메뉴 건너뛰기




Volumn 26, Issue 9, 2016, Pages 680-693

Structural Insights into Ring Formation of Cohesin and Related Smc Complexes

Author keywords

[No Author keywords available]

Indexed keywords

CHROMOSOME PROTEIN; COHESIN; CONDENSIN; DNA; KLEISIN; PEPTIDES AND PROTEINS; STRUCTURAL MAINTENANCE OF CHROMOSOME PROTEIN; UNCLASSIFIED DRUG; CELL CYCLE PROTEIN; MULTIPROTEIN COMPLEX; NONHISTONE PROTEIN;

EID: 84964681147     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.04.002     Document Type: Review
Times cited : (74)

References (120)
  • 1
    • 1542376771 scopus 로고    scopus 로고
    • The evolution of SMC proteins: phylogenetic analysis and structural implications
    • 1 Cobbe, N., Heck, M.M., The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol. Biol. Evol. 21 (2004), 332–347.
    • (2004) Mol. Biol. Evol. , vol.21 , pp. 332-347
    • Cobbe, N.1    Heck, M.M.2
  • 2
    • 0026638255 scopus 로고
    • ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters
    • 2 Ames, G.F., Lecar, H., ATP-dependent bacterial transporters and cystic fibrosis: analogy between channels and transporters. FASEB J. 6 (1992), 2660–2666.
    • (1992) FASEB J. , vol.6 , pp. 2660-2666
    • Ames, G.F.1    Lecar, H.2
  • 3
    • 33646018946 scopus 로고    scopus 로고
    • The evolution of ATPase activity in SMC proteins
    • 3 Cobbe, N., Heck, M.M., The evolution of ATPase activity in SMC proteins. Proteins 63 (2006), 685–696.
    • (2006) Proteins , vol.63 , pp. 685-696
    • Cobbe, N.1    Heck, M.M.2
  • 4
    • 0001607723 scopus 로고
    • Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold
    • 4 Walker, J.E., et al. Distantly related sequences in the alpha- and beta-subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J. 1 (1982), 945–951.
    • (1982) EMBO J. , vol.1 , pp. 945-951
    • Walker, J.E.1
  • 5
    • 0037351555 scopus 로고    scopus 로고
    • Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners
    • 5 Schleiffer, A., et al. Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol. Cell 11 (2003), 571–575.
    • (2003) Mol. Cell , vol.11 , pp. 571-575
    • Schleiffer, A.1
  • 6
    • 0030013594 scopus 로고    scopus 로고
    • Cut2 proteolysis required for sister-chromatid seperation in fission yeast
    • 6 Funabiki, H., et al. Cut2 proteolysis required for sister-chromatid seperation in fission yeast. Nature 381 (1996), 438–441.
    • (1996) Nature , vol.381 , pp. 438-441
    • Funabiki, H.1
  • 7
    • 0034721669 scopus 로고    scopus 로고
    • Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast
    • 7 Uhlmann, F., et al. Cleavage of cohesin by the CD clan protease separin triggers anaphase in yeast. Cell 103 (2000), 375–386.
    • (2000) Cell , vol.103 , pp. 375-386
    • Uhlmann, F.1
  • 8
    • 75949117626 scopus 로고    scopus 로고
    • Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei
    • 8 Oliveira, R.A., et al. Cohesin cleavage and Cdk inhibition trigger formation of daughter nuclei. Nat. Cell Biol. 12 (2010), 185–192.
    • (2010) Nat. Cell Biol. , vol.12 , pp. 185-192
    • Oliveira, R.A.1
  • 9
    • 78349291580 scopus 로고    scopus 로고
    • Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes
    • 9 Tachibana-Konwalski, K., et al. Rec8-containing cohesin maintains bivalents without turnover during the growing phase of mouse oocytes. Genes Dev. 24 (2010), 2505–2516.
    • (2010) Genes Dev. , vol.24 , pp. 2505-2516
    • Tachibana-Konwalski, K.1
  • 10
    • 0033614934 scopus 로고    scopus 로고
    • Cohesin Rec8 is required for reductional chromosome segregation at meiosis
    • 10 Watanabe, Y., Nurse, P., Cohesin Rec8 is required for reductional chromosome segregation at meiosis. Nature 400 (1999), 461–464.
    • (1999) Nature , vol.400 , pp. 461-464
    • Watanabe, Y.1    Nurse, P.2
  • 11
    • 0035902920 scopus 로고    scopus 로고
    • Cohesin cleavage by separase required for anaphase and cytokinesis in human cells
    • 11 Hauf, S., et al. Cohesin cleavage by separase required for anaphase and cytokinesis in human cells. Science 293 (2001), 1320–1323.
    • (2001) Science , vol.293 , pp. 1320-1323
    • Hauf, S.1
  • 12
    • 63049115935 scopus 로고    scopus 로고
    • Condensin: architect of mitotic chromosomes
    • 12 Hudson, D.F., et al. Condensin: architect of mitotic chromosomes. Chromosome Res. 17 (2009), 131–144.
    • (2009) Chromosome Res. , vol.17 , pp. 131-144
    • Hudson, D.F.1
  • 13
    • 84864752050 scopus 로고    scopus 로고
    • Condensins: universal organizers of chromosomes with diverse functions
    • 13 Hirano, T., Condensins: universal organizers of chromosomes with diverse functions. Genes Dev. 26 (2012), 1659–1678.
    • (2012) Genes Dev. , vol.26 , pp. 1659-1678
    • Hirano, T.1
  • 14
    • 84931955768 scopus 로고    scopus 로고
    • Shaping mitotic chromosomes: from classical concepts to molecular mechanisms
    • 14 Kschonsak, M., Haering, C.H., Shaping mitotic chromosomes: from classical concepts to molecular mechanisms. Bioessays 37 (2015), 755–766.
