-
1
-
-
84967146023
-
Metabolic fibroblast growth factors (FGFs): Mediators of energy homeostasis [published online ahead of print September 30, 2015]
-
Markan KR, Potthoff MJ. Metabolic fibroblast growth factors (FGFs): mediators of energy homeostasis [published online ahead of print September 30, 2015]. Semin Cell Dev Biol. doi:10.1016/j.semcdb. 2015.09.021.
-
Semin Cell Dev Biol.
-
-
Markan, K.R.1
Potthoff, M.J.2
-
2
-
-
84857185764
-
Endocrine fibroblast growth factors 15/19 and 21: From feast to famine
-
Potthoff MJ, Kliewer SA, Mangelsdorf DJ. Endocrine fibroblast growth factors 15/19 and 21: from feast to famine. Genes Dev. 2012;26:312-324.
-
(2012)
Genes Dev
, vol.26
, pp. 312-324
-
-
Potthoff, M.J.1
Kliewer, S.A.2
Mangelsdorf, D.J.3
-
3
-
-
84897109882
-
Inventing new medicines: The FGF21 story
-
Kharitonenkov A, Adams AC. Inventing new medicines: the FGF21 story. Mol Metab. 2014;3:221-229.
-
(2014)
Mol Metab
, vol.3
, pp. 221-229
-
-
Kharitonenkov, A.1
Adams, A.C.2
-
4
-
-
34848869695
-
Tissue-specific expression of β klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21
-
Kurosu H, Choi M, Ogawa Y, et al. Tissue-specific expression of β klotho and fibroblast growth factor (FGF) receptor isoforms determines metabolic activity of FGF19 and FGF21. J Biol Chem. 2007;282:26687-26695.
-
(2007)
J Biol Chem
, vol.282
, pp. 26687-26695
-
-
Kurosu, H.1
Choi, M.2
Ogawa, Y.3
-
5
-
-
41649109108
-
β Klotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c
-
SuzukiM,Uehara Y, Motomura-Matsuzaka K, et al. β Klotho is required for fibroblast growth factor (FGF) 21 signaling through FGF receptor (FGFR) 1c and FGFR3c. Mol Endocrinol. 2008;22:1006-1014.
-
(2008)
Mol Endocrinol
, vol.22
, pp. 1006-1014
-
-
Suzuki, M.1
Uehara, Y.2
Motomura-Matsuzaka, K.3
-
6
-
-
39149091423
-
FGF-21/FGF-21 receptor interaction and activation is determined by β klotho
-
Kharitonenkov A, Dunbar JD, Bina HA, et al. FGF-21/FGF-21 receptor interaction and activation is determined by β klotho. J Cell Physiol. 2008;215:1-7.
-
(2008)
J Cell Physiol
, vol.215
, pp. 1-7
-
-
Kharitonenkov, A.1
Dunbar, J.D.2
Bina, H.A.3
-
7
-
-
84930584701
-
Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodiesandtargetedmassspectrometry
-
Katafuchi T, Esterházy D, Lemoff A, et al. Detection of FGF15 in plasma by stable isotope standards and capture by anti-peptide antibodiesandtargetedmassspectrometry. CellMetab.2015;21:898-904.
-
(2015)
CellMetab
, vol.21
, pp. 898-904
-
-
Katafuchi, T.1
Esterházy, D.2
Lemoff, A.3
-
8
-
-
77957376253
-
Research resource: Comprehensive expression atlas of the fibroblast growth factor system in adult mouse
-
Fon Tacer K, Bookout AL, Ding X, et al. Research resource: comprehensive expression atlas of the fibroblast growth factor system in adult mouse. Mol Endocrinol. 2010;24:2050-2064.
-
(2010)
Mol Endocrinol
, vol.24
, pp. 2050-2064
-
-
Fon Tacer, K.1
Bookout, A.L.2
Ding, X.3
-
10
-
-
84865741904
-
β Klotho is required for fibroblast growth factor 21 effects on growth and metabolism
-
Ding X, Boney-Montoya J, Owen BM, et al. β Klotho is required for fibroblast growth factor 21 effects on growth and metabolism. Cell Metab. 2012;16:387-393.
