-
1
-
-
1542376771
-
The evolution of SMC proteins: phylogenetic analysis and structural implications
-
1 Cobbe, N., Heck, M.M., The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21 (2004), 332–347.
-
(2004)
Mol. Biol. Evol.
, vol.21
, pp. 332-347
-
-
Cobbe, N.1
Heck, M.M.2
-
2
-
-
0026638255
-
ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters
-
2 Ames, G.F., Lecar, H., ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J. 6 (1992), 2660–2666.
-
(1992)
FASEB J.
, vol.6
, pp. 2660-2666
-
-
Ames, G.F.1
Lecar, H.2
-
3
-
-
33646018946
-
The evolution of ATPase activity in SMC proteins
-
3 Cobbe, N., Heck, M.M., The evolution of ATPase activity in SMC proteins. Proteins 63 (2006), 685–696.
-
(2006)
Proteins
, vol.63
, pp. 685-696
-
-
Cobbe, N.1
Heck, M.M.2
-
4
-
-
0001607723
-
Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold
-
4 Walker, J.E., et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1 (1982), 945–951.
-
(1982)
EMBO J.
, vol.1
, pp. 945-951
-
-
Walker, J.E.1
-
5
-
-
0037351555
-
Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners
-
5 Schleiffer, A., et al. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell 11 (2003), 571–575.
-
(2003)
Mol. Cell
, vol.11
, pp. 571-575
-
-
Schleiffer, A.1
-
6
-
-
0030013594
-
Cut2 proteolysis required for sister-chromatid seperation in fission yeast
-
6 Funabiki, H., et al. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature 381 (1996), 438–441.
-
(1996)
Nature
, vol.381
, pp. 438-441
-
-
Funabiki, H.1
-
7
-
-
0034721669
-
Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
-
7 Uhlmann, F., et al. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103 (2000), 375–386.
-
(2000)
Cell
, vol.103
, pp. 375-386
-
-
Uhlmann, F.1
-
8
-
-
75949117626
-
Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei
-
8 Oliveira, R.A., et al. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12 (2010), 185–192.
-
(2010)
Nat. Cell Biol.
, vol.12
, pp. 185-192
-
-
Oliveira, R.A.1
-
9
-
-
78349291580
-
Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes
-
9 Tachibana-Konwalski, K., et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24 (2010), 2505–2516.
-
(2010)
Genes Dev.
, vol.24
, pp. 2505-2516
-
-
Tachibana-Konwalski, K.1
-
10
-
-
0033614934
-
Cohesin Rec8 is required for reductional chromosome segregation at meiosis
-
10 Watanabe, Y., Nurse, P., Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400 (1999), 461–464.
-
(1999)
Nature
, vol.400
, pp. 461-464
-
-
Watanabe, Y.1
Nurse, P.2
-
11
-
-
0035902920
-
Cohesin cleavage by separase required for anaphase and cytokinesis in human cells
-
11 Hauf, S., et al. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293 (2001), 1320–1323.
-
(2001)
Science
, vol.293
, pp. 1320-1323
-
-
Hauf, S.1
-
12
-
-
63049115935
-
Condensin: architect of mitotic chromosomes
-
12 Hudson, D.F., et al. Condensin: architect of mitotic chromosomes. Chromosome Res. 17 (2009), 131–144.
-
(2009)
Chromosome Res.
, vol.17
, pp. 131-144
-
-
Hudson, D.F.1
-
13
-
-
84864752050
-
Condensins: universal organizers of chromosomes with diverse functions
-
13 Hirano, T., Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26 (2012), 1659–1678.
-
(2012)
Genes Dev.
, vol.26
, pp. 1659-1678
-
-
Hirano, T.1
-
14
-
-
84931955768
-
Shaping mitotic chromosomes: from classical concepts to molecular mechanisms
-
14 Kschonsak, M., Haering, C.H., Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. Bioessays 37 (2015), 755–766.
-
(2015)
Bioessays
, vol.37
, pp. 755-766
-
-
Kschonsak, M.1
Haering, C.H.2
-
15
-
-
84930168665
-
Condensin confers the longitudinal rigidity of chromosomes
-
15 Houlard, M., et al. Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17 (2015), 771–781.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 771-781
-
-
Houlard, M.1
-
16
-
-
77952240927
-
Targeting X chromosomes for repression
-
16 Meyer, B.J., Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 20 (2010), 179–189.
-
(2010)
Curr. Opin. Genet. Dev.