    • (2015) Bioessays , vol.37 , pp. 755-766
    • Kschonsak, M.1    Haering, C.H.2
  • 15
    • 84930168665 scopus 로고    scopus 로고
    • Condensin confers the longitudinal rigidity of chromosomes
    • 15 Houlard, M., et al. Condensin confers the longitudinal rigidity of chromosomes. Nat. Cell Biol. 17 (2015), 771–781.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 771-781
    • Houlard, M.1
  • 16
    • 77952240927 scopus 로고    scopus 로고
    • Targeting X chromosomes for repression
    • 16 Meyer, B.J., Targeting X chromosomes for repression. Curr. Opin. Genet. Dev. 20 (2010), 179–189.
    • (2010) Curr. Opin. Genet. Dev. , vol.20 , pp. 179-189
    • Meyer, B.J.1
  • 17
    • 84897628668 scopus 로고    scopus 로고
    • Regulation of the X chromosomes in Caenorhabditis elegans
    • 17 Strome, S., et al. Regulation of the X chromosomes in Caenorhabditis elegans. Cold Spring Harb. Perspect. Biol., 6, 2014, a018366.
    • (2014) Cold Spring Harb. Perspect. Biol. , vol.6 , pp. a018366
    • Strome, S.1
  • 18
    • 63049134689 scopus 로고    scopus 로고
    • The unnamed complex: what do we know about Smc5-Smc6?
    • 18 De Piccoli, G., et al. The unnamed complex: what do we know about Smc5-Smc6?. Chromosome Res. 17 (2009), 251–263.
    • (2009) Chromosome Res. , vol.17 , pp. 251-263
    • De Piccoli, G.1
  • 19
    • 84906704724 scopus 로고    scopus 로고
    • The maintenance of chromosome structure: positioning and functioning of SMC complexes
    • 19 Jeppsson, K., et al. The maintenance of chromosome structure: positioning and functioning of SMC complexes. Nat. Rev. Mol. Cell Biol. 15 (2014), 601–614.
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 601-614
    • Jeppsson, K.1
  • 20
    • 16344370926 scopus 로고    scopus 로고
    • A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization
    • 20 Zhao, X., Blobel, G., A SUMO ligase is part of a nuclear multiprotein complex that affects DNA repair and chromosomal organization. Proc. Natl. Acad. Sci. U.S.A. 102 (2005), 4777–4782.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 4777-4782
    • Zhao, X.1    Blobel, G.2
  • 21
    • 77956936946 scopus 로고    scopus 로고
    • MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases
    • 21 Doyle, J.M., et al. MAGE-RING protein complexes comprise a family of E3 ubiquitin ligases. Mol. Cell. 39 (2010), 963–974.
    • (2010) Mol. Cell. , vol.39 , pp. 963-974
    • Doyle, J.M.1
  • 22
    • 84866158917 scopus 로고    scopus 로고
    • A SUMO-dependent step during establishment of sister chromatid cohesion
    • 22 Almedawar, S., et al. A SUMO-dependent step during establishment of sister chromatid cohesion. Curr. Biol. 22 (2012), 1576–1581.
    • (2012) Curr. Biol. , vol.22 , pp. 1576-1581
    • Almedawar, S.1
  • 23
    • 84866148011 scopus 로고    scopus 로고
    • SUMOylation of the alpha-kleisin subunit of cohesin is required for DNA damage-induced cohesion
    • 23 McAleenan, A., et al. SUMOylation of the alpha-kleisin subunit of cohesin is required for DNA damage-induced cohesion. Curr. Biol. 22 (2012), 1564–1575.
    • (2012) Curr. Biol. , vol.22 , pp. 1564-1575
    • McAleenan, A.1
  • 24
    • 12344261562 scopus 로고    scopus 로고
    • The role of SMC proteins in the responses to DNA damage
    • 24 Lehmann, A.R., The role of SMC proteins in the responses to DNA damage. DNA Repair (Amst) 4 (2005), 309–314.
    • (2005) DNA Repair (Amst) , vol.4 , pp. 309-314
    • Lehmann, A.R.1
  • 25
    • 84892556063 scopus 로고    scopus 로고
    • Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells
    • 25 Gallego-Paez, L.M., et al. Smc5/6-mediated regulation of replication progression contributes to chromosome assembly during mitosis in human cells. Mol. Biol. Cell 25 (2014), 302–317.
    • (2014) Mol. Biol. Cell , vol.25 , pp. 302-317
    • Gallego-Paez, L.M.1
  • 26
    • 79952314830 scopus 로고    scopus 로고
    • Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair
    • 26 Chiolo, I., et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144 (2011), 732–744.
    • (2011) Cell , vol.144 , pp. 732-744
    • Chiolo, I.1
  • 27
    • 78049353613 scopus 로고    scopus 로고
    • The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages
    • 27 Bermudez-Lopez, M., et al. The Smc5/6 complex is required for dissolution of DNA-mediated sister chromatid linkages. Nucleic Acids Res. 38 (2010), 6502–6512.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 6502-6512
    • Bermudez-Lopez, M.1
  • 28
    • 84899902780 scopus 로고    scopus 로고
    • The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes
    • 28 Nolivos, S., Sherratt, D., The bacterial chromosome: architecture and action of bacterial SMC and SMC-like complexes. FEMS Microbiol Rev. 38 (2014), 380–392.
    • (2014) FEMS Microbiol Rev. , vol.38 , pp. 380-392
    • Nolivos, S.1    Sherratt, D.2
  • 29
    • 0018958519 scopus 로고
    • Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers
    • 29 Sundin, O., Varshavsky, A., Terminal stages of SV40 DNA replication proceed via multiply intertwined catenated dimers. Cell 21 (1980), 103–114.
