-
1
-
-
0023712476
-
The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae
-
Weinert TA, Hartwell LH. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241:317-322.
-
(1988)
Science
, vol.241
, pp. 317-322
-
-
Weinert, T.A.1
Hartwell, L.H.2
-
2
-
-
33751419716
-
Surviving the breakup: the DNA damage checkpoint
-
Harrison JC, Haber JE. 2006. Surviving the breakup: the DNA damage checkpoint. Annu. Rev. Genet. 40:209-235.
-
(2006)
Annu. Rev. Genet.
, vol.40
, pp. 209-235
-
-
Harrison, J.C.1
Haber, J.E.2
-
3
-
-
4544281398
-
Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins
-
Lisby M, Barlow JH, Burgess RC, Rothstein R. 2004. Choreography of the DNA damage response: spatiotemporal relationships among checkpoint and repair proteins. Cell 118:699-713.
-
(2004)
Cell
, vol.118
, pp. 699-713
-
-
Lisby, M.1
Barlow, J.H.2
Burgess, R.C.3
Rothstein, R.4
-
4
-
-
0036531901
-
A unified view of the DNA-damage checkpoint
-
Melo J, Toczyski D. 2002. A unified view of the DNA-damage checkpoint. Curr. Opin. Cell Biol. 14:237-245.
-
(2002)
Curr. Opin. Cell Biol.
, vol.14
, pp. 237-245
-
-
Melo, J.1
Toczyski, D.2
-
5
-
-
0032133216
-
MEC1-dependent phosphorylation of Rad9p in response to DNA damage
-
Emili A. 1998. MEC1-dependent phosphorylation of Rad9p in response to DNA damage. Mol. Cell 2:183-189.
-
(1998)
Mol. Cell
, vol.2
, pp. 183-189
-
-
Emili, A.1
-
6
-
-
23244444605
-
Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation
-
Sweeney FD, Yang F, Chi A, Shabanowitz J, Hunt DF, Durocher D. 2005. Saccharomyces cerevisiae Rad9 acts as a Mec1 adaptor to allow Rad53 activation. Curr. Biol. 15:1364-1375.
-
(2005)
Curr. Biol.
, vol.15
, pp. 1364-1375
-
-
Sweeney, F.D.1
Yang, F.2
Chi, A.3
Shabanowitz, J.4
Hunt, D.F.5
Durocher, D.6
-
7
-
-
33645212498
-
Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1
-
Ma JL, Lee SJ, Duong JK, Stern DF. 2006. Activation of the checkpoint kinase Rad53 by the phosphatidyl inositol kinase-like kinase Mec1. J. Biol. Chem. 281:3954-3963.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 3954-3963
-
-
Ma, J.L.1
Lee, S.J.2
Duong, J.K.3
Stern, D.F.4
-
8
-
-
0033570894
-
Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase
-
Pellicioli A, Lucca C, Liberi G, Marini F, Lopes M, Plevani P, Romano A, Di Fiore PP, Foiani M. 1999. Activation of Rad53 kinase in response to DNA damage and its effect in modulating phosphorylation of the lagging strand DNA polymerase. EMBO J. 18:6561-6572.
-
(1999)
EMBO J
, vol.18
, pp. 6561-6572
-
-
Pellicioli, A.1
Lucca, C.2
Liberi, G.3
Marini, F.4
Lopes, M.5
Plevani, P.6
Romano, A.7
Di Fiore, P.P.8
Foiani, M.9
-
9
-
-
0032504069
-
Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint
-
Sun Z, Hsiao J, Fay DS, Stern DF. 1998. Rad53 FHA domain associated with phosphorylated Rad9 in the DNA damage checkpoint. Science 281: 272-274.
-
(1998)
Science
, vol.281
, pp. 272-274
-
-
Sun, Z.1
Hsiao, J.2
Fay, D.S.3
Stern, D.F.4
-
10
-
-
0032493889
-
Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage
-
Lee SE, Moore JK, Holmes A, Umezu K, Kolodner RD, Haber JE. 1998. Saccharomyces Ku70, mre11/rad50 and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94:399-409.
-
(1998)
Cell
, vol.94
, pp. 399-409
-
-
Lee, S.E.1
Moore, J.K.2
Holmes, A.3
Umezu, K.4
Kolodner, R.D.5
Haber, J.E.6
-
11
-
-
0030885666
-
CDC5 and CKII control adaptation to the yeast DNA damage checkpoint
-
Toczyski DP, Galgoczy DJ, Hartwell LH. 1997. CDC5 and CKII control adaptation to the yeast DNA damage checkpoint. Cell 90:1097-1106.