, vol.20
, pp. 179-189
-
-
Meyer, B.J.1
-
17
-
-
84897628668
-
Regulation of the X chromosomes in Caenorhabditis elegans
-
17 Strome, S., et al. Regulation of the X chromosomes in Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol., 6, 2014, a018366.
-
(2014)
Cold Spring Harb. Perspect. Biol.
, vol.6
, pp. a018366
-
-
Strome, S.1
-
18
-
-
63049134689
-
The unnamed complex: what do we know about Smc5-Smc6?
-
18 De Piccoli, G., et al. The unnamed complex: what do we know about Smc5-Smc6?. Chromosome Res. 17 (2009), 251–263.
-
(2009)
Chromosome Res.
, vol.17
, pp. 251-263
-
-
De Piccoli, G.1
-
19
-
-
84906704724
-
The maintenance of chromosome structure: positioning and functioning of SMC complexes
-
19 Jeppsson, K., et al. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15 (2014), 601–614.
-
(2014)
Nat. Rev. Mol. Cell Biol.
, vol.15
, pp. 601-614
-
-
Jeppsson, K.1
-
20
-
-
16344370926
-
A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization
-
20 Zhao, X., Blobel, G., A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 4777–4782.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 4777-4782
-
-
Zhao, X.1
Blobel, G.2
-
21
-
-
77956936946
-
MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
-
21 Doyle, J.M., et al. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 39 (2010), 963–974.
-
(2010)
Mol. Cell.
, vol.39
, pp. 963-974
-
-
Doyle, J.M.1
-
22
-
-
84866158917
-
A SUMO-dependent step during establishment of sister chromatid cohesion
-
22 Almedawar, S., et al. A SUMO-dependent step during establishment of sister chromatid cohesion. Curr. Biol. 22 (2012), 1576–1581.
-
(2012)
Curr. Biol.
, vol.22
, pp. 1576-1581
-
-
Almedawar, S.1
-
23
-
-
84866148011
-
SUMOylation of the alpha-kleisin subunit of cohesin is required for DNA damage-induced cohesion
-
23 McAleenan, A., et al. SUMOylation of the alpha-kleisin subunit of cohesin is required for DNA damage-induced cohesion. Curr. Biol. 22 (2012), 1564–1575.
-
(2012)
Curr. Biol.
, vol.22
, pp. 1564-1575
-
-
McAleenan, A.1
-
24
-
-
12344261562
-
The role of SMC proteins in the responses to DNA damage
-
24 Lehmann, A.R., The role of SMC proteins in the responses to DNA damage. DNA Repair (Amst) 4 (2005), 309–314.
-
(2005)
DNA Repair (Amst)
, vol.4
, pp. 309-314
-
-
Lehmann, A.R.1
-
25
-
-
84892556063
-
Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells
-
25 Gallego-Paez, L.M., et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell 25 (2014), 302–317.
-
(2014)
Mol. Biol. Cell
, vol.25
, pp. 302-317
-
-
Gallego-Paez, L.M.1
-
26
-
-
79952314830
-
Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
-
26 Chiolo, I., et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144 (2011), 732–744.
-
(2011)
Cell
, vol.144
, pp. 732-744
-
-
Chiolo, I.1
-
27
-
-
78049353613
-
The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages
-
27 Bermudez-Lopez, M., et al. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38 (2010), 6502–6512.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 6502-6512
-
-
Bermudez-Lopez, M.1
-
28
-
-
84899902780
-
The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
-
28 Nolivos, S., Sherratt, D., The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev. 38 (2014), 380–392.
-
(2014)
FEMS Microbiol Rev.
, vol.38
, pp. 380-392
-
-
Nolivos, S.1
Sherratt, D.2
-
29
-
-
0018958519
-
Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers
-
29 Sundin, O., Varshavsky, A., Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21 (1980), 103–114.
-
(1980)
Cell
, vol.21
, pp. 103-114
-
-
Sundin, O.1
Varshavsky, A.2
-
30
-
-
0036242551
-
Molecular architecture of SMC proteins and the yeast cohesin complex
-
30 Haering, C.H., et al. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9 (2002), 773–788.
-
(2002)
Mol. Cell
, vol.9
, pp. 773-788
-
-
Haering, C.H.1
-
31
-
-
0042132009
-
A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure
-
31 Volkov, A., et al. A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol. Cell Biol. 23 (2003), 5638–5650.
-
(2003)
Mol. Cell Biol.