    • (1980) Cell , vol.21 , pp. 103-114
    • Sundin, O.1    Varshavsky, A.2
  • 30
    • 0036242551 scopus 로고    scopus 로고
    • Molecular architecture of SMC proteins and the yeast cohesin complex
    • 30 Haering, C.H., et al. Molecular architecture of SMC proteins and the yeast cohesin complex. Mol. Cell 9 (2002), 773–788.
    • (2002) Mol. Cell , vol.9 , pp. 773-788
    • Haering, C.H.1
  • 31
    • 0042132009 scopus 로고    scopus 로고
    • A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure
    • 31 Volkov, A., et al. A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol. Cell Biol. 23 (2003), 5638–5650.
    • (2003) Mol. Cell Biol. , vol.23 , pp. 5638-5650
    • Volkov, A.1
  • 32
    • 0036804708 scopus 로고    scopus 로고
    • Chromosome cohesion: ring around the sisters?
    • 32 Campbell, J.L., Cohen-Fix, O., Chromosome cohesion: ring around the sisters?. Trends Biochem. Sci. 27 (2002), 492–495.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 492-495
    • Campbell, J.L.1    Cohen-Fix, O.2
  • 33
    • 4644244326 scopus 로고    scopus 로고
    • Structure and stability of cohesin's Smc1-kleisin interaction
    • 33 Haering, C.H., et al. Structure and stability of cohesin's Smc1-kleisin interaction. Mol. Cell 15 (2004), 951–964.
    • (2004) Mol. Cell , vol.15 , pp. 951-964
    • Haering, C.H.1
  • 34
    • 0035830484 scopus 로고    scopus 로고
    • Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted
    • 34 Löwe, J., et al. Crystal structure of the SMC head domain: an ABC ATPase with 900 residues antiparallel coiled-coil inserted. J. Mol. Biol. 306 (2001), 25–35.
    • (2001) J. Mol. Biol. , vol.306 , pp. 25-35
    • Löwe, J.1
  • 35
    • 0034705293 scopus 로고    scopus 로고
    • Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily
    • 35 Hopfner, K.P., et al. Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101 (2000), 789–800.
    • (2000) Cell , vol.101 , pp. 789-800
    • Hopfner, K.P.1
  • 36
    • 78751608933 scopus 로고    scopus 로고
    • A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion
    • 36 Kurze, A., et al. A positively charged channel within the Smc1/Smc3 hinge required for sister chromatid cohesion. EMBO J. 30 (2011), 364–378.
    • (2011) EMBO J. , vol.30 , pp. 364-378
    • Kurze, A.1
  • 37
    • 33750021276 scopus 로고    scopus 로고
    • Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge
    • 37 Gruber, S., et al. Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127 (2006), 523–537.
    • (2006) Cell , vol.127 , pp. 523-537
    • Gruber, S.1
  • 38
    • 84907295977 scopus 로고    scopus 로고
    • Closing the cohesin ring: structure and function of its Smc3-kleisin interface
    • 38 Gligoris, T.G., et al. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346 (2014), 963–967.
    • (2014) Science , vol.346 , pp. 963-967
    • Gligoris, T.G.1
  • 39
    • 84911413825 scopus 로고    scopus 로고
    • Characterization of a DNA exit gate in the human cohesin ring
    • 39 Huis in ‘t Veld, P.J., et al. Characterization of a DNA exit gate in the human cohesin ring. Science 346 (2014), 968–9672.
    • (2014) Science , vol.346 , pp. 968-9672
    • Huis in ‘t Veld, P.J.1
  • 40
    • 79953283489 scopus 로고    scopus 로고
    • The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair
    • 40 Lammens, K., et al. The Mre11:Rad50 structure shows an ATP-dependent molecular clamp in DNA double-strand break repair. Cell 145 (2011), 54–66.
    • (2011) Cell , vol.145 , pp. 54-66
    • Lammens, K.1
  • 41
    • 79956301873 scopus 로고    scopus 로고
    • Crystal structure of the Mre11-Rad50-ATP gamma S complex: understanding the interplay between Mre11 and Rad50
    • 41 Lim, H.S., et al. Crystal structure of the Mre11-Rad50-ATP gamma S complex: understanding the interplay between Mre11 and Rad50. Genes Dev. 25 (2011), 1091–1104.
    • (2011) Genes Dev. , vol.25 , pp. 1091-1104
    • Lim, H.S.1
  • 42
    • 79953803622 scopus 로고    scopus 로고
    • ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair
    • 42 Williams, G.J., et al. ABC ATPase signature helices in Rad50 link nucleotide state to Mre11 interface for DNA repair. Nat. Struct. Mol. Biol. 18 (2011), 423–431.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 423-431
    • Williams, G.J.1
  • 43
    • 84875165205 scopus 로고    scopus 로고
    • An asymmetric SMC-kleisin bridge in prokaryotic condensin
    • 43 Burmann, F., et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 20 (2013), 371–379.
    • (2013) Nat. Struct. Mol. Biol. , vol.20 , pp. 371-379
    • Burmann, F.1
  • 44
    • 0037224424 scopus 로고    scopus 로고
    • Conserved disruptions in the predicted coiled-coil domains of eukaryotic SMC complexes: implications for structure and function
    • 44 Beasley, M., et al. Conserved disruptions in the predicted coiled-coil domains of eukaryotic SMC complexes: implications for structure and function. Genome Res. 12 (2002), 1201–1209.