-
(2012)
Cell Metab
, vol.16
, pp. 387-393
-
-
Ding, X.1
Boney-Montoya, J.2
Owen, B.M.3
-
11
-
-
84908018672
-
FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss
-
Owen BM, Ding X, Morgan DA, et al. FGF21 acts centrally to induce sympathetic nerve activity, energy expenditure, and weight loss. Cell Metab. 2014;20:670-677.
-
(2014)
Cell Metab
, vol.20
, pp. 670-677
-
-
Owen, B.M.1
Ding, X.2
Morgan, D.A.3
-
12
-
-
84883778996
-
FGF21 regulates metabolism and circadian behavior by acting on the nervous system
-
Bookout AL, de Groot MH, Owen BM, et al. FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med. 2013;19:1147-1152.
-
(2013)
Nat Med
, vol.19
, pp. 1147-1152
-
-
Bookout, A.L.1
De Groot, M.H.2
Owen, B.M.3
-
13
-
-
84883763046
-
FGF21 contributes to neuroendocrine control of female reproduction
-
Owen BM, Bookout AL, Ding X, et al. FGF21 contributes to neuroendocrine control of female reproduction. Nat Med. 2013;19: 1153-1156.
-
(2013)
Nat Med
, vol.19
, pp. 1153-1156
-
-
Owen, B.M.1
Bookout, A.L.2
Ding, X.3
-
14
-
-
84901819372
-
Photoperiodic regulation of FGF21 production in the Siberian hamster
-
Samms RJ, Fowler MJ, Cooper S, et al. Photoperiodic regulation of FGF21 production in the Siberian hamster. Horm Behav. 2014;66: 180-185.
-
(2014)
Horm Behav
, vol.66
, pp. 180-185
-
-
Samms, R.J.1
Fowler, M.J.2
Cooper, S.3
-
15
-
-
84891684837
-
High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: Involvement of peroxisome proliferator-activated receptor γ signaling
-
So WY, Cheng Q, Chen L, et al. High glucose represses β-klotho expression and impairs fibroblast growth factor 21 action in mouse pancreatic islets: involvement of peroxisome proliferator-activated receptor γ signaling. Diabetes. 2013;62:3751-3759.
-
(2013)
Diabetes
, vol.62
, pp. 3751-3759
-
-
So, W.Y.1
Cheng, Q.2
Chen, L.3
-
16
-
-
84907211065
-
FGF21 expression and release in muscle cells: Involvement of MyoD and regulation by mitochondria-driven signalling
-
Ribas F, Villarroya J, Hondares E, Giralt M, Villarroya F. FGF21 expression and release in muscle cells: involvement of MyoD and regulation by mitochondria-driven signalling. Biochem J. 2014;463:191-199.
-
(2014)
Biochem J
, vol.463
, pp. 191-199
-
-
Ribas, F.1
Villarroya, J.2
Hondares, E.3
Giralt, M.4
Villarroya, F.5
-
17
-
-
79953886306
-
Thermogenic activation induces FGF21 expression and release in brown adipose tissue
-
Hondares E, Iglesias R, Giralt A, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. J Biol Chem. 2011;286:12983-12990.
-
(2011)
J Biol Chem
, vol.286
, pp. 12983-12990
-
-
Hondares, E.1
Iglesias, R.2
Giralt, A.3
-
18
-
-
84911917697
-
Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding
-
Markan KR, Naber MC, Ameka MK, et al. Circulating FGF21 is liver derived and enhances glucose uptake during refeeding and overfeeding. Diabetes. 2014;63:4057-4063.
-
(2014)
Diabetes
, vol.63
, pp. 4057-4063
-
-
Markan, K.R.1
Naber, M.C.2
Ameka, M.K.3
-
19
-
-
70350322694
-
Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis
-
Badman MK, Koester A, Flier JS, Kharitonenkov A, Maratos-Flier E. Fibroblast growth factor 21-deficient mice demonstrate impaired adaptation to ketosis. Endocrinology. 2009;150:4931-4940.
-
(2009)
Endocrinology
, vol.150
, pp. 4931-4940
-
-
Badman, M.K.1
Koester, A.2
Flier, J.S.3
Kharitonenkov, A.4
Maratos-Flier, E.5
-
20
-
-
77955474305
-
Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease
-
Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139:456-463.