, vol.23
, pp. 5638-5650
-
-
Volkov, A.1
-
32
-
-
0036804708
-
Chromosome cohesion: ring around the sisters?
-
32 Campbell, J.L., Cohen-Fix, O., Chromosome cohesion: ring around the sisters?. Trends Biochem. Sci. 27 (2002), 492–495.
-
(2002)
Trends Biochem. Sci.
, vol.27
, pp. 492-495
-
-
Campbell, J.L.1
Cohen-Fix, O.2
-
33
-
-
4644244326
-
Structure and stability of cohesin's Smc1-kleisin interaction
-
33 Haering, C.H., et al. Structure and stability of cohesin's Smc1-kleisin interaction. Mol. Cell 15 (2004), 951–964.
-
(2004)
Mol. Cell
, vol.15
, pp. 951-964
-
-
Haering, C.H.1
-
34
-
-
0035830484
-
Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted
-
34 Löwe, J., et al. Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. J. Mol. Biol. 306 (2001), 25–35.
-
(2001)
J. Mol. Biol.
, vol.306
, pp. 25-35
-
-
Löwe, J.1
-
35
-
-
0034705293
-
Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily
-
35 Hopfner, K.P., et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101 (2000), 789–800.
-
(2000)
Cell
, vol.101
, pp. 789-800
-
-
Hopfner, K.P.1
-
36
-
-
78751608933
-
A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion
-
36 Kurze, A., et al. A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion. EMBO J. 30 (2011), 364–378.
-
(2011)
EMBO J.
, vol.30
, pp. 364-378
-
-
Kurze, A.1
-
37
-
-
33750021276
-
Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
-
37 Gruber, S., et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127 (2006), 523–537.
-
(2006)
Cell
, vol.127
, pp. 523-537
-
-
Gruber, S.1
-
38
-
-
84907295977
-
Closing the cohesin ring: structure and function of its Smc3-kleisin interface
-
38 Gligoris, T.G., et al. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346 (2014), 963–967.
-
(2014)
Science
, vol.346
, pp. 963-967
-
-
Gligoris, T.G.1
-
39
-
-
84911413825
-
Characterization of a DNA exit gate in the human cohesin ring
-
39 Huis in ‘t Veld, P.J., et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346 (2014), 968–9672.
-
(2014)
Science
, vol.346
, pp. 968-9672
-
-
Huis in ‘t Veld, P.J.1
-
40
-
-
79953283489
-
The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair
-
40 Lammens, K., et al. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145 (2011), 54–66.
-
(2011)
Cell
, vol.145
, pp. 54-66
-
-
Lammens, K.1
-
41
-
-
79956301873
-
Crystal structure of the Mre11-Rad50-ATP gamma S complex: understanding the interplay between Mre11 and Rad50
-
41 Lim, H.S., et al. Crystal structure of the Mre11-Rad50-ATP gamma S complex: understanding the interplay between Mre11 and Rad50. Genes Dev. 25 (2011), 1091–1104.
-
(2011)
Genes Dev.
, vol.25
, pp. 1091-1104
-
-
Lim, H.S.1
-
42
-
-
79953803622
-
ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair
-
42 Williams, G.J., et al. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18 (2011), 423–431.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 423-431
-
-
Williams, G.J.1
-
43
-
-
84875165205
-
An asymmetric SMC-kleisin bridge in prokaryotic condensin
-
43 Burmann, F., et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 20 (2013), 371–379.
-
(2013)
Nat. Struct. Mol. Biol.
, vol.20
, pp. 371-379
-
-
Burmann, F.1
-
44
-
-
0037224424
-
Conserved disruptions in the predicted coiled-coil domains of eukaryotic SMC complexes: implications for structure and function
-
44 Beasley, M., et al. Conserved disruptions in the predicted coiled-coil domains of eukaryotic SMC complexes: implications for structure and function. Genome Res. 12 (2002), 1201–1209.
-
(2002)
Genome Res.