    • (2002) Genome Res. , vol.12 , pp. 1201-1209
    • Beasley, M.1
  • 45
    • 70450225043 scopus 로고    scopus 로고
    • The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB
    • 45 Li, Y., et al. The crystal structure of the hinge domain of the Escherichia coli structural maintenance of chromosomes protein MukB. J. Mol. Biol. 395 (2010), 11–19.
    • (2010) J. Mol. Biol. , vol.395 , pp. 11-19
    • Li, Y.1
  • 46
    • 0037017393 scopus 로고    scopus 로고
    • Condensin and cohesin display different arm conformations with characteristic hinge angles
    • 46 Anderson, D.E., et al. Condensin and cohesin display different arm conformations with characteristic hinge angles. J. Cell Biol. 156 (2002), 419–424.
    • (2002) J. Cell Biol. , vol.156 , pp. 419-424
    • Anderson, D.E.1
  • 47
    • 84892617115 scopus 로고    scopus 로고
    • Biochemical reconstitution of topological DNA binding by the cohesin ring
    • 47 Murayama, Y., Uhlmann, F., Biochemical reconstitution of topological DNA binding by the cohesin ring. Nature 505 (2014), 367–371.
    • (2014) Nature , vol.505 , pp. 367-371
    • Murayama, Y.1    Uhlmann, F.2
  • 48
    • 84950266410 scopus 로고    scopus 로고
    • DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism
    • 48 Murayama, Y., Uhlmann, F., DNA entry into and exit out of the cohesin ring by an interlocking gate mechanism. Cell 163 (2015), 1628–1640.
    • (2015) Cell , vol.163 , pp. 1628-1640
    • Murayama, Y.1    Uhlmann, F.2
  • 49
    • 0037133040 scopus 로고    scopus 로고
    • Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion
    • 49 Ivanov, D., et al. Eco1 is a novel acetyltransferase that can acetylate proteins involved in cohesion. Curr. Biol. 12 (2002), 323–328.
    • (2002) Curr. Biol. , vol.12 , pp. 323-328
    • Ivanov, D.1
  • 50
    • 48249132443 scopus 로고    scopus 로고
    • Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion
    • 50 Rolef Ben-Shahar, T., et al. Eco1-dependent cohesin acetylation during establishment of sister chromatid cohesion. Science 321 (2008), 563–566.
    • (2008) Science , vol.321 , pp. 563-566
    • Rolef Ben-Shahar, T.1
  • 51
    • 48249142388 scopus 로고    scopus 로고
    • A molecular determinant for the establishment of sister chromatid cohesion
    • 51 Unal, E., et al. A molecular determinant for the establishment of sister chromatid cohesion. Science 321 (2008), 566–569.
    • (2008) Science , vol.321 , pp. 566-569
    • Unal, E.1
  • 52
    • 58249088468 scopus 로고    scopus 로고
    • A handcuff model for the cohesin complex
    • 52 Zhang, N., et al. A handcuff model for the cohesin complex. J. Cell. Biol. 183 (2008), 1019–1031.
    • (2008) J. Cell. Biol. , vol.183 , pp. 1019-1031
    • Zhang, N.1
  • 53
    • 59449098465 scopus 로고    scopus 로고
    • Handcuff for sisters: a new model for sister chromatid cohesion
    • 53 Zhang, N., Pati, D., Handcuff for sisters: a new model for sister chromatid cohesion. Cell Cycle 8 (2009), 399–402.
    • (2009) Cell Cycle , vol.8 , pp. 399-402
    • Zhang, N.1    Pati, D.2
  • 54
    • 34447309306 scopus 로고    scopus 로고
    • A physical assay for sister chromatid cohesion in vitro
    • 54 Ivanov, D., Nasmyth, K., A physical assay for sister chromatid cohesion in vitro. Mol. Cell 27 (2007), 300–310.
    • (2007) Mol. Cell , vol.27 , pp. 300-310
    • Ivanov, D.1    Nasmyth, K.2
  • 55
    • 84930616986 scopus 로고    scopus 로고
    • SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis
    • 55 Wilhelm, L., et al. SMC condensin entraps chromosomal DNA by an ATP hydrolysis dependent loading mechanism in Bacillus subtilis. Elife, 4, 2015, 06659.
    • (2015) Elife , vol.4 , pp. 06659
    • Wilhelm, L.1
  • 56
    • 79961029402 scopus 로고    scopus 로고
    • Condensin structures chromosomal DNA through topological links
    • 56 Cuylen, S., et al. Condensin structures chromosomal DNA through topological links. Nat. Struct. Mol. Biol. 18 (2011), 894–901.
    • (2011) Nat. Struct. Mol. Biol. , vol.18 , pp. 894-901
    • Cuylen, S.1
  • 57
    • 0033859660 scopus 로고    scopus 로고
    • Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins
    • 57 Ciosk, R., et al. Cohesin's binding to chromosomes depends on a separate complex consisting of Scc2 and Scc4 proteins. Mol. Cell. 5 (2000), 243–254.
    • (2000) Mol. Cell. , vol.5 , pp. 243-254
    • Ciosk, R.1
  • 58
    • 79151480827 scopus 로고    scopus 로고
    • ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex
    • 58 Hu, B., et al. ATP hydrolysis is required for relocating cohesin from sites occupied by its Scc2/4 loading complex. Curr. Biol. 21 (2011), 12–24.
    • (2011) Curr. Biol. , vol.21 , pp. 12-24
    • Hu, B.1
  • 59
    • 0034645067 scopus 로고    scopus 로고
    • Characterization of vertebrate cohesin complexes and their regulation in prophase
    • 59 Sumara, I., et al. Characterization of vertebrate cohesin complexes and their regulation in prophase. J. Cell Biol. 151 (2000), 749–761.
