, H.2    Costanzo, M.3
  • 44
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins SR, Miller KM, Maas NL, et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007;446:806-10.
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.R.1    Miller, K.M.2    Maas, N.L.3
  • 45
    • 84903268527 scopus 로고    scopus 로고
    • Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling
    • Rossetto D, Cramet M, Wang AY, et al. Eaf5/7/3 form a functionally independent NuA4 submodule linked to RNA polymerase II-coupled nucleosome recycling. EMBO J 2014;33:1397-415.
    • (2014) EMBO J , vol.33 , pp. 1397-1415
    • Rossetto, D.1    Cramet, M.2    Wang, A.Y.3
  • 46
    • 84954244849 scopus 로고    scopus 로고
    • TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing
    • Bhat W, Ahmad S, Cote J. TINTIN, at the interface of chromatin, transcription elongation, and mRNA processing. RNA Biol 2015;12:486-9.
    • (2015) RNA Biol , vol.12 , pp. 486-489
    • Bhat, W.1    Ahmad, S.2    Cote, J.3
  • 47
    • 84922232260 scopus 로고    scopus 로고
    • A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/ TIP60 for nucleosome transactions
    • Cheng X, Cote J. A new companion of elongating RNA Polymerase II: TINTIN, an independent sub-module of NuA4/ TIP60 for nucleosome transactions. Transcription 2014;5:e995571.
    • (2014) Transcription , vol.5 , pp. e995571
    • Cheng, X.1    Cote, J.2
  • 48
    • 3142536716 scopus 로고    scopus 로고
    • Exploration of essential gene functions via titratable promoter alleles
    • Mnaimneh S, Davierwala AP, Haynes J, et al. Exploration of essential gene functions via titratable promoter alleles. Cell 2004;118:31-44.
    • (2004) Cell , vol.118 , pp. 31-44
    • Mnaimneh, S.1    Davierwala, A.P.2    Haynes, J.3
  • 49
    • 31544482407 scopus 로고    scopus 로고
    • Mapping pathways and phenotypes by systematic gene overexpression
    • Sopko R, Huang D, Preston N, et al. Mapping pathways and phenotypes by systematic gene overexpression. Mol Cell 2006;21:319-30.
    • (2006) Mol Cell , vol.21 , pp. 319-330
    • Sopko, R.1    Huang, D.2    Preston, N.3
  • 50
    • 70349774419 scopus 로고    scopus 로고
    • Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast
    • Huang D, Kaluarachchi S, van Dyk D, et al. Dual regulation by pairs of cyclin-dependent protein kinases and histone deacetylases controls G1 transcription in budding yeast. PLoS Biol 2009;7:e1000188.
    • (2009) PLoS Biol , vol.7 , pp. e1000188
    • Huang, D.1    Kaluarachchi, S.2    van Dyk, D.3
  • 51
    • 84859520339 scopus 로고    scopus 로고
    • Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs
    • Sharifpoor S, van Dyk D, Costanzo M, et al. Functional wiring of the yeast kinome revealed by global analysis of genetic network motifs. Genome Res 2012;22:791-801.
    • (2012) Genome Res , vol.22 , pp. 791-801
    • Sharifpoor, S.1    van Dyk, D.2    Costanzo, M.3
  • 52
    • 35649013877 scopus 로고    scopus 로고
    • Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast
    • Sopko R, Huang D, Smith JC, et al. Activation of the Cdc42p GTPase by cyclin-dependent protein kinases in budding yeast. EMBO J 2007;26:4487-500.
    • (2007) EMBO J , vol.26 , pp. 4487-4500
    • Sopko, R.1    Huang, D.2    Smith, J.C.3
  • 53
    • 33746605307 scopus 로고    scopus 로고
    • Phenotypic activation to discover biological pathways and kinase substrates
    • Sopko R, Papp B, Oliver SG, et al. Phenotypic activation to discover biological pathways and kinase substrates. Cell Cycle 2006;5:1397-402.