, vol.12
, pp. 1201-1209
-
-
Beasley, M.1
-
45
-
-
70450225043
-
The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB
-
45 Li, Y., et al. The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB. J. Mol. Biol. 395 (2010), 11–19.
-
(2010)
J. Mol. Biol.
, vol.395
, pp. 11-19
-
-
Li, Y.1
-
46
-
-
0037017393
-
Condensin and cohesin display different arm conformations with characteristic hinge angles
-
46 Anderson, D.E., et al. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156 (2002), 419–424.
-
(2002)
J. Cell Biol.
, vol.156
, pp. 419-424
-
-
Anderson, D.E.1
-
47
-
-
84892617115
-
Biochemical reconstitution of topological DNA binding by the cohesin ring
-
47 Murayama, Y., Uhlmann, F., Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505 (2014), 367–371.
-
(2014)
Nature
, vol.505
, pp. 367-371
-
-
Murayama, Y.1
Uhlmann, F.2
-
48
-
-
84950266410
-
DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism
-
48 Murayama, Y., Uhlmann, F., DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163 (2015), 1628–1640.
-
(2015)
Cell
, vol.163
, pp. 1628-1640
-
-
Murayama, Y.1
Uhlmann, F.2
-
49
-
-
0037133040
-
Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion
-
49 Ivanov, D., et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr. Biol. 12 (2002), 323–328.
-
(2002)
Curr. Biol.
, vol.12
, pp. 323-328
-
-
Ivanov, D.1
-
50
-
-
48249132443
-
Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion
-
50 Rolef Ben-Shahar, T., et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321 (2008), 563–566.
-
(2008)
Science
, vol.321
, pp. 563-566
-
-
Rolef Ben-Shahar, T.1
-
51
-
-
48249142388
-
A molecular determinant for the establishment of sister chromatid cohesion
-
51 Unal, E., et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321 (2008), 566–569.
-
(2008)
Science
, vol.321
, pp. 566-569
-
-
Unal, E.1
-
52
-
-
58249088468
-
A handcuff model for the cohesin complex
-
52 Zhang, N., et al. A handcuff model for the cohesin complex. J. Cell. Biol. 183 (2008), 1019–1031.
-
(2008)
J. Cell. Biol.
, vol.183
, pp. 1019-1031
-
-
Zhang, N.1
-
53
-
-
59449098465
-
Handcuff for sisters: a new model for sister chromatid cohesion
-
53 Zhang, N., Pati, D., Handcuff for sisters: a new model for sister chromatid cohesion. Cell Cycle 8 (2009), 399–402.
-
(2009)
Cell Cycle
, vol.8
, pp. 399-402
-
-
Zhang, N.1
Pati, D.2
-
54
-
-
34447309306
-
A physical assay for sister chromatid cohesion in vitro
-
54 Ivanov, D., Nasmyth, K., A physical assay for sister chromatid cohesion in vitro. Mol. Cell 27 (2007), 300–310.
-
(2007)
Mol. Cell
, vol.27
, pp. 300-310
-
-
Ivanov, D.1
Nasmyth, K.2
-
55
-
-
84930616986
-
SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis
-
55 Wilhelm, L., et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife, 4, 2015, 06659.
-
(2015)
Elife
, vol.4
, pp. 06659
-
-
Wilhelm, L.1
-
56
-
-
79961029402
-
Condensin structures chromosomal DNA through topological links
-
56 Cuylen, S., et al. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18 (2011), 894–901.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 894-901
-
-
Cuylen, S.1
-
57
-
-
0033859660
-
Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins
-
57 Ciosk, R., et al. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell. 5 (2000), 243–254.
-
(2000)
Mol. Cell.
, vol.5
, pp. 243-254
-
-
Ciosk, R.1
-
58
-
-
79151480827
-
ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex
-
58 Hu, B., et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21 (2011), 12–24.
-
(2011)
Curr. Biol.
, vol.21
, pp. 12-24
-
-
Hu, B.1
-
59
-
-
0034645067
-
Characterization of vertebrate cohesin complexes and their regulation in prophase
-
59 Sumara, I., et al. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151 (2000), 749–761.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 749-761
-
-
Sumara, I.1
-
60
-
-
84907288860
-
Structure and function of cohesin's Scc3/SA regulatory subunit
-
60 Roig, M.B., et al. Structure and function of cohesin's Scc3/SA regulatory subunit. FEBS Lett. 588 (2014), 3692–3702.
-
(2014)
FEBS Lett.