    • (2000) J. Cell Biol. , vol.151 , pp. 749-761
    • Sumara, I.1
  • 60
    • 84907288860 scopus 로고    scopus 로고
    • Structure and function of cohesin's Scc3/SA regulatory subunit
    • 60 Roig, M.B., et al. Structure and function of cohesin's Scc3/SA regulatory subunit. FEBS Lett. 588 (2014), 3692–3702.
    • (2014) FEBS Lett. , vol.588 , pp. 3692-3702
    • Roig, M.B.1
  • 61
    • 0034649480 scopus 로고    scopus 로고
    • Pds5 cooperates with cohesin in maintaining sister chromatid cohesion
    • 61 Panizza, S., et al. Pds5 cooperates with cohesin in maintaining sister chromatid cohesion. Curr. Biol. 10 (2000), 1557–1564.
    • (2000) Curr. Biol. , vol.10 , pp. 1557-1564
    • Panizza, S.1
  • 62
    • 84887819535 scopus 로고    scopus 로고
    • Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres
    • 62 Carretero, M., et al. Pds5B is required for cohesion establishment and Aurora B accumulation at centromeres. EMBO J. 32 (2013), 2938–2949.
    • (2013) EMBO J. , vol.32 , pp. 2938-2949
    • Carretero, M.1
  • 63
    • 84881415768 scopus 로고    scopus 로고
    • Pds5 promotes and protects cohesin acetylation
    • 63 Chan, K.L., et al. Pds5 promotes and protects cohesin acetylation. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 13020–13025.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 13020-13025
    • Chan, K.L.1
  • 64
    • 84863323911 scopus 로고    scopus 로고
    • Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction
    • 64 Vaur, S., et al. Pds5 promotes cohesin acetylation and stable cohesin-chromosome interaction. EMBO Rep. 13 (2012), 645–652.
    • (2012) EMBO Rep. , vol.13 , pp. 645-652
    • Vaur, S.1
  • 65
    • 0034735519 scopus 로고    scopus 로고
    • Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae
    • 65 Hartman, T., et al. Pds5p is an essential chromosomal protein required for both sister chromatid cohesion and condensation in Saccharomyces cerevisiae. J. Cell Biol. 151 (2000), 613–626.
    • (2000) J. Cell Biol. , vol.151 , pp. 613-626
    • Hartman, T.1
  • 66
    • 0034721656 scopus 로고    scopus 로고
    • Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase
    • 66 Waizenegger, I.C., et al. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell 103 (2000), 399–410.
    • (2000) Cell , vol.103 , pp. 399-410
    • Waizenegger, I.C.1
  • 67
    • 33751237384 scopus 로고    scopus 로고
    • Wapl controls the dynamic association of cohesin with chromatin
    • 67 Kueng, S., et al. Wapl controls the dynamic association of cohesin with chromatin. Cell 127 (2006), 955–967.
    • (2006) Cell , vol.127 , pp. 955-967
    • Kueng, S.1
  • 68
    • 62549149415 scopus 로고    scopus 로고
    • Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity
    • 68 Rowland, B.D., et al. Building sister chromatid cohesion: smc3 acetylation counteracts an antiestablishment activity. Mol. Cell. 33 (2009), 763–774.
    • (2009) Mol. Cell. , vol.33 , pp. 763-774
    • Rowland, B.D.1
  • 69
    • 84879899799 scopus 로고    scopus 로고
    • Structure of the human cohesin inhibitor Wapl
    • 69 Ouyang, Z., et al. Structure of the human cohesin inhibitor Wapl. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 11355–11360.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 11355-11360
    • Ouyang, Z.1
  • 70
    • 33845447400 scopus 로고    scopus 로고
    • Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase
    • 70 Gandhi, R., et al. Human Wapl is a cohesin-binding protein that promotes sister-chromatid resolution in mitotic prophase. Curr. Biol. 16 (2006), 2406–2417.
    • (2006) Curr. Biol. , vol.16 , pp. 2406-2417
    • Gandhi, R.1
  • 71
    • 84875213862 scopus 로고    scopus 로고
    • Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate
    • 71 Buheitel, J., Stemmann, O., Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32 (2013), 666–676.
    • (2013) EMBO J. , vol.32 , pp. 666-676
    • Buheitel, J.1    Stemmann, O.2
  • 72
    • 80053495083 scopus 로고    scopus 로고
    • Cohesin: a catenase with separate entry and exit gates?
    • 72 Nasmyth, K., Cohesin: a catenase with separate entry and exit gates?. Nat. Cell Biol. 13 (2011), 1170–1177.
    • (2011) Nat. Cell Biol. , vol.13 , pp. 1170-1177
    • Nasmyth, K.1
  • 73
    • 84865689123 scopus 로고    scopus 로고
    • Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation
    • 73 Chan, K.L., et al. Cohesin's DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150 (2012), 961–974.
    • (2012) Cell , vol.150 , pp. 961-974
    • Chan, K.L.1
  • 74
    • 33746486793 scopus 로고    scopus 로고
    • Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication
    • 74 Gerlich, D., et al. Live-cell imaging reveals a stable cohesin-chromatin interaction after but not before DNA replication. Curr. Biol. 16 (2006), 1571–1578.
    • (2006) Curr. Biol. , vol.16 , pp. 1571-1578
    • Gerlich, D.1
  • 75
    • 84872099346 scopus 로고    scopus 로고
    • Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation
    • 75 Lopez-Serra, L., et al. Budding yeast Wapl controls sister chromatid cohesion maintenance and chromosome condensation. Curr. Biol. 23 (2013), 64–69.
    • (2013) Curr. Biol. , vol.23 , pp. 64-69
    • Lopez-Serra, L.1
  • 76
    • 84885592677 scopus 로고    scopus 로고
    • Wapl is an essential regulator of chromatin structure and chromosome segregation
    • 76 Tedeschi, A., et al. Wapl is an essential regulator of chromatin structure and chromosome segregation. Nature 501 (2013), 564–568.