    • (2006) Cell Cycle , vol.5 , pp. 1397-1402
    • Sopko, R.1    Papp, B.2    Oliver, S.G.3
  • 54
    • 70749160910 scopus 로고    scopus 로고
    • A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2
    • Liu C, van Dyk D, Li Y, et al. A genome-wide synthetic dosage lethality screen reveals multiple pathways that require the functioning of ubiquitin-binding proteins Rad23 and Dsk2. BMC Biol 2009;7:75.
    • (2009) BMC Biol , vol.7 , pp. 75
    • Liu, C.1    van Dyk, D.2    Li, Y.3
  • 55
    • 84883146045 scopus 로고    scopus 로고
    • Functional analysis with a barcoder yeast gene overexpression system
    • Douglas AC, Smith AM, Sharifpoor S, et al. Functional analysis with a barcoder yeast gene overexpression system. G3 (Bethesda) 2012;2:1279-89.
    • (2012) G3 (Bethesda) , vol.2 , pp. 1279-1289
    • Douglas, A.C.1    Smith, A.M.2    Sharifpoor, S.3
  • 56
    • 79958081747 scopus 로고    scopus 로고
    • Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell
    • Magtanong L, Ho CH, Barker SL, et al. Dosage suppression genetic interaction networks enhance functional wiring diagrams of the cell. Nat Biotechnol 2011;29:505-11.
    • (2011) Nat Biotechnol , vol.29 , pp. 505-511
    • Magtanong, L.1    Ho, C.H.2    Barker, S.L.3
  • 57
    • 25444489018 scopus 로고    scopus 로고
    • Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation
    • Measday V, Baetz K, Guzzo J, et al. Systematic yeast synthetic lethal and synthetic dosage lethal screens identify genes required for chromosome segregation. Proc Natl Acad Sci USA 2005;102:13956-61.
    • (2005) Proc Natl Acad Sci USA , vol.102 , pp. 13956-13961
    • Measday, V.1    Baetz, K.2    Guzzo, J.3
  • 58
    • 0035860499 scopus 로고    scopus 로고
    • Global analysis of protein activities using proteome chips
    • Zhu H, Bilgin M, Bangham R, et al. Global analysis of protein activities using proteome chips. Science 2001;293:2101-5.
    • (2001) Science , vol.293 , pp. 2101-2105
    • Zhu, H.1    Bilgin, M.2    Bangham, R.3
  • 59
    • 0142184341 scopus 로고    scopus 로고
    • Global analysis of protein localization in budding yeast
    • Huh WK, Falvo JV, Gerke LC, et al. Global analysis of protein localization in budding yeast. Nature 2003;425:686-91.
    • (2003) Nature , vol.425 , pp. 686-691
    • Huh, W.K.1    Falvo, J.V.2    Gerke, L.C.3
  • 60
    • 84855973755 scopus 로고    scopus 로고
    • Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection
    • Chong YT, Cox MJ, Andrews B. Proteome-wide screens in Saccharomyces cerevisiae using the yeast GFP collection. Adv Exp Med Biol 2012;736:169-78.
    • (2012) Adv Exp Med Biol , vol.736 , pp. 169-178
    • Chong, Y.T.1    Cox, M.J.2    Andrews, B.3
  • 61
    • 84876305060 scopus 로고    scopus 로고
    • A novel single-cell screening platform reveals proteome plasticity during yeast stress responses
    • Breker M, Gymrek M, Schuldiner M. A novel single-cell screening platform reveals proteome plasticity during yeast stress responses. J Cell Biol 2013;200:839-50.
    • (2013) J Cell Biol , vol.200 , pp. 839-850
    • Breker, M.1    Gymrek, M.2    Schuldiner, M.3
  • 62
    • 84930684870 scopus 로고    scopus 로고
    • Yeast proteome dynamics from single cell imaging and automated analysis
    • Chong YT, Koh JL, Friesen H, et al. Yeast proteome dynamics from single cell imaging and automated analysis. Cell 2015;161:1413-24.
    • (2015) Cell , vol.161 , pp. 1413-1424
    • Chong, Y.T.1    Koh, J.L.2    Friesen, H.3
  • 63
    • 84865715286 scopus 로고    scopus 로고
    • Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress
    • Tkach JM, Yimit A, Lee AY, et al. Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress. Nat Cell Biol 2012;14:966-76.