-
(2010)
Gastroenterology
, vol.139
, pp. 456-463
-
-
Dushay, J.1
Chui, P.C.2
Gopalakrishnan, G.S.3
-
21
-
-
34249711964
-
Hepatic fibroblast growth factor 21 is regulated by PPAR α and is a key mediator of hepatic lipid metabolism in ketotic states
-
Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. Hepatic fibroblast growth factor 21 is regulated by PPAR α and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 2007;5:426-437.
-
(2007)
Cell Metab
, vol.5
, pp. 426-437
-
-
Badman, M.K.1
Pissios, P.2
Kennedy, A.R.3
Koukos, G.4
Flier, J.S.5
Maratos-Flier, E.6
-
22
-
-
84907015381
-
FGF21 is an endocrine signal of protein restriction
-
Laeger T, Henagan TM, Albarado DC, et al. FGF21 is an endocrine signal of protein restriction. J Clin Invest. 2014;124:3913-3922.
-
(2014)
J Clin Invest
, vol.124
, pp. 3913-3922
-
-
Laeger, T.1
Henagan, T.M.2
Albarado, D.C.3
-
23
-
-
34249686631
-
Endocrine regulation of the fasting response byPPAR α-mediated induction of fibroblast growth factor 21
-
Inagaki T, Dutchak P, Zhao G, et al. Endocrine regulation of the fasting response byPPAR α-mediated induction of fibroblast growth factor 21. Cell Metab. 2007;5:415-425.
-
(2007)
Cell Metab
, vol.5
, pp. 415-425
-
-
Inagaki, T.1
Dutchak, P.2
Zhao, G.3
-
24
-
-
84911917770
-
FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting
-
Liang Q, Zhong L, Zhang J, et al. FGF21 maintains glucose homeostasis by mediating the cross talk between liver and brain during prolonged fasting. Diabetes. 2014;63:4064-4075.
-
(2014)
Diabetes
, vol.63
, pp. 4064-4075
-
-
Liang, Q.1
Zhong, L.2
Zhang, J.3
-
25
-
-
84892162004
-
Stressed liver and muscle call on adipocytes with FGF21
-
Luo Y, McKeehan WL. Stressed liver and muscle call on adipocytes with FGF21. Front Endocrinol. 2013;4:194.
-
(2013)
Front Endocrinol
, vol.4
, pp. 194
-
-
Luo, Y.1
McKeehan, W.L.2
-
26
-
-
78049297991
-
Obesity is a fibroblast growth factor 21 (FGF21)-resistant state
-
Fisher FM, Chui PC, Antonellis PJ, et al. Obesity is a fibroblast growth factor 21 (FGF21)-resistant state. Diabetes. 2010;59:2781-2789.
-
(2010)
Diabetes
, vol.59
, pp. 2781-2789
-
-
Fisher, F.M.1
Chui, P.C.2
Antonellis, P.J.3
-
27
-
-
84455199475
-
Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance
-
Hale C, Chen MM, Stanislaus S, et al. Lack of overt FGF21 resistance in two mouse models of obesity and insulin resistance. Endocrinology. 2012;153:69-80.
-
(2012)
Endocrinology
, vol.153
, pp. 69-80
-
-
Hale, C.1
Chen, M.M.2
Stanislaus, S.3
-
28
-
-
77952865658
-
Reversible Ponceau staining as a loading control alternative to actin in Western blots
-
Romero-Calvo I, Ocón B, Martínez-Moya P, et al. Reversible Ponceau staining as a loading control alternative to actin in Western blots. Anal Biochem. 2010;401:318-320.
-
(2010)
Anal Biochem
, vol.401
, pp. 318-320
-
-
Romero-Calvo, I.1
Ocón, B.2
Martínez-Moya, P.3
-
29
-
-
76749118930
-
Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: Implications for metabolism research
-
Martens K, Bottelbergs A, Baes M. Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett. 2010;584:1054-1058.