    • (2013) Nature , vol.501 , pp. 564-568
    • Tedeschi, A.1
  • 77
    • 84875230797 scopus 로고    scopus 로고
    • Structural insights into the regulation of cohesion establishment by Wpl1
    • 77 Chatterjee, A., et al. Structural insights into the regulation of cohesion establishment by Wpl1. EMBO J. 32 (2013), 677–687.
    • (2013) EMBO J. , vol.32 , pp. 677-687
    • Chatterjee, A.1
  • 78
    • 0000818409 scopus 로고    scopus 로고
    • Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation
    • 78 Tanaka, T., et al. Cohesin ensures bipolar attachment of microtubules to sister centromeres and resists their precocious separation. Nat. Cell Biol. 2 (2000), 492–499.
    • (2000) Nat. Cell Biol. , vol.2 , pp. 492-499
    • Tanaka, T.1
  • 79
    • 14444267778 scopus 로고    scopus 로고
    • How cells get the right chromosomes
    • 79 Nicklas, R.B., How cells get the right chromosomes. Science 275 (1997), 632–637.
    • (1997) Science , vol.275 , pp. 632-637
    • Nicklas, R.B.1
  • 80
    • 18044393595 scopus 로고    scopus 로고
    • Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2
    • 80 Hauf, S., et al. Dissociation of cohesin from chromosome arms and loss of arm cohesion during early mitosis depends on phosphorylation of SA2. PLoS Biol., 3, 2005, e69.
    • (2005) PLoS Biol. , vol.3 , pp. e69
    • Hauf, S.1
  • 81
    • 18044394368 scopus 로고    scopus 로고
    • Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells
    • 81 McGuinness, B.E., et al. Shugoshin prevents dissociation of cohesin from centromeres during mitosis in vertebrate cells. PLoS Biol., 3, 2005, e86.
    • (2005) PLoS Biol. , vol.3 , pp. e86
    • McGuinness, B.E.1
  • 82
    • 33646795889 scopus 로고    scopus 로고
    • Shugoshin collaborates with protein phosphatase 2A to protect cohesin
    • 82 Kitajima, T.S., et al. Shugoshin collaborates with protein phosphatase 2A to protect cohesin. Nature 441 (2006), 46–52.
    • (2006) Nature , vol.441 , pp. 46-52
    • Kitajima, T.S.1
  • 83
    • 33646819227 scopus 로고    scopus 로고
    • Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I
    • 83 Riedel, C.G., et al. Protein phosphatase 2A protects centromeric sister chromatid cohesion during meiosis I. Nature 441 (2006), 53–61.
    • (2006) Nature , vol.441 , pp. 53-61
    • Riedel, C.G.1
  • 84
    • 84871712829 scopus 로고    scopus 로고
    • Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis
    • 84 Liu, H., et al. Phosphorylation-enabled binding of SGO1-PP2A to cohesin protects sororin and centromeric cohesion during mitosis. Nat. Cell Biol. 15 (2013), 40–49.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 40-49
    • Liu, H.1
  • 85
    • 84922327650 scopus 로고    scopus 로고
    • Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion
    • 85 Hara, K., et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21 (2014), 864–870.
    • (2014) Nat. Struct. Mol. Biol. , vol.21 , pp. 864-870
    • Hara, K.1
  • 86
    • 70349149020 scopus 로고    scopus 로고
    • Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1
    • 86 Shintomi, K., Hirano, T., Releasing cohesin from chromosome arms in early mitosis: opposing actions of Wapl-Pds5 and Sgo1. Genes Dev. 23 (2009), 2224–2236.
    • (2009) Genes Dev. , vol.23 , pp. 2224-2236
    • Shintomi, K.1    Hirano, T.2
  • 87
    • 84960455755 scopus 로고    scopus 로고
    • Crystal structure of the cohesin gatekeeper Pds5 and in complex with Kleisin Scc1
    • 87 Lee, B.G., et al. Crystal structure of the cohesin gatekeeper Pds5 and in complex with Kleisin Scc1. Cell Rep. 14 (2016), 2108–2115.
    • (2016) Cell Rep. , vol.14 , pp. 2108-2115
    • Lee, B.G.1
  • 88
    • 84960365049 scopus 로고    scopus 로고
    • Structure of the Pds5-Scc1 complex and implications for cohesin function
    • 88 Muir, K.W., et al. Structure of the Pds5-Scc1 complex and implications for cohesin function. Cell Rep. 14 (2016), 2116–2126.
    • (2016) Cell Rep. , vol.14 , pp. 2116-2126
    • Muir, K.W.1
  • 89
    • 84876129123 scopus 로고    scopus 로고
    • Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment
    • 89 Fernius, J., et al. Cohesin-dependent association of scc2/4 with the centromere initiates pericentromeric cohesion establishment. Curr. Biol. 23 (2013), 599–606.
    • (2013) Curr. Biol. , vol.23 , pp. 599-606
    • Fernius, J.1
  • 90
    • 84949310226 scopus 로고    scopus 로고
    • Drosophila nipped-B mutants model Cornelia de Lange syndrome in growth and behavior
    • 90 Wu, Y., et al. Drosophila nipped-B mutants model Cornelia de Lange syndrome in growth and behavior. PLoS Genet., 11, 2015, e1005655.
    • (2015) PLoS Genet. , vol.11 , pp. e1005655
    • Wu, Y.1
  • 91
    • 80053985777 scopus 로고    scopus 로고
    • Cohesin selectively binds and regulates genes with paused RNA polymerase
    • 91 Fay, A., et al. Cohesin selectively binds and regulates genes with paused RNA polymerase. Curr. Biol. 21 (2011), 1624–1634.