    • (2012) Nat Cell Biol , vol.14 , pp. 966-976
    • Tkach, J.M.1    Yimit, A.2    Lee, A.Y.3
  • 64
    • 75749095658 scopus 로고    scopus 로고
    • Integrating highthroughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis
    • Vizeacoumar FJ, van Dyk N, F SV, et al. Integrating highthroughput genetic interaction mapping and high-content screening to explore yeast spindle morphogenesis. J Cell Biol 2010;188:69-81.
    • (2010) J Cell Biol , vol.188 , pp. 69-81
    • Vizeacoumar, F.J.1    van Dyk, N.F.S.V.2
  • 65
    • 84879349589 scopus 로고    scopus 로고
    • Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function
    • Buchan JR, Kolaitis RM, Taylor JP, et al. Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 2013;153:1461-74.
    • (2013) Cell , vol.153 , pp. 1461-1474
    • Buchan, J.R.1    Kolaitis, R.M.2    Taylor, J.P.3
  • 66
    • 84859375205 scopus 로고    scopus 로고
    • The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells
    • Liu IC, Chiu SW, Lee HY, et al. The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells. Mol Biol Cell 2012;23:1231-42.
    • (2012) Mol Biol Cell , vol.23 , pp. 1231-1242
    • Liu, I.C.1    Chiu, S.W.2    Lee, H.Y.3
  • 67
    • 84930845786 scopus 로고    scopus 로고
    • CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae
    • Koh JL, Chong YT, Friesen H, et al. CYCLoPs: A comprehensive database constructed from automated analysis of protein abundance and subcellular localization patterns in Saccharomyces cerevisiae. G3 (Bethesda) 2015;5:1223-32.
    • (2015) G3 (Bethesda) , vol.5 , pp. 1223-1232
    • Koh, J.L.1    Chong, Y.T.2    Friesen, H.3
  • 69
    • 84876885763 scopus 로고    scopus 로고
    • mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases
    • Mitchell L, Huard S, Cotrut M, et al. mChIP-KAT-MS, a method to map protein interactions and acetylation sites for lysine acetyltransferases. Proc Natl Acad Sci USA 2013;110:E1641-50.
    • (2013) Proc Natl Acad Sci USA , vol.110 , pp. E1641-E1650
    • Mitchell, L.1    Huard, S.2    Cotrut, M.3
  • 70
    • 0034628508 scopus 로고    scopus 로고
    • A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae
    • Uetz P, Giot L, Cagney G, et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 2000;403:623-7.
    • (2000) Nature , vol.403 , pp. 623-627
    • Uetz, P.1    Giot, L.2    Cagney, G.3
  • 71
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan NJ, Cagney G, Yu H, et al. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 2006;440:637-43.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.3
  • 72
    • 0037050004 scopus 로고    scopus 로고
    • Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry
    • Ho Y, Gruhler A, Heilbut A, et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 2002;415:180-3.
    • (2002) Nature , vol.415 , pp. 180-183
    • Ho, Y.1    Gruhler, A.2    Heilbut, A.3
  • 73
    • 79960080101 scopus 로고    scopus 로고
    • Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes
    • Lee KK, Sardiu ME, Swanson SK, et al. Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 2011;7:503.
    • (2011) Mol Syst Biol , vol.7 , pp. 503
    • Lee, K.K.1    Sardiu, M.E.2    Swanson, S.K.3
  • 74
    • 84908505994 scopus 로고    scopus 로고
    • Mapping the deubiquitination module within the SAGA complex
    • Durand A, Bonnet J, Fournier M, et al. Mapping the deubiquitination module within the SAGA complex. Structure 2014;22:1553-9.
    • (2014) Structure , vol.22 , pp. 1553-1559
    • Durand, A.1    Bonnet, J.2    Fournier, M.3
  • 75
    • 84927721217 scopus 로고    scopus 로고
    • Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex
    • Setiaputra D, Ross JD, Lu S, et al. Conformational flexibility and subunit arrangement of the modular yeast Spt-Ada-Gcn5 acetyltransferase complex. J Biol Chem 2015;290:10057-70.