-
(2010)
FEBS Lett
, vol.584
, pp. 1054-1058
-
-
Martens, K.1
Bottelbergs, A.2
Baes, M.3
-
30
-
-
79751512463
-
The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance
-
Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 2011;17:179-188.
-
(2011)
Nat Med
, vol.17
, pp. 179-188
-
-
Vandanmagsar, B.1
Youm, Y.H.2
Ravussin, A.3
-
31
-
-
84891672639
-
Adipose tissue macrophages are innate to the immunological awareness of adipose tissue
-
Dixit VD. Adipose tissue macrophages are innate to the immunological awareness of adipose tissue. Diabetes. 2013;62:2656-2658.
-
(2013)
Diabetes
, vol.62
, pp. 2656-2658
-
-
Dixit, V.D.1
-
32
-
-
84911164076
-
A decade of progress in adipose tissue macrophage biology
-
Hill AA, Reid Bolus W, Hasty AH. A decade of progress in adipose tissue macrophage biology. Immunol Rev. 2014;262:134-152.
-
(2014)
Immunol Rev
, vol.262
, pp. 134-152
-
-
Hill, A.A.1
Reid Bolus, W.2
Hasty, A.H.3
-
33
-
-
84889675289
-
Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice
-
Yu Y, Zhang XH, Ebersole B, Ribnicky D, Wang ZQ. Bitter melon extract attenuating hepatic steatosis may be mediated by FGF21 and AMPK/Sirt1 signaling in mice. Sci Rep. 2013;3:3142.
-
(2013)
Sci Rep
, vol.3
, pp. 3142
-
-
Yu, Y.1
Zhang, X.H.2
Ebersole, B.3
Ribnicky, D.4
Wang, Z.Q.5
-
34
-
-
84901496215
-
Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome
-
Zhang J, Li Y. Fibroblast growth factor 21, the endocrine FGF pathway and novel treatments for metabolic syndrome. Drug Discov Today. 2014;19:579-589.
-
(2014)
Drug Discov Today
, vol.19
, pp. 579-589
-
-
Zhang, J.1
Li, Y.2
-
35
-
-
84945912355
-
FGF21 revolutions: Recent advances illuminating FGF21 biology and medicinal properties
-
Kharitonenkov A, DiMarchi R. FGF21 revolutions: recent advances illuminating FGF21 biology and medicinal properties. Trends Endocrinol Metab. 2015;26:608-617.
-
(2015)
Trends Endocrinol Metab
, vol.26
, pp. 608-617
-
-
Kharitonenkov, A.1
DiMarchi, R.2
-
36
-
-
84863637593
-
FGF21promotes metabolic homeostasis via white adipose and leptin in mice
-
VeniantMM,Hale C, Helmering J, et al.FGF21promotes metabolic homeostasis via white adipose and leptin in mice. PLoS One. 2012; 7:e40164.
-
(2012)
PLoS One
, vol.7
, pp. e40164
-
-
Veniant, M.M.1
Hale, C.2
Helmering, J.3
-
37
-
-
84877272187
-
An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice
-
Holland WL, Adams AC, Brozinick JT, et al. An FGF21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17:790-797.
-
(2013)
Cell Metab
, vol.17
, pp. 790-797
-
-
Holland, W.L.1
Adams, A.C.2
Brozinick, J.T.3
-
38
-
-
84893849860
-
Interplay between FGF21 and insulin action in the liver regulates metabolism
-
Emanuelli B, Vienberg SG, Smyth G, et al. Interplay between FGF21 and insulin action in the liver regulates metabolism. J Clin Invest. 2014;124:515-527.
-
(2014)
J Clin Invest
, vol.124
, pp. 515-527
-
-
Emanuelli, B.1
Vienberg, S.G.2
Smyth, G.3
-
39
-
-
84905679771
-
The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue
-
Adams AC, Yang C, Coskun T, et al. The breadth of FGF21's metabolic actions are governed by FGFR1 in adipose tissue. Mol Metab. 2012;2:31-37.
-
(2012)
Mol Metab
, vol.2
, pp. 31-37
-
-
Adams, A.C.1
Yang, C.2
Coskun, T.3
-
40
-
-
79960726293
-
Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo
-
Fisher FM, Estall JL, Adams AC, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152:2996-3004.