    • (2011) Curr. Biol. , vol.21 , pp. 1624-1634
    • Fay, A.1
  • 92
    • 84901735084 scopus 로고    scopus 로고
    • A cohesin-independent role for NIPBL at promoters provides insights in CdLS
    • 92 Zuin, J., et al. A cohesin-independent role for NIPBL at promoters provides insights in CdLS. PLoS Genet., 10, 2014, e1004153.
    • (2014) PLoS Genet. , vol.10 , pp. e1004153
    • Zuin, J.1
  • 93
    • 84887615981 scopus 로고    scopus 로고
    • Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome
    • 93 Mannini, L., et al. Mutation spectrum and genotype-phenotype correlation in Cornelia de Lange syndrome. Hum. Mutat. 34 (2013), 1589–1596.
    • (2013) Hum. Mutat. , vol.34 , pp. 1589-1596
    • Mannini, L.1
  • 94
    • 84938547194 scopus 로고    scopus 로고
    • Structural studies reveal the functional modularity of the Scc2-Scc4 cohesin loader
    • 94 Chao, W.C., et al. Structural studies reveal the functional modularity of the Scc2-Scc4 cohesin loader. Cell Rep. 12 (2015), 719–725.
    • (2015) Cell Rep. , vol.12 , pp. 719-725
    • Chao, W.C.1
  • 95
    • 85015083969 scopus 로고    scopus 로고
    • Structural evidence for Scc4-dependent localization of cohesin loading
    • 95 Hinshaw, S.M., et al. Structural evidence for Scc4-dependent localization of cohesin loading. Elife, 4, 2015, e06057.
    • (2015) Elife , vol.4 , pp. e06057
    • Hinshaw, S.M.1
  • 96
    • 0030874421 scopus 로고    scopus 로고
    • ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation
    • 96 Kimura, K., Hirano, T., ATP-dependent positive supercoiling of DNA by 13S condensin: a biochemical implication for chromosome condensation. Cell 90 (1997), 625–634.
    • (1997) Cell , vol.90 , pp. 625-634
    • Kimura, K.1    Hirano, T.2
  • 97
    • 0030830639 scopus 로고    scopus 로고
    • Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein
    • 97 Hirano, T., et al. Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89 (1997), 511–521.
    • (1997) Cell , vol.89 , pp. 511-521
    • Hirano, T.1
  • 98
    • 84938683625 scopus 로고    scopus 로고
    • Reconstitution of mitotic chromatids with a minimum set of purified factors
    • 98 Shintomi, K., et al. Reconstitution of mitotic chromatids with a minimum set of purified factors. Nat. Cell Biol. 17 (2015), 1014–1023.
    • (2015) Nat. Cell Biol. , vol.17 , pp. 1014-1023
    • Shintomi, K.1
  • 99
    • 77953574613 scopus 로고    scopus 로고
    • Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins
    • 99 Griese, J.J., et al. Structure and DNA binding activity of the mouse condensin hinge domain highlight common and diverse features of SMC proteins. Nucleic Acids Res. 38 (2010), 3454–3465.
    • (2010) Nucleic Acids Res. , vol.38 , pp. 3454-3465
    • Griese, J.J.1
  • 100
    • 84921445757 scopus 로고    scopus 로고
    • Molecular basis for SMC rod formation and its dissolution upon DNA binding
    • 100 Soh, Y.M., et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57 (2015), 290–303.
    • (2015) Mol. Cell , vol.57 , pp. 290-303
    • Soh, Y.M.1
  • 101
    • 84959210452 scopus 로고    scopus 로고
    • Condensin Smc2-Smc4 dimers are flexible and dynamic
    • 101 Eeftens, J.M., et al. Condensin Smc2-Smc4 dimers are flexible and dynamic. Cell Rep. 14 (2016), 1813–1818.
    • (2016) Cell Rep. , vol.14 , pp. 1813-1818
    • Eeftens, J.M.1
  • 102
    • 84949220689 scopus 로고    scopus 로고
    • Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes
    • 102 Palecek, J.J., Gruber, S., Kite proteins: a superfamily of SMC/Kleisin partners conserved across Bacteria, Archaea, and Eukaryotes. Structure 23 (2015), 2183–2190.
    • (2015) Structure , vol.23 , pp. 2183-2190
    • Palecek, J.J.1    Gruber, S.2
  • 103
    • 84929102368 scopus 로고    scopus 로고
    • DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links
    • 103 Raschle, M., et al. DNA repair. Proteomics reveals dynamic assembly of repair complexes during bypass of DNA cross-links. Science, 348, 2015, 1253671.
    • (2015) Science , vol.348 , pp. 1253671
    • Raschle, M.1
  • 104
    • 84859498018 scopus 로고    scopus 로고
    • During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks
    • 104 Bustard, D.E., et al. During replication stress, non-SMC element 5 (NSE5) is required for Smc5/6 protein complex functionality at stalled forks. J. Biol. Chem. 287 (2012), 11374–11383.
    • (2012) J. Biol. Chem. , vol.287 , pp. 11374-11383
    • Bustard, D.E.1
  • 105
    • 84876699668 scopus 로고    scopus 로고
    • SMC6 is an essential gene in mice, but a hypomorphic mutant in the ATPase domain has a mild phenotype with a range of subtle abnormalities
    • 105 Ju, L., et al. SMC6 is an essential gene in mice, but a hypomorphic mutant in the ATPase domain has a mild phenotype with a range of subtle abnormalities. DNA Repair (Amst) 12 (2013), 356–366.