-
(1997)
Cell
, vol.90
, pp. 1097-1106
-
-
Toczyski, D.P.1
Galgoczy, D.J.2
Hartwell, L.H.3
-
12
-
-
0027421043
-
Loss of a yeast telomere: arrest, recovery, and chromosome loss
-
Sandell LL, Zakian VA. 1993. Loss of a yeast telomere: arrest, recovery, and chromosome loss. Cell 75:729-739.
-
(1993)
Cell
, vol.75
, pp. 729-739
-
-
Sandell, L.L.1
Zakian, V.A.2
-
13
-
-
34247637883
-
Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae
-
Guillemain G, Ma E, Mauger S, Miron S, Thai R, Guerois R, Ochsenbein F, Marsolier-Kergoat MC. 2007. Mechanisms of checkpoint kinase Rad53 inactivation after a double-strand break in Saccharomyces cerevisiae. Mol. Cell. Biol. 27:3378-3389.
-
(2007)
Mol. Cell. Biol.
, vol.27
, pp. 3378-3389
-
-
Guillemain, G.1
Ma, E.2
Mauger, S.3
Miron, S.4
Thai, R.5
Guerois, R.6
Ochsenbein, F.7
Marsolier-Kergoat, M.C.8
-
14
-
-
0344643062
-
PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break
-
Leroy C, Lee SE, Vaze MB, Ochsenbein F, Guerois R, Haber JE, Marsolier-Kergoat MC. 2003. PP2C phosphatases Ptc2 and Ptc3 are required for DNA checkpoint inactivation after a double-strand break. Mol. Cell 11:827-835.
-
(2003)
Mol. Cell
, vol.11
, pp. 827-835
-
-
Leroy, C.1
Lee, S.E.2
Vaze, M.B.3
Ochsenbein, F.4
Guerois, R.5
Haber, J.E.6
Marsolier-Kergoat, M.C.7
-
15
-
-
34547196917
-
Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage
-
U. S. A.
-
O'Neill BM, Szyjka SJ, Lis ET, Bailey AO, Yates JR, III, Aparicio OM, Romesberg FE. 2007. Pph3-Psy2 is a phosphatase complex required for Rad53 dephosphorylation and replication fork restart during recovery from DNA damage. Proc. Natl. Acad. Sci. U. S. A. 104:9290-9295.
-
(2007)
Proc. Natl. Acad. Sci.
, vol.104
, pp. 9290-9295
-
-
O'Neill, B.M.1
Szyjka, S.J.2
Lis, E.T.3
Bailey, A.O.4
Yates III, J.R.5
Aparicio, O.M.6
Romesberg, F.E.7
-
16
-
-
75749156256
-
CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation
-
doi:10.1371/journal.pbio.1000286
-
Vidanes GM, Sweeney FD, Galicia S, Cheung S, Doyle JP, Durocher D, Toczyski DP. 2010. CDC5 inhibits the hyperphosphorylation of the checkpoint kinase Rad53, leading to checkpoint adaptation. PLoS Biol. 8:e1000286. doi:10.1371/journal.pbio.1000286.
-
(2010)
PLoS Biol
, vol.8
-
-
Vidanes, G.M.1
Sweeney, F.D.2
Galicia, S.3
Cheung, S.4
Doyle, J.P.5
Durocher, D.6
Toczyski, D.P.7
-
17
-
-
84868694661
-
The Saccharomyces cerevisiae chromatin remodeler Fun30 regulatesDNAend resection and checkpoint deactivation
-
Eapen VV, Sugawara N, Tsabar M, Wu WH, Haber JE. 2012. The Saccharomyces cerevisiae chromatin remodeler Fun30 regulatesDNAend resection and checkpoint deactivation. Mol. Cell. Biol. 32:4727-4740.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 4727-4740
-
-
Eapen, V.V.1
Sugawara, N.2
Tsabar, M.3
Wu, W.H.4
Haber, J.E.5
-
18
-
-
0035105240
-
Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest
-
Pellicioli A, Lee SE, Lucca C, Foiani M, Haber JE. 2001. Regulation of Saccharomyces Rad53 checkpoint kinase during adaptation from DNA damage-induced G2/M arrest. Mol. Cell 7:293-300.
-
(2001)
Mol. Cell
, vol.7
, pp. 293-300
-
-
Pellicioli, A.1
Lee, S.E.2
Lucca, C.3
Foiani, M.4
Haber, J.E.5
-
19
-
-
84871981888
-
DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase
-
doi:10.1073/pnas.1218065109
-
Dotiwala F, Eapen VV, Harrison JC, Arbel-Eden A, Ranade V, Yoshida S, Haber JE. 2013. DNA damage checkpoint triggers autophagy to regulate the initiation of anaphase. Proc. Natl. Acad. Sci. U. S. A. 110:E41-E49. doi:10.1073/pnas.1218065109.