-
(2011)
Endocrinology
, vol.152
, pp. 2996-3004
-
-
Fisher, F.M.1
Estall, J.L.2
Adams, A.C.3
-
41
-
-
84929708081
-
Discrete aspects of FGF21 in vivo pharmacology do not require UCP1
-
Samms RJ, Smith DP, Cheng CC, et al. Discrete aspects of FGF21 in vivo pharmacology do not require UCP1. Cell Rep. 2015;11:991-999.
-
(2015)
Cell Rep
, vol.11
, pp. 991-999
-
-
Samms, R.J.1
Smith, D.P.2
Cheng, C.C.3
-
42
-
-
34249677947
-
FGF21: A missing link in the biology of fasting
-
Reitman ML. FGF21: a missing link in the biology of fasting. Cell Metab. 2007;5:405-407.
-
(2007)
Cell Metab
, vol.5
, pp. 405-407
-
-
Reitman, M.L.1
-
43
-
-
84883481988
-
The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes
-
Gaich G, Chien JY, Fu H, et al. The effects of LY2405319, an FGF21 analog, in obese human subjects with type 2 diabetes. Cell Metab. 2013;18:333-340.
-
(2013)
Cell Metab
, vol.18
, pp. 333-340
-
-
Gaich, G.1
Chien, J.Y.2
Fu, H.3
-
46
-
-
0033849777
-
Obesity and insulin resistance
-
Kahn BB, Flier JS. Obesity and insulin resistance. J Clin Invest. 2000;106:473-481.
-
(2000)
J Clin Invest
, vol.106
, pp. 473-481
-
-
Kahn, B.B.1
Flier, J.S.2
-
47
-
-
84920702690
-
Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients
-
Gallego-Escuredo JM, Gomez-Ambrosi J, Catalan V, et al. Opposite alterations in FGF21 and FGF19 levels and disturbed expression of the receptor machinery for endocrine FGFs in obese patients. Int J Obes (Lond). 2015;39:121-129.
-
(2015)
Int J Obes (Lond)
, vol.39
, pp. 121-129
-
-
Gallego-Escuredo, J.M.1
Gomez-Ambrosi, J.2
Catalan, V.3
-
48
-
-
57349098220
-
Fibroblast growth factor 21 corrects obesity in mice
-
Coskun T, Bina HA, Schneider MA, et al. Fibroblast growth factor 21 corrects obesity in mice. Endocrinology. 2008;149:6018-6027.
-
(2008)
Endocrinology
, vol.149
, pp. 6018-6027
-
-
Coskun, T.1
Bina, H.A.2
Schneider, M.A.3
-
49
-
-
61649127208
-
Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice
-
Xu J, Lloyd DJ, Hale C, et al. Fibroblast growth factor 21 reverses hepatic steatosis, increases energy expenditure, and improves insulin sensitivity in diet-induced obese mice. Diabetes. 2009;58:250-259.
-
(2009)
Diabetes
, vol.58
, pp. 250-259
-
-
Xu, J.1
Lloyd, D.J.2
Hale, C.3
-
50
-
-
77955434383
-
Fibroblast growth factor 21 regulates energy metabolism by activating the AMPKSIRT1-PGC-1α pathway
-
Chau MD, Gao J, Yang Q, Wu Z, Gromada J. Fibroblast growth factor 21 regulates energy metabolism by activating the AMPKSIRT1-PGC-1α pathway. Proc Natl Acad Sci USA. 2010;107: 12553-12558.
-
(2010)
Proc Natl Acad Sci USA
, vol.107
, pp. 12553-12558
-
-
Chau, M.D.1
Gao, J.2
Yang, Q.3
Wu, Z.4
Gromada, J.5
-
51
-
-
84930579383
-
Pharmacologic effects of FGF21 are independent of the "browning" of white adipose tissue
-
Véniant MM, Sivits G, Helmering J, et al. Pharmacologic effects of FGF21 are independent of the "browning" of white adipose tissue. Cell Metab. 2015;21:731-738.