    • (2015) J Biol Chem , vol.290 , pp. 10057-10070
    • Setiaputra, D.1    Ross, J.D.2    Lu, S.3
  • 76
    • 84922249668 scopus 로고    scopus 로고
    • Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex
    • Han Y, Luo J, Ranish J, et al. Architecture of the Saccharomyces cerevisiae SAGA transcription coactivator complex. EMBO J 2014;33:2534-46.
    • (2014) EMBO J , vol.33 , pp. 2534-2546
    • Han, Y.1    Luo, J.2    Ranish, J.3
  • 77
    • 77149120797 scopus 로고    scopus 로고
    • Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux
    • Wang Q, Zhang Y, Yang C, et al. Acetylation of metabolic enzymes coordinates carbon source utilization and metabolic flux. Science 2010;327:1004-7.
    • (2010) Science , vol.327 , pp. 1004-1007
    • Wang, Q.1    Zhang, Y.2    Yang, C.3
  • 78
    • 33746992118 scopus 로고    scopus 로고
    • Substrate and functional diversity of lysine acetylation revealed by a proteomics survey
    • Kim SC, Sprung R, Chen Y, et al. Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. Mol Cell 2006;23:607-18.
    • (2006) Mol Cell , vol.23 , pp. 607-618
    • Kim, S.C.1    Sprung, R.2    Chen, Y.3
  • 79
    • 68949212379 scopus 로고    scopus 로고
    • Lysine acetylation targets protein complexes and co-regulates major cellular functions
    • Choudhary C, Kumar C, Gnad F, et al. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 2009;325:834-40.
    • (2009) Science , vol.325 , pp. 834-840
    • Choudhary, C.1    Kumar, C.2    Gnad, F.3
  • 80
    • 84936992221 scopus 로고    scopus 로고
    • Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p
    • Madsen CT, Sylvestersen KB, Young C, et al. Biotin starvation causes mitochondrial protein hyperacetylation and partial rescue by the SIRT3-like deacetylase Hst4p. Nat Commun 2015;6:7726.
    • (2015) Nat Commun , vol.6 , pp. 7726
    • Madsen, C.T.1    Sylvestersen, K.B.2    Young, C.3
  • 81
    • 69549124552 scopus 로고    scopus 로고
    • Proteome-wide prediction of acetylation substrates
    • Basu A, Rose KL, Zhang J, et al. Proteome-wide prediction of acetylation substrates. Proc Natl Acad Sci USA 2009;106:13785-90.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 13785-13790
    • Basu, A.1    Rose, K.L.2    Zhang, J.3
  • 82
    • 84904632581 scopus 로고    scopus 로고
    • Accurate in silico identification of species-specific acetylation sites by integrating protein sequence- derived and functional features
    • Li Y, Wang M, Wang H, et al. Accurate in silico identification of species-specific acetylation sites by integrating protein sequence- derived and functional features. Sci Rep 2014;4:5765.
    • (2014) Sci Rep , vol.4 , pp. 5765
    • Li, Y.1    Wang, M.2    Wang, H.3
  • 83
    • 84928211218 scopus 로고    scopus 로고
    • Engineered bromodomains to explore the acetylproteome
    • Bryson BD, Del Rosario AM, Gootenberg JS, et al. Engineered bromodomains to explore the acetylproteome. Proteomics 2015;15:1470-5.
    • (2015) Proteomics , vol.15 , pp. 1470-1475
    • Bryson, B.D.1    Del Rosario, A.M.2    Gootenberg, J.S.3
  • 84
    • 84907226927 scopus 로고    scopus 로고
    • BioID: a screen for protein-protein interactions
    • Unit 19.23
    • Roux KJ, Kim DI, Burke B. BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci 2013;74:Unit 19.23.
    • (2013) Curr Protoc Protein Sci , vol.74
    • Roux, K.J.1    Kim, D.I.2    Burke, B.3
  • 85
    • 84860014259 scopus 로고    scopus 로고
    • Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2
    • Bheda P, Swatkoski S, Fiedler KL, et al. Biotinylation of lysine method identifies acetylated histone H3 lysine 79 in Saccharomyces cerevisiae as a substrate for Sir2. Proc Natl Acad Sci USA 2012;109:E916-25.