-
(2013)
Proc. Natl. Acad. Sci. USA
, vol.110
-
-
Dotiwala, F.1
Eapen, V.V.2
Harrison, J.C.3
Arbel-Eden, A.4
Ranade, V.5
Yoshida, S.6
Haber, J.E.7
-
21
-
-
39749127166
-
The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men
-
Yang XJ, Seto E. 2008. The Rpd3/Hda1 family of lysine deacetylases: from bacteria and yeast to mice and men. Nat. Rev. Mol. Cell Biol. 9:206-218.
-
(2008)
Nat. Rev. Mol. Cell Biol.
, vol.9
, pp. 206-218
-
-
Yang, X.J.1
Seto, E.2
-
22
-
-
79952270884
-
HDACs link the DNA damage response, processing of double-strand breaks and autophagy
-
Robert T, Vanoli F, Chiolo I, Shubassi G, Bernstein KA, Rothstein R, Botrugno OA, Parazzoli D, Oldani A, Minucci S, Foiani M. 2011. HDACs link the DNA damage response, processing of double-strand breaks and autophagy. Nature 471:74-79.
-
(2011)
Nature
, vol.471
, pp. 74-79
-
-
Robert, T.1
Vanoli, F.2
Chiolo, I.3
Shubassi, G.4
Bernstein, K.A.5
Rothstein, R.6
Botrugno, O.A.7
Parazzoli, D.8
Oldani, A.9
Minucci, S.10
Foiani, M.11
-
23
-
-
84860203624
-
Function and molecular mechanism of acetylation in autophagy regulation
-
Yi C, Ma M, Ran L, Zheng J, Tong J, Zhu J, Ma C, Sun Y, Zhang S, Feng W, Zhu L, Le Y, Gong X, Yan X, Hong B, Jiang FJ, Xie Z, Miao D, Deng H, Yu L. 2012. Function and molecular mechanism of acetylation in autophagy regulation. Science 336:474-477.
-
(2012)
Science
, vol.336
, pp. 474-477
-
-
Yi, C.1
Ma, M.2
Ran, L.3
Zheng, J.4
Tong, J.5
Zhu, J.6
Ma, C.7
Sun, Y.8
Zhang, S.9
Feng, W.10
Zhu, L.11
Le, Y.12
Gong, X.13
Yan, X.14
Hong, B.15
Jiang, F.J.16
Xie, Z.17
Miao, D.18
Deng, H.19
Yu, L.20
more..
-
24
-
-
80555126851
-
Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast
-
Tao R, Chen H, Gao C, Xue P, Yang F, Han JD, Zhou B, Chen YG. 2011. Xbp1-mediated histone H4 deacetylation contributes to DNA double-strand break repair in yeast. Cell Res. 21:1619-1633.
-
(2011)
Cell Res
, vol.21
, pp. 1619-1633
-
-
Tao, R.1
Chen, H.2
Gao, C.3
Xue, P.4
Yang, F.5
Han, J.D.6
Zhou, B.7
Chen, Y.G.8
-
26
-
-
0031818471
-
Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe
-
Bahler J, Wu JQ, Longtine MS, Shah NG, McKenzie A, III, Steever AB, Wach A, Philippsen P, Pringle JR. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943-951.
-
(1998)
Yeast
, vol.14
, pp. 943-951
-
-
Bahler, J.1
Wu, J.Q.2
Longtine, M.S.3
Shah, N.G.4
McKenzie III, A.5
Steever, A.B.6
Wach, A.7
Philippsen, P.8
Pringle, J.R.9
-
27
-
-
0029085781
-
A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage
-
Paulovich AG, Hartwell LH. 1995. A checkpoint regulates the rate of progression through S phase in S. cerevisiae in response to DNA damage. Cell 82:841-847.
-
(1995)
Cell
, vol.82
, pp. 841-847
-
-
Paulovich, A.G.1
Hartwell, L.H.2
-
28
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore JK, Haber JE. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:2164-2173.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
30
-
-
0242468917
-
Yeast Rad52 and Rad51 recombination proteins define a second pathway ofDNAdamage assessment in response to a single double-strand break
-
Lee SE, Pellicioli A, Vaze MB, Sugawara N, Malkova A, Foiani M, Haber JE. 2003. Yeast Rad52 and Rad51 recombination proteins define a second pathway ofDNAdamage assessment in response to a single double-strand break. Mol. Cell. Biol. 23:8913-8923.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8913-8923
-
-
Lee, S.E.1
Pellicioli, A.2
Vaze, M.B.3
Sugawara, N.4
Malkova, A.5
Foiani, M.6
Haber, J.E.7
-
31
-
-
33645799075
-
The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling
-
Clerici M, Mantiero D, Lucchini G, Longhese MP. 2006. The Saccharomyces cerevisiae Sae2 protein negatively regulates DNA damage checkpoint signalling. EMBO Rep. 7:212-218.