, vol.588
, pp. 3692-3702
-
-
Roig, M.B.1
-
61
-
-
0034649480
-
Pds5 cooperates with cohesin in maintaining sister chromatid cohesion
-
61 Panizza, S., et al. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr. Biol. 10 (2000), 1557–1564.
-
(2000)
Curr. Biol.
, vol.10
, pp. 1557-1564
-
-
Panizza, S.1
-
62
-
-
84887819535
-
Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres
-
62 Carretero, M., et al. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J. 32 (2013), 2938–2949.
-
(2013)
EMBO J.
, vol.32
, pp. 2938-2949
-
-
Carretero, M.1
-
63
-
-
84881415768
-
Pds5 promotes and protects cohesin acetylation
-
63 Chan, K.L., et al. Pds5 promotes and protects cohesin acetylation. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 13020–13025.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 13020-13025
-
-
Chan, K.L.1
-
64
-
-
84863323911
-
Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction
-
64 Vaur, S., et al. Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. EMBO Rep. 13 (2012), 645–652.
-
(2012)
EMBO Rep.
, vol.13
, pp. 645-652
-
-
Vaur, S.1
-
65
-
-
0034735519
-
Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae
-
65 Hartman, T., et al. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151 (2000), 613–626.
-
(2000)
J. Cell Biol.
, vol.151
, pp. 613-626
-
-
Hartman, T.1
-
66
-
-
0034721656
-
Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase
-
66 Waizenegger, I.C., et al. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103 (2000), 399–410.
-
(2000)
Cell
, vol.103
, pp. 399-410
-
-
Waizenegger, I.C.1
-
67
-
-
33751237384
-
Wapl controls the dynamic association of cohesin with chromatin
-
67 Kueng, S., et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127 (2006), 955–967.
-
(2006)
Cell
, vol.127
, pp. 955-967
-
-
Kueng, S.1
-
68
-
-
62549149415
-
Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity
-
68 Rowland, B.D., et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol. Cell. 33 (2009), 763–774.
-
(2009)
Mol. Cell.
, vol.33
, pp. 763-774
-
-
Rowland, B.D.1
-
69
-
-
84879899799
-
Structure of the human cohesin inhibitor Wapl
-
69 Ouyang, Z., et al. Structure of the human cohesin inhibitor Wapl. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 11355–11360.
-
(2013)
Proc. Natl. Acad. Sci. U.S.A.
, vol.110
, pp. 11355-11360
-
-
Ouyang, Z.1
-
70
-
-
33845447400
-
Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase
-
70 Gandhi, R., et al. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16 (2006), 2406–2417.
-
(2006)
Curr. Biol.
, vol.16
, pp. 2406-2417
-
-
Gandhi, R.1
-
71
-
-
84875213862
-
Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate
-
71 Buheitel, J., Stemmann, O., Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32 (2013), 666–676.
-
(2013)
EMBO J.
, vol.32
, pp. 666-676
-
-
Buheitel, J.1
Stemmann, O.2
-
72
-
-
80053495083
-
Cohesin: a catenase with separate entry and exit gates?
-
72 Nasmyth, K., Cohesin: a catenase with separate entry and exit gates?. Nat. Cell Biol. 13 (2011), 1170–1177.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1170-1177
-
-
Nasmyth, K.1
-
73
-
-
84865689123
-
Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation
-
73 Chan, K.L., et al. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150 (2012), 961–974.
-
(2012)
Cell
, vol.150
, pp. 961-974
-
-
Chan, K.L.1
-
74
-
-
33746486793
-
Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication
-
74 Gerlich, D., et al. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16 (2006), 1571–1578.
-
(2006)
Curr. Biol.
, vol.16
, pp. 1571-1578
-
-
Gerlich, D.1
-
75
-
-
84872099346
-
Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation
-
75 Lopez-Serra, L., et al. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr. Biol. 23 (2013), 64–69.
-
(2013)
Curr. Biol.
, vol.23
, pp. 64-69
-
-
Lopez-Serra, L.1
-
76
-
-
84885592677
-
Wapl is an essential regulator of chromatin structure and chromosome segregation
-
76 Tedeschi, A., et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501 (2013), 564–568.
-
(2013)
Nature
, vol.501
, pp. 564-568
-
-
Tedeschi, A.1
-
77
-
-
84875230797
-
Structural insights into the regulation of cohesion establishment by Wpl1
-
77 Chatterjee, A., et al. Structural insights into the regulation of cohesion establishment by Wpl1. EMBO J. 32 (2013), 677–687.