    • (2013) DNA Repair (Amst) , vol.12 , pp. 356-366
    • Ju, L.1
  • 106
    • 79953803643 scopus 로고    scopus 로고
    • Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair
    • 106 Stephan, A.K., et al. Roles of vertebrate Smc5 in sister chromatid cohesion and homologous recombinational repair. Mol. Cell Biol. 31 (2011), 1369–1381.
    • (2011) Mol. Cell Biol. , vol.31 , pp. 1369-1381
    • Stephan, A.K.1
  • 107
    • 34447536708 scopus 로고    scopus 로고
    • DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7)
    • 107 Unal, E., et al. DNA double-strand breaks trigger genome-wide sister-chromatid cohesion through Eco1 (Ctf7). Science 317 (2007), 245–258.
    • (2007) Science , vol.317 , pp. 245-258
    • Unal, E.1
  • 108
    • 34447549077 scopus 로고    scopus 로고
    • Postreplicative formation of cohesion is required for repair and induced by a single DNA break
    • 108 Strom, L., et al. Postreplicative formation of cohesion is required for repair and induced by a single DNA break. Science 317 (2007), 242–245.
    • (2007) Science , vol.317 , pp. 242-245
    • Strom, L.1
  • 109
    • 84923902089 scopus 로고    scopus 로고
    • Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 Complex
    • 109 Fumasoni, M., et al. Error-free DNA damage tolerance and sister chromatid proximity during DNA replication rely on the Polalpha/Primase/Ctf4 Complex. Mol. Cell. 57 (2015), 812–823.
    • (2015) Mol. Cell. , vol.57 , pp. 812-823
    • Fumasoni, M.1
  • 110
    • 84938848092 scopus 로고    scopus 로고
    • Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis
    • 110 Wang, X., et al. Condensin promotes the juxtaposition of DNA flanking its loading site in Bacillus subtilis. Genes Dev. 29 (2015), 1661–1675.
    • (2015) Genes Dev. , vol.29 , pp. 1661-1675
    • Wang, X.1
  • 111
    • 84946490773 scopus 로고    scopus 로고
    • Genetic tailors: CTCF and cohesin shape the genome during evolution
    • 111 Vietri Rudan, M., Hadjur, S., Genetic tailors: CTCF and cohesin shape the genome during evolution. Trends Genet. 31 (2015), 651–660.
    • (2015) Trends Genet. , vol.31 , pp. 651-660
    • Vietri Rudan, M.1    Hadjur, S.2
  • 112
    • 63049083915 scopus 로고    scopus 로고
    • How cohesin and CTCF cooperate in regulating gene expression
    • 112 Wendt, K.S., Peters, J.M., How cohesin and CTCF cooperate in regulating gene expression. Chromosome Res. 17 (2009), 201–214.
    • (2009) Chromosome Res. , vol.17 , pp. 201-214
    • Wendt, K.S.1    Peters, J.M.2
  • 113
    • 80052042965 scopus 로고    scopus 로고
    • A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation
    • 113 Seitan, V.C., et al. A role for cohesin in T-cell-receptor rearrangement and thymocyte differentiation. Nature 476 (2011), 467–471.
    • (2011) Nature , vol.476 , pp. 467-471
    • Seitan, V.C.1
  • 114
    • 77957139539 scopus 로고    scopus 로고
    • Mediator and cohesin connect gene expression and chromatin architecture
    • 114 Kagey, M.H., et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature 467 (2010), 430–435.
    • (2010) Nature , vol.467 , pp. 430-435
    • Kagey, M.H.1
  • 115
    • 39149121436 scopus 로고    scopus 로고
    • Cohesin mediates transcriptional insulation by CCCTC-binding factor
    • 115 Wendt, K.S., et al. Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451 (2008), 796–801.
    • (2008) Nature , vol.451 , pp. 796-801
    • Wendt, K.S.1
  • 116
    • 84882738244 scopus 로고    scopus 로고
    • Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites
    • 116 Yan, J., et al. Transcription factor binding in human cells occurs in dense clusters formed around cohesin anchor sites. Cell 154 (2013), 801–813.
    • (2013) Cell , vol.154 , pp. 801-813
    • Yan, J.1
  • 117
    • 79953162010 scopus 로고    scopus 로고
    • Cohesin: genomic insights into controlling gene transcription and development
    • 117 Dorsett, D., Cohesin: genomic insights into controlling gene transcription and development. Curr. Opin. Genet. Dev. 21 (2011), 199–206.
    • (2011) Curr. Opin. Genet. Dev. , vol.21 , pp. 199-206
    • Dorsett, D.1
  • 118
    • 84955486608 scopus 로고    scopus 로고
    • Gene regulation and chromatin organization: relevance of cohesin mutations to human disease
    • 118 Watrin, E., et al. Gene regulation and chromatin organization: relevance of cohesin mutations to human disease. Curr. Opin. Genet. Dev. 37 (2016), 59–66.
    • (2016) Curr. Opin. Genet. Dev. , vol.37 , pp. 59-66
    • Watrin, E.1
  • 119
    • 84933278077 scopus 로고    scopus 로고
    • CTCF/cohesin-binding sites are frequently mutated in cancer
    • 119 Katainen, R., et al. CTCF/cohesin-binding sites are frequently mutated in cancer. Nat. Genet. 47 (2015), 818–821.
    • (2015) Nat. Genet. , vol.47 , pp. 818-821
    • Katainen, R.1
  • 120
    • 84901419546 scopus 로고    scopus 로고
    • Cohesin in cancer: chromosome segregation and beyond
    • 120 Losada, A., Cohesin in cancer: chromosome segregation and beyond. Nat. Rev. Cancer 14 (2014), 389–393.
    • (2014) Nat. Rev. Cancer , vol.14 , pp. 389-393
    • Losada, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.