-
(2006)
EMBO Rep
, vol.7
, pp. 212-218
-
-
Clerici, M.1
Mantiero, D.2
Lucchini, G.3
Longhese, M.P.4
-
32
-
-
0032520953
-
Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo
-
Kadosh D, Struhl K. 1998. Histone deacetylase activity of Rpd3 is important for transcriptional repression in vivo. Genes Dev. 12:797-805.
-
(1998)
Genes Dev
, vol.12
, pp. 797-805
-
-
Kadosh, D.1
Struhl, K.2
-
33
-
-
0032161269
-
A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools
-
Zhao X, Muller EG, Rothstein R. 1998. A suppressor of two essential checkpoint genes identifies a novel protein that negatively affects dNTP pools. Mol. Cell 2:329-340.
-
(1998)
Mol. Cell
, vol.2
, pp. 329-340
-
-
Zhao, X.1
Muller, E.G.2
Rothstein, R.3
-
34
-
-
84857047339
-
PhosphoSitePlus: a comprehen-sive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse
-
doi:10.1093/nar/gkr1122
-
Hornbeck PV, Kornhauser JM, Tkachev S, Zhang B, Skrzypek E, Murray B, Latham V, Sullivan M. 2012. PhosphoSitePlus: a comprehen-sive resource for investigating the structure and function of experimentally determined post-translational modifications in man and mouse. Nucleic Acids Res. 40:D261-D270. doi:10.1093/nar/gkr1122.
-
(2012)
Nucleic Acids Res
, vol.40
-
-
Hornbeck, P.V.1
Kornhauser, J.M.2
Tkachev, S.3
Zhang, B.4
Skrzypek, E.5
Murray, B.6
Latham, V.7
Sullivan, M.8
-
35
-
-
0036671706
-
Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase
-
Vaze MB, Pellicioli A, Lee SE, Ira G, Liberi G, Arbel-Eden A, Foiani M, Haber JE. 2002. Recovery from checkpoint-mediated arrest after repair of a double-strand break requires Srs2 helicase. Mol. Cell 10: 373-385.
-
(2002)
Mol. Cell
, vol.10
, pp. 373-385
-
-
Vaze, M.B.1
Pellicioli, A.2
Lee, S.E.3
Ira, G.4
Liberi, G.5
Arbel-Eden, A.6
Foiani, M.7
Haber, J.E.8
-
36
-
-
0035131636
-
Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast
-
Galgoczy DJ, Toczyski DP. 2001. Checkpoint adaptation precedes spontaneous and damage-induced genomic instability in yeast. Mol. Cell. Biol. 21:1710-1718.
-
(2001)
Mol. Cell. Biol.
, vol.21
, pp. 1710-1718
-
-
Galgoczy, D.J.1
Toczyski, D.P.2
-
37
-
-
33747889217
-
Differential usage of non-homologous end-joining and homologous recombination in double strand break repair
-
Sonoda E, Hochegger H, Saberi A, Taniguchi Y, Takeda S. 2006. Differential usage of non-homologous end-joining and homologous recombination in double strand break repair. DNA Repair (Amst.) 5:1021-1029.
-
(2006)
DNA Repair (Amst.)
, vol.5
, pp. 1021-1029
-
-
Sonoda, E.1
Hochegger, H.2
Saberi, A.3
Taniguchi, Y.4
Takeda, S.5
-
38
-
-
45549093388
-
Involvement of fission yeast Clr6-HDAC in regulation of the checkpoint kinase Cds1
-
Kunoh T, Habu T, Matsumoto T. 2008. Involvement of fission yeast Clr6-HDAC in regulation of the checkpoint kinase Cds1. Nucleic Acids Res. 36:3311-3319.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3311-3319
-
-
Kunoh, T.1
Habu, T.2
Matsumoto, T.3
-
39
-
-
2542459341
-
Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase
-
Yoo HY, Kumagai A, Shevchenko A, Dunphy WG. 2004. Adaptation of a DNA replication checkpoint response depends upon inactivation of Claspin by the Polo-like kinase. Cell 117:575-588.
-
(2004)
Cell
, vol.117
, pp. 575-588
-
-
Yoo, H.Y.1
Kumagai, A.2
Shevchenko, A.3
Dunphy, W.G.4
-
40
-
-
33751301357
-
Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases
-
Syljuasen RG, Jensen S, Bartek J, Lukas J. 2006. Adaptation to the ionizing radiation-induced G2 checkpoint occurs in human cells and depends on checkpoint kinase 1 and Polo-like kinase 1 kinases. Cancer Res. 66:10253-10257.
-
(2006)
Cancer Res
, vol.66
, pp. 10253-10257
-
-
Syljuasen, R.G.1
Jensen, S.2
Bartek, J.3
Lukas, J.4
|