-
(2013)
EMBO J.
, vol.32
, pp. 677-687
-
-
Chatterjee, A.1
-
78
-
-
0000818409
-
Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation
-
78 Tanaka, T., et al. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2 (2000), 492–499.
-
(2000)
Nat. Cell Biol.
, vol.2
, pp. 492-499
-
-
Tanaka, T.1
-
79
-
-
14444267778
-
How cells get the right chromosomes
-
79 Nicklas, R.B., How cells get the right chromosomes. Science 275 (1997), 632–637.
-
(1997)
Science
, vol.275
, pp. 632-637
-
-
Nicklas, R.B.1
-
80
-
-
18044393595
-
Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2
-
80 Hauf, S., et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol., 3, 2005, e69.
-
(2005)
PLoS Biol.
, vol.3
, pp. e69
-
-
Hauf, S.1
-
81
-
-
18044394368
-
Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells
-
81 McGuinness, B.E., et al. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol., 3, 2005, e86.
-
(2005)
PLoS Biol.
, vol.3
, pp. e86
-
-
McGuinness, B.E.1
-
82
-
-
33646795889
-
Shugoshin collaborates with protein phosphatase 2A to protect cohesin
-
82 Kitajima, T.S., et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441 (2006), 46–52.
-
(2006)
Nature
, vol.441
, pp. 46-52
-
-
Kitajima, T.S.1
-
83
-
-
33646819227
-
Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I
-
83 Riedel, C.G., et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441 (2006), 53–61.
-
(2006)
Nature
, vol.441
, pp. 53-61
-
-
Riedel, C.G.1
-
84
-
-
84871712829
-
Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis
-
84 Liu, H., et al. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 15 (2013), 40–49.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 40-49
-
-
Liu, H.1
-
85
-
-
84922327650
-
Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion
-
85 Hara, K., et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21 (2014), 864–870.
-
(2014)
Nat. Struct. Mol. Biol.
, vol.21
, pp. 864-870
-
-
Hara, K.1
-
86
-
-
70349149020
-
Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1
-
86 Shintomi, K., Hirano, T., Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes Dev. 23 (2009), 2224–2236.
-
(2009)
Genes Dev.
, vol.23
, pp. 2224-2236
-
-
Shintomi, K.1
Hirano, T.2
-
87
-
-
84960455755
-
Crystal structure of the cohesin gatekeeper Pds5 and in complex with Kleisin Scc1
-
87 Lee, B.G., et al. Crystal structure of the cohesin gatekeeper Pds5 and in complex with Kleisin Scc1. Cell Rep. 14 (2016), 2108–2115.
-
(2016)
Cell Rep.
, vol.14
, pp. 2108-2115
-
-
Lee, B.G.1
-
88
-
-
84960365049
-
Structure of the Pds5-Scc1 complex and implications for cohesin function
-
88 Muir, K.W., et al. Structure of the Pds5-Scc1 complex and implications for cohesin function. Cell Rep. 14 (2016), 2116–2126.
-
(2016)
Cell Rep.
, vol.14
, pp. 2116-2126
-
-
Muir, K.W.1
-
89
-
-
84876129123
-
Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment
-
89 Fernius, J., et al. Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr. Biol. 23 (2013), 599–606.
-
(2013)
Curr. Biol.
, vol.23
, pp. 599-606
-
-
Fernius, J.1
-
90
-
-
84949310226
-
Drosophila nipped-B mutants model Cornelia de Lange syndrome in growth and behavior
-
90 Wu, Y., et al. Drosophila nipped-B mutants model Cornelia de Lange syndrome in growth and behavior. PLoS Genet., 11, 2015, e1005655.
-
(2015)
PLoS Genet.
, vol.11
, pp. e1005655
-
-
Wu, Y.1
-
91
-
-
80053985777
-
Cohesin selectively binds and regulates genes with paused RNA polymerase
-
91 Fay, A., et al. Cohesin selectively binds and regulates genes with paused RNA polymerase. Curr. Biol. 21 (2011), 1624–1634.
-
(2011)
Curr. Biol.