-
(2015)
Cell Metab
, vol.21
, pp. 731-738
-
-
Véniant, M.M.1
Sivits, G.2
Helmering, J.3
-
52
-
-
33645841079
-
Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress
-
Ukropec J, Anunciado RV, Ravussin Y, Kozak LP. Leptin is required for uncoupling protein-1-independent thermogenesis during cold stress. Endocrinology. 2006;147:2468-2480.
-
(2006)
Endocrinology
, vol.147
, pp. 2468-2480
-
-
Ukropec, J.1
Anunciado, R.V.2
Ravussin, Y.3
Kozak, L.P.4
-
53
-
-
55549085230
-
Inactivation of UCP1 and the glycerol phosphate cycle synergistically increases energy expenditure to resist diet-induced obesity
-
Anunciado-Koza R, Ukropec J, Koza RA, Kozak LP. Inactivation of UCP1 and the glycerol phosphate cycle synergistically increases energy expenditure to resist diet-induced obesity. J Biol Chem. 2008; 283:27688-27697.
-
(2008)
J Biol Chem
, vol.283
, pp. 27688-27697
-
-
Anunciado-Koza, R.1
Ukropec, J.2
Koza, R.A.3
Kozak, L.P.4
-
54
-
-
84933548383
-
Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory elementbinding protein-2 and induction of adiponectin in mice
-
Lin Z, Pan X, Wu F, et al. Fibroblast growth factor 21 prevents atherosclerosis by suppression of hepatic sterol regulatory elementbinding protein-2 and induction of adiponectin in mice. Circulation. 2015;131:1861-1871.
-
(2015)
Circulation
, vol.131
, pp. 1861-1871
-
-
Lin, Z.1
Pan, X.2
Wu, F.3
-
55
-
-
84916234343
-
Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells
-
ShangW,YuX,WangH, et al. Fibroblast growth factor 21 enhances cholesterol efflux in THP-1 macrophage-derived foam cells. Mol Med Rep. 2015;11:503-508.
-
(2015)
Mol Med Rep
, vol.11
, pp. 503-508
-
-
Shang, W.1
Yu, X.2
Wang, H.3
-
56
-
-
84905280933
-
FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells
-
Lin XL, He XL, Zeng JF, et al. FGF21 increases cholesterol efflux by upregulating ABCA1 through the ERK1/2-PPARγ-LXRα pathway in THP1 macrophage-derived foam cells.DNA Cell Biol. 2014;33:514-521.
-
(2014)
DNA Cell Biol
, vol.33
, pp. 514-521
-
-
Lin, X.L.1
He, X.L.2
Zeng, J.F.3
-
57
-
-
84872462425
-
Dual actions of fibroblast growth factor 19 on lipid metabolism
-
Wu X, Ge H, Baribault H, et al. Dual actions of fibroblast growth factor 19 on lipid metabolism. J Lipid Res. 2013;54:325-332.
-
(2013)
J Lipid Res
, vol.54
, pp. 325-332
-
-
Wu, X.1
Ge, H.2
Baribault, H.3
-
58
-
-
84865422329
-
TNF-α represses β-klotho expression and impairs FGF21 action in adipose cells: Involvement of JNK1 in the FGF21 pathway
-
Díaz-Delfín J, Hondares E, Iglesias R, Giralt M, Caelles C, Villarroya F. TNF-α represses β-klotho expression and impairs FGF21 action in adipose cells: involvement of JNK1 in the FGF21 pathway. Endocrinology. 2012;153:4238-4245.
-
(2012)
Endocrinology
, vol.153
, pp. 4238-4245
-
-
Díaz-Delfín, J.1
Hondares, E.2
Iglesias, R.3
Giralt, M.4
Caelles, C.5
Villarroya, F.6
-
59
-
-
84883260199
-
Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones
-
Adams AC, Coskun T, Cheng CC, O Farrell LS, Dubois SL, Kharitonenkov A. Fibroblast growth factor 21 is not required for the antidiabetic actions of the thiazoladinediones. Mol Metab. 2013;2: 205-214.
-
(2013)
Mol Metab
, vol.2
, pp. 205-214
-
-
Adams, A.C.1
Coskun, T.2
Cheng, C.C.3
O'Farrell, L.S.4
Dubois, S.L.5
Kharitonenkov, A.6
|