    • (2012) Proc Natl Acad Sci USA , vol.109 , pp. E916-E925
    • Bheda, P.1    Swatkoski, S.2    Fiedler, K.L.3
  • 86
    • 29144468972 scopus 로고    scopus 로고
    • Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation
    • Joshi AA, Struhl K. Eaf3 chromodomain interaction with methylated H3-K36 links histone deacetylation to Pol II elongation. Mol Cell 2005;20:971-8.
    • (2005) Mol Cell , vol.20 , pp. 971-978
    • Joshi, A.A.1    Struhl, K.2
  • 87
    • 33746953633 scopus 로고    scopus 로고
    • Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression
    • Lindstrom KC, Vary JC, Jr., Parthun MR, et al. Isw1 functions in parallel with the NuA4 and Swr1 complexes in stress-induced gene repression. Mol Cell Biol 2006;26:6117-29.
    • (2006) Mol Cell Biol , vol.26 , pp. 6117-6129
    • Lindstrom, K.C.1    Vary, J.C.2    Parthun, M.R.3
  • 88
    • 80052232255 scopus 로고    scopus 로고
    • Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners
    • Sadeh A, Movshovich N, Volokh M, et al. Fine-tuning of the Msn2/4-mediated yeast stress responses as revealed by systematic deletion of Msn2/4 partners. Mol Biol Cell 2011;22:3127-38.
    • (2011) Mol Biol Cell , vol.22 , pp. 3127-3138
    • Sadeh, A.1    Movshovich, N.2    Volokh, M.3
  • 89
    • 34248640428 scopus 로고    scopus 로고
    • Lysine propionylation and butyrylation are novel post-translational modifications in histones
    • Chen Y, Sprung R, Tang Y, et al. Lysine propionylation and butyrylation are novel post-translational modifications in histones. Mol Cell Proteomics 2007;6:812-19.
    • (2007) Mol Cell Proteomics , vol.6 , pp. 812-819
    • Chen, Y.1    Sprung, R.2    Tang, Y.3
  • 90
    • 61849108746 scopus 로고    scopus 로고
    • Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software
    • Zhang K, Chen Y, Zhang Z, et al. Identification and verification of lysine propionylation and butyrylation in yeast core histones using PTMap software. J Proteome Res 2009;8:900-6.
    • (2009) J Proteome Res , vol.8 , pp. 900-906
    • Zhang, K.1    Chen, Y.2    Zhang, Z.3
  • 91
    • 84883307077 scopus 로고    scopus 로고
    • Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation
    • Weinert BT, Scholz C, Wagner SA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 2013;4:842-51.
    • (2013) Cell Rep , vol.4 , pp. 842-851
    • Weinert, B.T.1    Scholz, C.2    Wagner, S.A.3
  • 92
    • 84928169791 scopus 로고    scopus 로고
    • Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation
    • Sabari BR, Tang Z, Huang H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 2015;58:203-15.
    • (2015) Mol Cell , vol.58 , pp. 203-215
    • Sabari, B.R.1    Tang, Z.2    Huang, H.3
  • 93
    • 34248595983 scopus 로고    scopus 로고
    • Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NADp cleavage
    • Smith BC, Denu JM. Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NADp cleavage. J Am Chem Soc 2007;129:5802-3.
    • (2007) J Am Chem Soc , vol.129 , pp. 5802-5803
    • Smith, B.C.1    Denu, J.M.2
  • 94
    • 37549067781 scopus 로고    scopus 로고
    • Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases
    • Smith BC, Denu JM. Acetyl-lysine analog peptides as mechanistic probes of protein deacetylases. J Biol Chem 2007;282:37256-65.
    • (2007) J Biol Chem , vol.282 , pp. 37256-37265
    • Smith, B.C.1    Denu, J.M.2
  • 95
    • 46449118856 scopus 로고    scopus 로고
    • Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP.
    • Tang Y, Holbert MA, Wurtele H, et al. Fungal Rtt109 histone acetyltransferase is an unexpected structural homolog of metazoan p300/CBP. Nat Struct Mol Biol 2008;15:738-45.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 738-745
    • Tang, Y.1    Holbert, M.A.2    Wurtele, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.