, vol.21
, pp. 1624-1634
-
-
Fay, A.1
-
92
-
-
84901735084
-
A cohesin-independent role for NIPBL at promoters provides insights in CdLS
-
92 Zuin, J., et al. A cohesin-independent role for NIPBL at promoters provides insights in CdLS. PLoS Genet., 10, 2014, e1004153.
-
(2014)
PLoS Genet.
, vol.10
, pp. e1004153
-
-
Zuin, J.1
-
93
-
-
84887615981
-
Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome
-
93 Mannini, L., et al. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum. Mutat. 34 (2013), 1589–1596.
-
(2013)
Hum. Mutat.
, vol.34
, pp. 1589-1596
-
-
Mannini, L.1
-
94
-
-
84938547194
-
Structural studies reveal the functional modularity of the Scc2-Scc4 cohesin loader
-
94 Chao, W.C., et al. Structural studies reveal the functional modularity of the Scc2-Scc4 cohesin loader. Cell Rep. 12 (2015), 719–725.
-
(2015)
Cell Rep.
, vol.12
, pp. 719-725
-
-
Chao, W.C.1
-
95
-
-
85015083969
-
Structural evidence for Scc4-dependent localization of cohesin loading
-
95 Hinshaw, S.M., et al. Structural evidence for Scc4-dependent localization of cohesin loading. Elife, 4, 2015, e06057.
-
(2015)
Elife
, vol.4
, pp. e06057
-
-
Hinshaw, S.M.1
-
96
-
-
0030874421
-
ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation
-
96 Kimura, K., Hirano, T., ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90 (1997), 625–634.
-
(1997)
Cell
, vol.90
, pp. 625-634
-
-
Kimura, K.1
Hirano, T.2
-
97
-
-
0030830639
-
Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein
-
97 Hirano, T., et al. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89 (1997), 511–521.
-
(1997)
Cell
, vol.89
, pp. 511-521
-
-
Hirano, T.1
-
98
-
-
84938683625
-
Reconstitution of mitotic chromatids with a minimum set of purified factors
-
98 Shintomi, K., et al. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17 (2015), 1014–1023.
-
(2015)
Nat. Cell Biol.
, vol.17
, pp. 1014-1023
-
-
Shintomi, K.1
-
99
-
-
77953574613
-
Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins
-
99 Griese, J.J., et al. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res. 38 (2010), 3454–3465.
-
(2010)
Nucleic Acids Res.
, vol.38
, pp. 3454-3465
-
-
Griese, J.J.1
-
100
-
-
84921445757
-
Molecular basis for SMC rod formation and its dissolution upon DNA binding
-
100 Soh, Y.M., et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57 (2015), 290–303.
-
(2015)
Mol. Cell
, vol.57
, pp. 290-303
-
-
Soh, Y.M.1
-
101
-
-
84959210452
-
Condensin Smc2-Smc4 dimers are flexible and dynamic
-
101 Eeftens, J.M., et al. Condensin Smc2-Smc4 dimers are flexible and dynamic. Cell Rep. 14 (2016), 1813–1818.
-
(2016)
Cell Rep.
, vol.14
, pp. 1813-1818
-
-
Eeftens, J.M.1
-
102
-
-
84949220689
-
Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes
-
102 Palecek, J.J., Gruber, S., Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes. Structure 23 (2015), 2183–2190.
-
(2015)
Structure
, vol.23
, pp. 2183-2190
-
-
Palecek, J.J.1
Gruber, S.2
-
103
-
-
84929102368
-
DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links
-
103 Raschle, M., et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 348, 2015, 1253671.
-
(2015)
Science
, vol.348
, pp. 1253671
-
-
Raschle, M.1
-
104
-
-
84859498018
-
During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks
-
104 Bustard, D.E., et al. During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J. Biol. Chem. 287 (2012), 11374–11383.
-
(2012)
J. Biol. Chem.
, vol.287
, pp. 11374-11383
-
-
Bustard, D.E.1
-
105
-
-
84876699668
-
SMC6 is an essential gene in mice, but a hypomorphic mutant in the ATPase domain has a mild phenotype with a range of subtle abnormalities
-
105 Ju, L., et al. SMC6 is an essential gene in mice, but a hypomorphic mutant in the ATPase domain has a mild phenotype with a range of subtle abnormalities. DNA Repair (Amst) 12 (2013), 356–366.
-
(2013)
DNA Repair (Amst)
, vol.12
, pp. 356-366
-
-
Ju, L.1
-
106
-
-
79953803643
-
Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair
-
106 Stephan, A.K., et al. Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell Biol. 31 (2011), 1369–1381.
-
(2011)
Mol. Cell Biol.
, vol.31
, pp. 1369-1381
-
-
Stephan, A.K.1
-
107
-
-
34447536708
-
DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
-
107 Unal, E., et al. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317 (2007), 245–258.
-
(2007)
Science
, vol.317
, pp. 245-258
-
-
Unal, E.1
-
108
-
-
34447549077
-
Postreplicative formation of cohesion is required for repair and induced by a single DNA break
-
108 Strom, L., et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317 (2007), 242–245.
-
(2007)
Science
, vol.317
, pp. 242-245
-
-
Strom, L.1
-
109
-
-
84923902089
-
Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 Complex
-
109 Fumasoni, M., et al. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 Complex. Mol. Cell. 57 (2015), 812–823.
-
(2015)
Mol. Cell.
, vol.57
, pp. 812-823
-
-
Fumasoni, M.1
-
110
-
-
84938848092
-
Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis
-
110 Wang, X., et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29 (2015), 1661–1675.
-
(2015)
Genes Dev.
, vol.29
, pp. 1661-1675
-
-
Wang, X.1
-
111
-
-
84946490773
-
Genetic tailors: CTCF and cohesin shape the genome during evolution
-
111 Vietri Rudan, M., Hadjur, S., Genetic tailors: CTCF and cohesin shape the genome during evolution. Trends Genet. 31 (2015), 651–660.
-
(2015)
Trends Genet.
, vol.31
, pp. 651-660
-
-
Vietri Rudan, M.1
Hadjur, S.2
-
112
-
-
63049083915
-
How cohesin and CTCF cooperate in regulating gene expression
-
112 Wendt, K.S., Peters, J.M., How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17 (2009), 201–214.
-
(2009)
Chromosome Res.
, vol.17
, pp. 201-214
-
-
Wendt, K.S.1
Peters, J.M.2
-
113
-
-
80052042965
-
A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation
-
113 Seitan, V.C., et al. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 476 (2011), 467–471.
-
(2011)
Nature
, vol.476
, pp. 467-471
-
-
Seitan, V.C.1
-
114
-
-
77957139539
-
Mediator and cohesin connect gene expression and chromatin architecture
-
114 Kagey, M.H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467 (2010), 430–435.
-
(2010)
Nature
, vol.467
, pp. 430-435
-
-
Kagey, M.H.1
-
115
-
-
39149121436
-
Cohesin mediates transcriptional insulation by CCCTC-binding factor
-
115 Wendt, K.S., et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451 (2008), 796–801.
-
(2008)
Nature
, vol.451
, pp. 796-801
-
-
Wendt, K.S.1
-
116
-
-
84882738244
-
Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites
-
116 Yan, J., et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154 (2013), 801–813.
-
(2013)
Cell
, vol.154
, pp. 801-813
-
-
Yan, J.1
-
117
-
-
79953162010
-
Cohesin: genomic insights into controlling gene transcription and development
-
117 Dorsett, D., Cohesin: genomic insights into controlling gene transcription and development. Curr. Opin. Genet. Dev. 21 (2011), 199–206.
-
(2011)
Curr. Opin. Genet. Dev.
, vol.21
, pp. 199-206
-
-
Dorsett, D.1
-
118
-
-
84955486608
-
Gene regulation and chromatin organization: relevance of cohesin mutations to human disease
-
118 Watrin, E., et al. Gene regulation and chromatin organization: relevance of cohesin mutations to human disease. Curr. Opin. Genet. Dev. 37 (2016), 59–66.
-
(2016)
Curr. Opin. Genet. Dev.
, vol.37
, pp. 59-66
-
-
Watrin, E.1
-
119
-
-
84933278077
-
CTCF/cohesin-binding sites are frequently mutated in cancer
-
119 Katainen, R., et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47 (2015), 818–821.
-
(2015)
Nat. Genet.
, vol.47
, pp. 818-821
-
-
Katainen, R.1
-
120
-
-
84901419546
-
Cohesin in cancer: chromosome segregation and beyond
-
120 Losada, A., Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14 (2014), 389–393.
-
(2014)
Nat. Rev. Cancer
, vol.14
, pp. 389-393
-
-
Losada, A.1
|